nationalgrid

Interim Remedial Measure Design Investigation for the 50 Kent Avenue Parcel Williamsburg Works Former MGP Site Site ID No. 224055 Brooklyn, Kings County, New York

Prepared for:

National Grid

287 Maspeth Avenue Brooklyn, New York 11211

Prepared by:

February 2013

INTERIM REMEDIAL MEASURE PRE-DESIGN INVESTIGATION DATA REPORT FOR THE

50 KENT AVENUE PARCEL FORMER WILLIAMSBURG WORKS MGP SITE SITE ID NO. 224055 BROOKLYN, KINGS COUNTY, NEW YORK

PREPARED FOR:

NATIONAL GRID NY
ONE METROTECH CENTER
BROOKLYN, NEW YORK 11201

PREPARED BY:

URS CORPORATION
77 GOODELL STREET
BUFFALO, NEW YORK 14203

FEBRUARY 2013

TABLE OF CONTENTS

					Page No.	
EXEC	CUTIVE	SUMMA	ARY		V	
1.0	INTRODUCTION					
	1.1	Site D	Site Description			
		1.1.1	Geology	and Hydrogeology	1-1	
	1.2	Previous Investigations			1-2	
		1.2.1	Concept	ual Site Model	1-3	
	1.3	PDI O	•			
2.0	Pre-D	Program				
	2.1	C				
	2.2		Overview			
	2.2	2.2.1		mental and Geotechnical Investigation		
		2.2.1	2.2.1.1	Delineation Soil Borings		
			2.2.1.2	Geotechnical Borings		
			2.2.1.3	Monitoring Well Installation and Water Level Measureme		
			2.2.1.4	Test Pits	2-5	
			2.2.1.5	Community Air Monitoring Plan	2-5	
			2.2.1.6	Investigation-Derived Waste	2-6	
		2.2.2	Utility a	nd Subsurface Infrastructure Investigation	2-7	
		2.2.3	Bench-Scale Treatability Study Sampling		2-8	
		2.2.4	Hydraul	ic Conductivity Testing	2-9	
		2.2.5	Baseline	Groundwater Modeling	2-9	
		2.2.6	Noise ar	nd Vibration Study	2-10	
			2.2.6.1	Vibration Study	2-10	
			2.2.6.2	Noise Study	2-11	
			2.2.6.3	Sound Prediction Analysis	2-11	
		2.2.7	Adjacen	t Building Foundation Assessment	2-11	
		2.2.8	Groundy	water Level and NAPL Gauging	2-12	
		2.2.9	Surveyii	ng	2-13	
3.0	INVE	INVESTIGATION RESULTS				
	3.1 Enviro		nmental a	nd Geotechnical Investigation	3-1	
		3.1.1	Soil Bor	ings	3-1	
		3.1.2	Groundy	vater Monitoring Wells	3-2	
		3.1.3	Hydraul	ic Conductivity Testing	3-3	

		3.1.4	Test Pits	3-3			
		3.1.5	Summary of MGP and Petroleum/Fuel Contamination	3-4			
	3.2	Utilitie	3-4				
	3.3	Soil Geotechnical Properties					
	3.4	NAPL Stabilization					
	3.5	Baseline Groundwater Modeling					
	3.6	Noise	Noise and Vibration Assessment				
		3.6.1	3-10				
		3.6.2	Results of Noise Assessment	3-11			
		3.6.3	Results of Sound Prediction and Control Evaluation	3-12			
	3.7	Adjacent Building Assessment					
	3.8	NAPL	Recoverability	3-14			
4.0	CON	CONCEPTUAL DESIGN4					
	4.1	Elements of the IRM					
	4.2	Produc	4-4				
	4.3	Holder	Holder Foundation Deep Excavation Support Barrier				
		4.3.1	Interlocking Steel Sheet Pile	4-6			
		4.3.2	Cutter Soil Mixing	4-7			
		4.3.3	Slurry Wall	4-8			
		4.3.4	Secant Pile	4-9			
		4.3.5	DSM Wall	4-9			
		4.3.6	Interior Soil Berms	4-10			
		4.3.7	Excavation Support Summary and Recommendations	4-11			
		4.3.8	Excavation - Additional Considerations	4-11			
	4.4	Dewat	4-12				
	4.5	Excav	4-13				
	4.6	Backfi	4-14				
	4.7	Shallo	4-14				
	4.8	Summ	4-15				
5.0	REFE	RENCES5					

TABLES

Table 2-1	Monitoring Well Construction Summary		
Table 2-2	Typical Vibration Levels for Common Construction Equipment		
Table 2-3	Typical Noise Levels for Common Construction Equipment		
Table 2-4 Vibration and Noise Monitoring Locations			
Table 3-1	Boring Sample Information		
Table 3-2	Groundwater Elevations – April 23, 2012		
Table 3-3	Slug Test Results		
Table 3-4	Geotechnical Lab Test Results		
Table 3-5	Summary of Ambient Vibration Data		
Table 3-6 Summary of Ambient Noise Data			
	FIGURES		
Figure 1-1	Site Location		
Figure 1-2	Former MGP Structures and Site Features		
Figure 1-3	Previous Sample Locations		
Figure 2-1	IRM Design Investigation Locations		
Figure 2-2	Noise and Vibration Monitoring Locations		
Figure 2-3	Adjacent Building Locations		
Figure 3-1	Geologic Cross-Section Location Map		
Figure 3-2	Geologic Cross-Section A-A'		
Figure 3-3	Geologic Cross-Section B-B'		
Figure 3-4	Geologic Cross-Section C-C'		
Figure 3-5	Groundwater Contours (April 23, 2012)		
Figure 3-6	Qualitative Observations in Soil Borings and Test Pits		
Figure 3-7	Petroleum/Fuel Odors		
Figure 3-8	Site-Wide Utilities (Composite)		
Figure 3-9	Quasi-Steady State Calibrated Groundwater Level Contours and Calibration Residuals		
Figure 3-10	Simulated Groundwater Levels in Layer 2 for Scenario 1		
Figure 3-11	Simulated Groundwater Levels in Layer 1 for Scenario 1		
Figure 3-12	Simulated Groundwater Levels in Layer 1 for Scenario 2		

APPENDICES

Appendix A Soil Boring Logs

Appendix B Geotechnical Laboratory Testing Results

Appendix C Monitoring Well Construction Logs

Appendix D Test Pit Logs/Test Pit Photo Logs

Appendix E CAMP Field Notes

Appendix F IDW Characterization Lab Results

Appendix G IDW Disposal Documentation

Appendix H Results of Geophysics Investigation

Appendix I NAPL Stabilization Bench Test Results

Appendix J Slug Testing Data

Appendix K Groundwater Flow Modeling Report

Appendix L Ambient Sound and Vibration Studies

Appendix M Building Foundation Plans

Appendix N Survey Data

GLOSSARY

ASTM American Society for Testing and Materials

CAMP Community Air Monitoring Plan

CSM Cutter soil Mixing dBA A-weighted decibels

DNAPL Denser than water Nonaqueous Phase Liquid

DRO Diesel Range Organics
DSM Deep Soil Mixing

DWG Drawing

GGBFS Ground Granulated Blast Furnace Slag

GPR Ground Penetrating Radar GRO Gasoline Range Organics

ID Inside Diameter

IDW Investigation Derived Waste
IRM Interim Remedial Measure

ISS In Situ Stabilization

 $\begin{array}{ll} \text{Ln} & \text{Exceedance Sound Level} \\ \text{L}_{eq} & \text{Equivalent Sound Level} \end{array}$

LNAPL Lighter than water Nonaqueous Phase Liquid

MGP Manufactured Gas Plan NAPL Nonaqueous Phase Liquid

NYC New York City

NYCDEP New York City Department of Environmental Protection

NYCDOS New York City Department of Sanitation

NYSDEC New York State Department of Environmental Conservation

PDI Predesign Investigation
PID Photoionization Detector

POTW Publically Owned Treatment Works

PPV Peak Particle Velocity
RI Remedial Investigation

TCB Temporary Containment Building

TDS Total Dissolved Solids

UCS Unconfined Compressive Strength
USCS Unified Soil Classification System

VOC Volatile Organic Compound

EXECUTIVE SUMMARY

On behalf of National Grid, URS Corporation (URS) has prepared this Interim Remedial Measure (IRM) Pre-Design Investigation (PDI) Report for the 50 Kent Avenue parcel ("the Site") of the Williamsburg Works former Manufactured Gas Plant (MGP) site. The Williamsburg Works former MGP site consists of four parcels located in the Williamsburg neighborhood of Brooklyn, New York along North12th and North 11th Streets, Kent Avenue, and the East River. The purpose of the IRM is to address MGP-related source material at the 50 Kent Avenue parcel.

The Williamsburg Works former MGP site is covered under an administrative order on consent and administrative settlement #A2-0552-0606, which was entered into by KeySpan Corporation, the predecessor to National Grid, and New York State Department of Environmental Conservation (NYSDEC). National Grid is currently conducting a Remedial Investigation (RI) at the Williamsburg Works former MGP site. Interim results of the RI were transmitted to NYSDEC on August 25, 2010 in the Draft Remedial Investigation Interim Data Summary. The Summary identified that further investigation was necessary to define the nature and extent of environmental impacts at the Williamsburg Works former MGP site.

In a letter to National Grid dated September 23, 2010, NYSDEC stated that based on the Interim Data Summary sufficient data exist to initiate the design of an excavation/stabilization-based IRM for the 50 Kent Avenue parcel. National Grid met with NYSDEC on October 26, 2010 to discuss NYSDEC's request for an IRM Work Plan. During the meeting, NYSDEC agreed with National Grid that additional pre-IRM design data are needed. The scope of the IRM PDI is described in the "Final Interim Remedial Measure Design Work Plan" (GEI, 2011). This report presents a summary of the results of the PDI and a conceptual design of the IRM.

The PDI field work primarily consisted of the following activities:

- Delineation Soil Borings
- Geotechnical Borings
- Monitoring Well Installation
- Test Pits
- Groundwater Level and NAPL Gauging
- Hydraulic Conductivity Testing

- Utility and Subsurface Infrastructure Investigation
- Bench-Scale Treatability Testing
- Baseline Groundwater Modeling
- Noise and Vibration Study
- Adjacent Building Foundation Assessment

URS installed eleven borings for delineation and/or geotechnical analyses, installed three monitoring wells, and dug 14 test pits throughout the Site. Observations during these activities revealed the presence of MGP waste characterization from odors to tar saturated soils. No simply-described pattern of contamination was observed, but the contaminant extent was consistent with the existing site conceptual model that describes coal tar contamination migrating vertically downward from the former holders until reaching lower permeability lenses whereupon the NAPL would migrate horizontally downgradient.

Slug testing indicated that the soils are characterized as having moderate to low permeability. This information was used in the groundwater modeling effort to suggest that closely spaced wells or sumps would be required to lower the water table if necessary for soil excavation.

The geotechnical evaluation concluded that the soils are poorly sorted and are considered moderately to very dense based on blow counts. Cobble lenses were encountered. The basal clay layer was observed to be very stiff.

The geotechnical properties of the soil are conducive to the installation of shoring to aid in excavation, with the fines content assisting to improve strength and reduce permeability. The clay layer would provide a firm base for shoring installation and tie-in. However, the presence of cobbles and fill debris would make some technologies such as sheet pile difficult to install.

The test pits were installed along the perimeter of the east end of the Site and revealed frequent obstacles such as walls, pipes, and former holder foundations that would require removal prior to subsurface activities in these areas.

The conceptual approach for the IRM would be to excavate the former holder foundations, and the soils below them, excavate shallow soils elsewhere on the Site, and install NAPL collection wells along N. 12th Street, north of the Site and along the 55-foot zone between the western edge of shallow excavation and the CitiStorage building. Because of the depth of the holder foundations and their extent below the groundwater table, shoring and dewatering will

be required. The excavations will be backfilled with a combination of site soils with concentrations of total polycyclic aromatic hydrocarbons less than 500 milligrams per kilogram (deeper backfill) and clean imported soil (shallow backfill).

1.0 INTRODUCTION

URS Corporation – New York (URS) has prepared this report to present the results of an Interim Remedial Measure (IRM) Pre-design Investigation (PDI) performed for National Grid. URS performed this PDI to collect data necessary to design an IRM for a portion of the former Williamsburg Works manufactured gas plant (MGP). Based on the data collected during this study and in previous investigations, URS presents the conceptual approach to implementing the IRM, including recommendations for collection of additional data required to complete the design.

1.1 <u>Site Description</u>

The former Williamsburg Works MGP operated from approximately 1863 through the late 1930s or early 1940s. The former MGP was located on four parcels in the Williamsburg neighborhood of Brooklyn, New York along North 12th and North 11th Streets, Kent Avenue, and the East River.

This PDI Report addresses only the 50 Kent Avenue component of the former MGP. This component, referred in this report as "the Site" is at Block 2287, Lot 1 and was the location for purifying operations, condensers and three gas holders. The 50 Kent Avenue parcel is bordered by North 12th Street to the northeast, Kent Avenue to the southeast, North 11th Street to the southwest, and Block 2287, Lot 16 to the northwest. Figure 1-1 shows the location of the 50 Kent Avenue site.

Following the closure of the MGP, the MGP structures were dismantled. However, the holder tanks and other structures remained underground.

Most recently, the Site was used by the New York City Department of Sanitation (NYCDOS) and included a NYCDOS garage on the northwestern half of the site. The garage was demolished in 2009 and the site is currently a vacant lot owned by the New York City Parks Department. Figure 1-2 shows the site location with the outlines of the historic MGP structures.

1.1.1 Geology and Hydrogeology

Fill material, including brick, concrete, wood, and coal are present to approximately 25 feet, and in some locations as deep as 42 feet. Glacial deposits (outwash sands and glacial till) underlie the fill material, with stratigraphy predominately consisting of widely graded sand interspersed with gravel or silty sand lenses at varying depths. A confining clay layer appears to be present throughout the Site at depths ranging from 41 to 72 feet bgs.

Groundwater is present at approximately 2 to 5 feet bgs. Groundwater within the gas holder tanks is elevated relative to the surrounding water table. Groundwater immediately outside holder structures was also elevated relative to the surrounding water table. Because of the proximity to the East River, groundwater levels are tidally influenced. Groundwater flow is towards the northwest (towards the East River).

1.2 Previous Investigations

The history of the investigation of the Site is summarized in detail in the Final Interim Remedial Measure Design Work Plan (GEI 2011). In brief, attention was initially drawn to the Site through the operations of NYCDOS. Prompted by observations of fuel-related free product in wells, remedial actions, including limited excavation and in situ treatment with oxygen release compound, bionutrient addition, and vacuum enhanced fluid recovery, were performed in the late 1990s and early 2000s. Figure 1-3 shows the location of previous sample locations on and near the Site.

A comprehensive investigation for portions of the former MGP, including the Site, was performed in 2006 by Metcalf and Eddy for the City of New York in anticipation of transforming site properties into a part of the planned Bushwick Inlet Park. This investigation studied the former NYCDOS property, the accessible corridors along 11th and 12th streets between the Site and the East River, and sediments in the East River adjacent to the former MGP property. Results of the investigation were summarized in a Site Investigation Report (Metcalf and Eddy, 2006).

The 2006 investigation advanced 28 soil borings and 9 sediment borings, installed 9 monitoring wells, and sampled the 9 new and 2 existing wells. Historic fill was observed to be present at depths of 9 to 42 feet below ground surface (bgs), consisting mainly of sand with gravel, brick, ash, and cinders. Field observations for 18 of the 28 soil borings indicated that petroleum and coal tar contamination was found to exist throughout the subsurface from the surface to the top of the clay layer. Petroleum contamination was found to be more prevalent in the historic fill material, while MGP contamination was encountered at depths below the water table to approximately 50 feet bgs. Free coal tar product was observed in two new monitoring wells. Sediment samples collected from the East River contained petroleum and coal tar contamination, with petroleum contamination closer to the surface transitioning to coal tar contamination as the borings were advanced further.

In August 2007 National Grid's predecessor, KeySpan, entered into a modification of Order on Consent and Administrative Settlement #A2-0552-0606 (the Order) with the New York State Department of Environmental Conservation (NYSDEC). The modification included the former Williamsburg Works MGP in the Order. During 2009-2010, National Grid's consultant GEI performed a Remedial Investigation (RI) of the former Williamsburg Works MGP, including the 50 Kent Avenue property. RI activities included advancement of 56 soil borings and 7 sediment borings, excavation of 6 test pits, groundwater sampling from 16 monitoring wells and surface soil sampling at 9 locations (see Figure 1-3 for sample location on and near the Site). The results of this investigation were reported by National Grid in an interim data transmittal letter to NYSDEC dated August 2010 (GEI, 2010).

Soil borings exhibited petroleum impacts to as deep as 43 feet bgs, but were primarily in the zone up to 20 feet bgs. Coal tar impacts, including sheen, staining, blebs, globs, coating, tar lenses, and tar saturation were observed as deep as 65 feet below grade. However, no impacts were observed below the clay layer present at approximately 55 to 65 feet bgs, and only one sample taken from just above the clay layer exceeded NYSDEC Part 375 commercial use soil cleanup objectives (SCOs).

1.2.1 <u>Conceptual Site Model</u>

An draft interim RI data report developed a conceptual site model describing the source of coal tar coming from the former gas holders and tar handling structures located on the eastern portion of the Site (Figure 2-1). Free product (coal tar NAPL) was observed in samples collected from the former holder structures, including at depth intervals as great as 16 feet in BPB-16. NAPL from this source appears to migrate vertically until encountering lower permeable silt and clay lenses, whereupon it migrates to the northwest (towards the East River). NAPL saturation was detected as deep as 48 feet bgs at location WW-SB-23 located immediately west of former gas holder No. 1. However, other soil borings among the gas holders, such as WW-MW-5 and WW-SB-42 showed only odors or sheens at depth.

This PDI updates the conceptual site model through installation of additional borings within the gas holder area and in the footprint of the former NYCDOS building.

1.3 PDI Objectives

The preliminary results of the RI, as summarized in the interim data report suggested a significant continuing coal tar source within the gas holder foundations, and in select locations

below the holders but above the clay layer. Because sufficient data had been collected to initiate design, the NYSDEC directed that National Grid pursue implementation of an IRM. Conceptually, the IRM would consist of excavation of the source within the gas holder, coupled with in situ treatment of deeper source material or alternatively product recovery for source control.

The PDI was designed to collect the data necessary to design the IRM through collection of further characterization data near the former gas holders and from the footprint of the former NYCDOS building. In addition to collecting contamination extent information, an objective of the PDI soil borings was to collect geotechnical data needed for designing shoring systems required for excavation. Additional objectives of the PDI were to perform treatability tests for possible solidification treatment, subsurface utility location to aid in shoring design, background sound and vibration and monitoring and collection of information on adjacent building foundation construction to evaluate the viability of shoring techniques.

2.0 PRE-DESIGN INVESTIGATION PROGRAM

2.1 Overview

Activities described in this section were completed in accordance with the procedures described in the NYSDEC-approved Final Interim Remedial Measures Design Work Plan prepared by GEI Consultants (GEI 2011).

2.2 IRM Pre-design Investigation Activities

URS performed this PDI to collect data in support of an IRM design for a portion of the Williamsburg Works former MGP. Field activities performed during the investigation from February 23, 2012 to November 27, 2012 are discussed below.

2.2.1 Environmental and Geotechnical Investigation

The Environmental and Geotechnical Investigation consisted of

- Delineation Soil Borings
- Geotechnical Borings
- Monitoring Well Installation and Water Level Measurements
- Test Pits
- Community Air Monitoring, and
- Investigative Derived Waste Disposal

The delineation, geotechnical, and monitoring well borings were advanced by Fenley & Nicol Environmental, Inc. (Fenley & Nicol) using a Cantera CT-450 drill rig to the top of the clay layer, encountered at approximately 60 ft bgs, to delineate MGP-related source material and collect additional geotechnical information. Soil boring locations are presented in Figure 2-1. Boring logs are presented in Appendix A.

With the exception of boring WW-SB-102, the delineation and geotechnical borings were drilled using 4.25-inch inside diameter (ID) hollow stem augers. The initial 5 feet of each boring was advanced using soft dig procedures (i.e., post hole, hand auger, or air knife/vac truck) to minimize the risk of damaging unidentified subsurface utilities. Soil samples were continuously collected at each boring location using a 1.5-inch inside diameter, 24-inch long, split-barrel sampler. The samples were inspected and field screened with a PID to determine the presence of contamination. Over each 6-inch interval of split-spoon advancement, blow counts were

recorded, as indicated on the boring logs. Due to the widespread presence of dense soil or obstructions, a 300 lb hammer was mainly used for the delineation borings to expedite the work and for the collection of environmental samples (the exception is that a 140 lb. hammer was used for WW-SB-110). Once blow counts start consistently exceeding 100, then hammer weight/drop becomes less meaningful and a heavier hammer was used to get qualitative data on soil density.

The soil was described in accordance with the Unified Soil Classification System (USCS). Soil descriptions, along with other pertinent drilling information, were recorded on a geologic boring log. Soil samples were evaluated for the presence of MGP-related contamination using a Mini Rae 2000 photoionization detector (PID) and visual observation. Any indications of MGP-related contamination (e.g., odors, staining, elevated PID readings, blebs/globs, and/or tar saturation) were recorded on the boring logs. Upon completion, boreholes were abandoned with a Portland cement/bentonite slurry mixture placed from the bottom-up using the tremie pipe method. All drill cuttings and other IDW were placed in drums for proper offsite disposal.

2.2.1.1 Delineation Soil Borings

From February 28 to March 29, 2012, seven delineation borings, WW-SB-104 through WW-SB-110, were completed to:

- Further delineate the extent of MGP-related source material between ground surface and the clay layer encountered at approximately 60 feet bgs;
- Evaluate the feasibility of deep MGP-related source stabilization; and
- Further define the limits of any potential shallow excavation.

The seven delineation borings were advanced to depths ranging from 55 to 64 feet bgs. The borings are located at the approximate locations identified in the IRM Design Work Plan (GEI 2011). However, several boring locations were moved to avoid subsurface obstructions that were impeding drilling progress.

2.2.1.2 Geotechnical Borings

From March 21 to April 19, 2012, four geotechnical soil borings, WW-SB-100 through WW-SB-103, were completed at locations along the potential excavation support system alignment surrounding the gas holders located in the eastern portion of the site (Figure 2-1). Geotechnical soil borings were completed using hollow stem auger methods as described above with the exception of boring WW-SB-102. Boring WW-SB-102 was initially completed to the target depth of 81 feet bgs using hollow stem augers. However, the bottom of the clay unit had

not yet been encountered, and Fenley&Nicol did not have enough augers to continue with this drilling method. Therefore, the borehole was abandoned, and drilling continued from 81 to 101 feet bgs through the 6-inch permanent steel casing installed at the WW-MW-102D location (see well installation discussion below). Drilling from 81 to 101 feet bgs was completed using mud rotary drilling. Continuous soil sampling for the geotechnical borings was performed using a 140-lb hammer for all samples except the depth interval from 81 to 101 feet bgs in boring WW-SB-102. This interval was sampled using a 300-lb hammer because Fenley & Nicol did not have the necessary rod connection to be able to use the 140-lb hammer while drilling with mud rotary. In addition, one soil sample from the clay layer of each geotechnical boring was collected using Shelby tube (approximate dimensions 2.9-inch x 30-inch).

Select soil samples from the geotechnical borings were submitted to TerraSense, LLC for geotechnical testing of the following parameters:

- Unified Soil Classification System (USCS) description,
- Density,
- Moisture content,
- Atterberg limits,
- Particle size distribution,
- Unconfined compressive strength,
- Permeability, and
- Organic content, percentage by weight.

Standard ASTM methods were used for the above analyses. To provide thorough soil descriptions of the highly variable stratigraphy, at least five depths in each of the four geotechnical borings were targeted for laboratory testing. This includes each of the four Shelby tubes extracted from the clay layer (one from each boring). In order to provide enough sample size for testing, like field samples from split spoons were generally composited over a minimum 5 to 6-foot contiguous vertical zone. Each unique soil type identified by split spoon sampling was represented by laboratory testing.

The battery of laboratory tests performed was selected as support for potential IRM design components such as shoring type, pile driving, soil mixing, excavation stability, etc. For example, particle size is necessary to correlate typical hydraulic conductivity with that

determined by slug tests (for dewatering assessment); and is useful to assess likely leakage through sheet pile joints (fines can help seal off open joints). The fraction of fines (fines are sizes less than #200 sieve size) will provide a general idea of sidewall stability of excavated sand (e.g., minimal fines generally equates to requiring flatter slopes). Particle size distribution and Atterberg limits are useful during detailed design of soil mix and reagents. Hydraulic conductivity of clay is necessary for input to the groundwater model. Geotechnical testing results are discussed in Section 3.3. Geotechnical lab results are presented in Appendix B.

2.2.1.3 Monitoring Well Installation and Water Level Measurements

Two intermediate and one deep monitoring well were installed by Fenley&Nicol at geotechnical soil boring locations WW-SB-100 and WW-SB-102 (Figure 2-1). The intermediate wells, WW-MW-100I and WW-MW-102I, were both installed to evaluate groundwater elevations and the possible presence of MGP-related contamination from the water bearing zone immediately above the clay layer. These wells were installed to depths of 58.5 and 61 feet bgs, respectively. Each intermediate monitoring well boring was advanced using 4.25-inch ID hollow stem augers. Each well was constructed with a 2-foot sump below the screened interval to collect possible DNAPL. A sufficient thickness of clay (minimum 5 feet) was identified at each of these locations; therefore, the sumps were set approximately two feet into the clay such that the bottom of the screen is flush with the top of clay.

Deep well, WW-MW-102D, was installed adjacent to well WW-MW-102I along Kent Avenue, below the clay layer, with a screen interval of 92 to 102 ft bgs. The driller advanced 10.25-inch ID hollow stem augers to a depth of 62-feet below grade (3 ft into the clay layer). To seal off the upper portion of the borehole above the clay layer, a 6-inch diameter permanent steel casing was placed from ground surface to a depth of 62 feet and grouted into the borehole. Because hollow stem augers could not be used within the 6-inch casing, mud rotary drilling methods were used to complete the boring to the final depth.

Each monitoring well was constructed with 2-inch Schedule 40 polyvinyl chloride (PVC) casing with a 10-foot long, slotted PVC screen (0.010 inch slot). The annulus around the screens was backfilled with clean silica sand to a height of 1 to 2 feet above the top of the screen. A bentonite pellet seal of 2 to 3 feet thickness was placed above the sand pack. The remainder of the annulus was filled with a cement/bentonite grout to just below the ground surface. The top of each well was finished using flush-mounted covers and keyed-alike locks. A concrete surface pad was sloped to direct water away from the well cover. All wells were installed in accordance with

the NYSDEC-approved Field Sampling Plan. Monitoring well locations are presented in Figure 2-1. Monitoring well construction logs are presented in Appendix C.

Well construction details for the three new PDI monitoring wells, and the 17 RI monitoring wells previously installed by GEI, are summarized on Table 2-1.

2.2.1.4 Test Pits

From March 15 to 20, 2012, URS oversaw the excavation of fourteen test pits (WW-TP-100 through WW-TP-113) at selected locations along the proposed shoring perimeter and adjacent to the gas holder tanks (Figure 2-1). Test pits were completed to assist in evaluating the nature and extent of obstructions and utilities present in the urban fill stratum, and their potential impact on the installation of potential excavation shoring systems or stabilization procedures.

Fenley&Nicol used a Case 590K rubber-tire backhoe to excavate each test pit, which had an approximate area of 10 feet by 3 feet. Concrete or asphalt pavement was sawcut and removed at each test pit location. All material excavated from the test pit was placed on polyethylene sheeting. The concrete/asphalt pavement material was staged for future off-site disposal.

Each test pit was photographed and logged by the URS field representative during excavation. Once the final depth was attained, and URS recorded all necessary information, the test pit was backfilled with the excavated spoils. On April 26 and 27, 2012, test pit areas were paved with approximately six inches of bluestone and approximately 4 inches of asphalt. Test pit excavation locations are presented in Figure 2-1. Test pit logs/photo logs are presented in Appendix D.

2.2.1.5 Community Air Monitoring Plan

Real-time air monitoring for volatile organic compounds and dust particulates was conducted during all intrusive activities (i.e., drilling and excavation) in accordance with Community Air Monitoring Plan (CAMP) procedures presented in the Work Plan. At each soil boring and test pit site, one upwind and one downwind data-logging monitoring station was deployed to monitor the potential for fugitive dust or vapors to migrate off site. Each monitoring station was equipped with one RAE Systems MiniRae 2000 photoionization detector (PID) and one TSI DustTrak aerosol monitor housed in a tripod-mounted environmental enclosure. In accordance with CAMP procedures, the monitoring station alarm levels were set to trigger when the 15-minute average of VOC or dust concentrations exceeded the predetermined threshold (i.e., 5 parts per million (ppm) VOCs and 100 micrograms per cubic meter (ug/m³) dust). Action levels were not triggered during any of the investigative activities.

In addition, during drilling and excavation activities, periodic dust and VOC measurements were collected from within the work zone using a third set of the MiniRae and DustTrak monitoring instruments. No work stoppages were required due to elevated VOC or dust concentrations within the work zone. CAMP field notes are presented in Appendix E.

2.2.1.6 Investigation-Derived Waste

Investigation-derived wastes (IDW) including soil cuttings, decontamination water, development water, and personal protective equipment (PPE) were contained in 55-gallon drums and staged at a temporary onsite drum storage pad established for this investigation effort. Excess test pit soil and pavement debris (i.e., asphalt and concrete) generated from the test pit areas was temporarily stockpiled on site.

All waste disposal activities were coordinated through National Grid's IDW contractor, WRS Environmental Services, Inc. (WRS). URS collected representative samples of the IDW for waste characterization purposes. Samples of soil cuttings and purge/decontamination water were composited and submitted to Test America Laboratories, Inc. located in Amherst, New York. IDW samples were analyzed for the following parameters based on the analytical methods (Standard Methods for the Examination of Water and Wastewater [sulfur and total dissolved solids] and United States Environmental Protection Agency SW-846 [remainder]) required by WRS:

Soil

- 8260B Volatile Organic Compounds
- 8270C Semivolatile Organic Compounds
- 8015B Gasoline Range Organics (GRO)
- 8015B Diesel Range Organics (DRO)
- D129 Sulfur, Total Percent
- 9095A Paint Filter
- 8082 Polychlorinated Biphenyls (PCBs)
- 6010B Metals
- 7471A Mercury
- Percent Moisture

Purge/Decontamination Water

- 8082 PCBs
- 6010B Metals
- SM 2540C Solids, Total Dissolved Solids (TDS)
- 1010 Ignitability
- 9020 Total Organic Halides

URS submitted IDW characterization analytical results to WRS. IDW characterization test results are presented in Appendix F. WRS was responsible for profiling, manifesting, loading,

and transporting all IDW generated during this PDI. WRS coordinated pickup of all IDW from the site on April 27 and 30, 2012. All soil (drummed and bulk) was transported directly to the disposal facility on the same day. The 27 drums of purge/decontamination water and pavement debris were transported from the site to the National Grid facility located in Hicksville, New York for temporary staging. The pavement debris was transported to the final disposal facility on April 30, 2012. The 27 drums of water were then transported to their final disposal facility on May 2, 2012.

All disposal documentation including non-hazardous waste manifests and disposal facility receipts are included in Appendix G. A summary of the IDW quantities and final disposal destinations follows:

Summary of IDW Disposal

Soil Cuttings – 75 drums	Bayshore Recycling Corp.
	75 Crows Mill Road, Keasbey, New Jersey
Excess Test Pit Soil – 10.46 tons stockpile	Bayshore Recycling Corp.
	75 Crows Mill Road, Keasbey, New Jersey
Purge/Decontamination Water – 27 drums	Clean Earth of North Jersey
	115 Jacobus Avenue, South Kearny, New Jersey
Demo Pavement (asphalt and concrete	Montecalvo Disposal Services, Inc.
from Test Pit areas) – 15.51 tons	75 Crows Mill Road, Keasbey, New Jersey

2.2.2 <u>Utility and Subsurface Infrastructure Investigation</u>

An investigation was conducted to confirm the location of subsurface utilities identified by the public utility markout service and to markout other detectable subsurface utilities and underground features around the IRM perimeter. On February 23, 2012 NAEVA Geophysics, Inc. (NAEVA) commenced a geophysical investigation along the IRM site perimeter where the potential excavation support system may be placed. However, due to the presence of NYC Parks Department materials stored at various locations within the geophysical investigation area,

NAEVA only completed a portion of the work at that time. After discussions with National Grid, the decision was made to request that the Parks Department move the stored materials so that the geophysical survey could proceed unimpeded along the planned alignment. However, the Parks Department was unable to have the materials moved before the end of April. Therefore, on April 30, 2012, NAEVA completed the geophysical survey by working around the stored materials.

NAEVA employed a Fisher TW-6 Pipe and Cable Locator, a Mala RAMAC/Ground Penetrating Radar (GPR) system with a 250-Megahertz antenna, a Subsite 950 utility locator, and a 3M Dynatel 2250 Cable Locator. The area was visually inspected for evidence of subsurface utilities (such as utility valves and conduits, fire hydrants, etc.). Whenever a metallic/electrically conductive utility was noted, a radio frequency signal was conducted or induced onto the line using one of the utility locating instruments' transmitters. This signal was then used to delineate the utility using the locating instruments' receiver. Many utilities carry electric currents, and produce electromagnetic fields that can be detected at the surface. In addition, buried metallic conduits, acting as antennas, often pick up and re-radiate background commercial radio signals. The area was searched for evidence of these signals using the Subsite operating in passive modes.

The TW-6 Pipe and Cable Locator was carried over the area in a series of closely spaced bi-directional traverses in an attempt to locate underground storage tanks (USTs), subsurface utilities, and other subsurface metallic features. Anomalies detected with the TW-6 were further investigated with the GPR and utility locators to identify their sources. Additionally, the Dynatel Cable Locator was used for locating the surface trace of telephone lines, electric lines, and other narrow-gauge wiring. Detected features were marked on the ground using spray paint and identified on the site map included with the NAEVA Results of Geophysics Investigation Report presented in Appendix H. Results are discussed in Section 3.2.

2.2.3 Bench-Scale Treatability Study Sampling

A bench-scale treatability study was performed to evaluate various potential mixtures to stabilize soil containing NAPL. Soil samples were collected from each delineation soil boring location and archived in 5-gallon buckets for possible use for the bench-scale treatability study. A minimum of 1 five-gallon bucket sample was collected from each location representing contamination found at the site (i.e., NAPL saturated material, NAPL staining, blebs, fuel-odor, other).

From these buckets, URS provided Remedius, Inc. with three composite samples. The samples were composited from soil collected from soil borings WW-SB-104, WW-SB-105, and a

combination of WW-SB-106 and WW-SB-107. These locations and depth intervals were selected based on several factors including:

- The availability of soil material different intervals from different borings had varying degrees of recovery. Not all soil recovered during drilling was archived for treatability testing for practical purposes of segregated soil storage.
- The presence of DNAPL. The WW-SB-106 interval of 47' to 57' bgs exhibited 100% NAPL saturation, and was combined with soil from WW-SB-107 that was collected from 43' to 57' bgs (also with 100% NAPL saturation) as well as more soil from WW-SB-107 from the entire length of the boring.

Remedius performed NAPL Stabilization Bench Tests on collected soil material following sieving to remove particles greater than ½ inch nominal size. Three mixes were prepared using a 3-to-1 blend of ground granulated blast furnace slag (GGBFS) and Portland cement. One mix was created using a low dose of reagents, the second a medium dose, and the third a high dose. For each prepared mix, 5 cylindrical specimens were formed, 3 of which were analyzed for strength and 2 for permeability. Specimens were cured and analyzed at 7, 14, and 28 days (strength) and 14 and 28 days (permeability). The GGBFS and Portland cement mixes were adequate; therefore, a second series of mixes using bentonite or organoclay as an additive were not necessary. Results are presented in Appendix I and summarized in Section 3-4.

2.2.4 <u>Hydraulic Conductivity Testing</u>

From April 18 to 25, 2012, URS attempted to perform slug testing on 13 existing and 3 newly installed monitoring wells. Upon analysis of slug test field data, it was determined that insufficient data was collected, and as a result, these test results are not usable. Therefore, on August 28 and 29, 2012, URS conducted additional slug testing on five existing and 3 newly installed wells located on or near the 50 Kent Avenue parcel. Slug tests were performed in accordance with the GEI Field Sampling Plan (GEI, 2011). The slug test data were analyzed using the Bouwer and Rice (1976, 1989) method. Results are presented in Appendix J and summarized in Section 3-1.

2.2.5 Baseline Groundwater Modeling

Visual MODFLOW was used to simulate existing groundwater flow conditions in the vicinity of the site. The model boundaries included: (1) the East River as a constant head or a river boundary to the west; (2) a constant head or general head boundary upgradient to the east; and, (3) no flow boundaries to the north and south. A quasi–steady state groundwater flow model

was developed to simulate flow conditions and calibrated to existing groundwater levels. Then a transient groundwater flow model was developed to estimate dewatering rate and volume, and to evaluate the effect of an excavation support system on the groundwater table. The groundwater flow modeling report is presented in Appendix K and summarized in Section 3.5.

2.2.6 Noise and Vibration Study

Construction activities associated with the proposed clean-up activities, such as sheet pile installation, excavation, soil compaction, or the movement of heavy equipment, produce ground vibrations and noise that would be well beyond the ambient vibrations and noise within the project limits. Representative peak particle velocities and typical noise levels for common construction equipment are shown on Tables 2-2 and 2-3, respectively.

URS retained Vibra-Tech Engineers, Inc. (Vibra-Tech) to perform ambient vibration and noise monitoring using seismographs and sound level monitoring systems at six locations within the vicinity of the Site. The locations were selected to provide a representative coverage of nearby sensitive receptors. The field work was conducted between April 23, and April 29, 2012.A second, planned ambient noise study, identical to the first, was performed between November 21 and November 27, 2012.

Results of vibration and noise monitoring/prediction are discussed in Section 3. The Vibra-Tech reports describing the vibration level study and two ambient sound studies are attached in Appendix L.

2.2.6.1 Vibration Study

Six seismographs were deployed to perform vibration monitoring for a minimum of seven days at each location. Each unit consisted of a portable digital seismograph (Vibra-Tech Multiseis Plus) equipped with a triaxial geophone that measured and recorded ground vibrations in three dimensions (longitudinal, transverse, and vertical). The seismograph locations are listed in Table 2-4 and shown in Figure 2-2. The sensors at locations 1, 4, 5, and 6 were buried approximately 1.5 feet in the soil. The sensors at locations 2 and 3 were coupled to the sidewalk with hot glue melt and sandbags. The geophone was positioned with the orientation of the longitudinal axis toward the proposed construction site. The seismographs were powered by a solar panel and a back-up battery.

2.2.6.2 Noise Study

Six Larson Davis System 820 sound level monitoring systems were used to conduct unattended monitoring for up to seven days at the locations listed in Table 2-4 and shown in Figure 2-2. In addition, two Larson Davis 824 Systems were used to conduct spot check attended monitoring for one hour at the same locations. The sound level system was mounted on a tripod approximately five feet above the ground and the microphone was equipped with a wind screen. During the April 2012 study, the microphone element was stolen from location #5 on April 25. Sound level meters at locations 3 and 4 failed to save data from April 25 to April 29 due to corrupted memory.

In addition to the six stations deployed, two Larson Davis 824 Systems were used to conduct 1 hour spot checks at each of the six monitoring locations. The sound level system was mounted on a tripod approximately five feet above the ground and the microphone was equipped with a wind screen. During these spot check tests, specific information regarding singular events which occurred near the monitoring location or were evident during each sound level test period were noted. Weather conditions during the testing are also recorded.

An identical week-long ambient noise monitoring study was performed from November 21 to November 27, 2012. In light of the microphone being stolen during the April study, for added security, all six sound level monitors for the November study were placed within the fenced area of the 50 Kent Avenue parcel. The monitor numbering (#1 through #6) corresponded to the same numbering scheme as the April study. But, location #'s 2, 3, 4, and 5 were slightly different (Figure 2-2).

2.2.6.3 Sound Prediction Analysis

Vibra-Tech also completed a sound prediction and control program for the Site. The sound prediction analysis focused on all major noise sources associated with the environmental remediation site, including pile driving, drilling, and excavation.

2.2.7 Adjacent Building Foundation Assessment

URS performed an evaluation of available building foundation information for buildings located near the Site that may be impacted by remediation activities. Foundation information for the following blocks and lots was evaluated:

- Block 2287, Lot 16 (immediately northwest of the Site)
- Block 2295 (across from Kent Avenue and south of 11th St)

- Block 2277 Lot 1 Building 1 (northwest of the Site, across N. 12th Street)
- Block 2277 Lot 1 Building 2 (northeast of the Site, across N. 12th Street)
- Block 2287 Lot 1 (the Site)
- Block 2288 Lot 1 (across Kent Avenue from the Site)
- Block 2294 Lot 1 (across N. 11th Street from the Site)

Locations of buildings adjacent to the Site, and that may be potentially impacted by remediation activity, are shown on Figure 2-3.

On April 19, 2012, URS personnel performed an exterior visual inspection of the buildings and their foundations and made a visit to the Brooklyn Borough Office Building Department located at 210 Joralemon Street, 8th Fl. Brooklyn, NY 11201 to examine building foundation records of the buildings which are in the scope of work. These plans were reviewed for information pertinent to the design of the onsite excavation support system. The building foundation plans are presented in Appendix M and the assessment prepared by URS is presented in Section 3.7.

2.2.8 Groundwater Level and NAPL Gauging

URS completed water level and NAPL gauging of existing and newly installed groundwater monitoring wells to determine the presence and thickness of NAPL in each well. This data was collected to evaluate the need for NAPL recovery pilot testing.

URS performed water level and NAPL gauging on April 23, 2012. Measurements were recorded in 16 wells located on the IRM site and in the surrounding area. Wells WW-MW-01 has been paved over or destroyed and could not be located. Wells WW-MW-14 and -15 are located within a fenced area and could not be accessed at the time of gauging. Water levels are discussed in Section 3.

Results of NAPL gauging using the electronic oil-water interface probe indicated the presence of significant amounts of DNAPL in many of the monitoring wells. Based on field observations and review of existing information from monitoring well installation records, the NAPL gauging results are considered questionable and are, therefore, not presented in this report.

URS performed additional NAPL gauging on August 28, 2012. NAPL gauging was performed by first checking for LNAPL using an oil/water interface probe. If no LNAPL was detected, then gauging was performed by lowering a white absorbent liner (NAPL FLUTe) into

the well and then retrieving it to inspect for indications of NAPL. The NAPL FLUTe absorbs any NAPL and the approximate NAPL thickness present in the well can be directly measured from the NAPL FLUTe.

2.2.9 Surveying

Following installation of the groundwater monitoring wells, soil borings and test pits, the locations and elevations were surveyed by a NYS-licensed surveyor from YEC, Inc. on April 24, 2012 using the existing site datum on the NYS Plane Coordinate System and mean sea level. YEC, Inc. survey information is presented in Appendix N.

3.0 INVESTIGATION RESULTS

3.1 Environmental and Geotechnical Investigation

This section summarizes the findings from each of the investigation activities described in Section 2 and their impact on potential IRM activities. PDI test pit locations and delineation and geotechnical boring/monitoring well locations are presented in Figure 2-1.

3.1.1 Soil Borings

Figure 3-1 presents the geologic cross-sections developed from information in the newly-installed soil borings and the GEI boring logs. Cross-sections A-A' through C-C' are presented on Figures 3-2 through 3-4.

The Williamsburg site is covered by a layer of fill material consisting primarily of sand, silt, gravel, some cobbles, and varying amounts of construction and demolition debris (i.e., bricks, concrete, etc.). Among the borings installed for this PDI, the fill layer was typically found to range in depth from 5 feet bgs (WW-SB-103) to 15 feet bgs (WW-SB-100). However, fill material was observed to 29 feet bgs at WW-SB-102. Fill is absent at boring WW-MW-05. Also, the former gas holders contain fill to a depth of approximately 30 feet bgs, as depicted on Figure 3-2.

Overburden material consists mainly of fine to coarse-grained sand and silt with some interbedded clay and gravel/cobbles. A widespread continuous clay layer was encountered at depths ranging from 45 feet bgs at WW-SB-105 to 71 feet bgs at WW-SB-103.

Weathered schist bedrock was encountered at a depth of 99 feet bgs in the deepest boring at the site (WW-SB-102, drilled to 101 feet bgs) during the IRM Investigation.

Soil samples were evaluated for the presence of MGP-related contamination using a PID and visual and olfactory observations. Boring sample information is summarized in Table 3-1. MGP-related contamination was found in all borings drilled during the PDI. Petroleum and fuel impacts were also observed.

Coal tar-like odors were observed in each of the soil borings. NAPL saturation ranging from 30-100% was visually observed in 7 of the 11 boring locations (WW-SB-100, -101, -104, -105, -106, -107, and -110); these are also depicted in brown on Figures 3-2 through 3-4.

Elevated PID readings were recorded at all 11 boring locations. The highest PID readings were recorded at boring locations WW-SB-101, -104, and -107). At soil boring WW-SB-101 (located 15 feet east of the former Relief Holder), the maximum PID reading of 2,238

ppm was recorded at a depth of 22 feet bgs. Complete NAPL saturation was observed from 21 feet to 25 feet bgs and 33 feet to 49 feet bgs. At soil boring WW-SB-104 (located 30 feet southeast of the former Relief Holder), the maximum PID reading of 4,119 ppm was recorded at a depth of 36 feet bgs. Complete NAPL saturation was observed from 19 feet to 23 feet bgs, while 50% NAPL saturation was observed from 33 feet to 35 feet bgs. At soil boring WW-SB-107 (located in the center of the former central Purifying House), the maximum PID reading of 2,485 ppm was recorded at a depth of 53 feet bgs. Complete NAPL saturation was observed from 49 to 58.5 feet bgs. Petroleum-like odors were also observed from 7 feet to 11 feet bgs.

Low amounts of contamination were encountered at soil borings WW-SB-102 and WW-SB-108. Faint to moderate coal tar-like odors were observed to a depth of 69 feet bgs at soil boring WW-SB-102, located in the southeast end of the property along Kent Avenue. A light coating or sheen was only evident down to a depth of 33 feet bgs with a maximum PID reading of 57 ppm at 29 feet bgs. Faint to moderate coal tar-like odors were also observed throughout soil boring WW-SB-108, located between the former southern Purifying House and the former Meter/Lime House. A maximum PID reading of 27 ppm was recorded at this boring at 23 feet bgs.

Petroleum-like odors were also observed in soil borings WW-SB-106 and WW-SB-110 from 8.5 feet to 19 feet bgs and 5.5 feet to 11 feet bgs, respectively.

3.1.2 **Groundwater Monitoring Wells**

A round of groundwater levels was obtained on April 23, 2012 from 16 of the 19 new and existing monitoring wells on site. Monitoring well WW-MW-01 could not be located to obtain a water level and wells WW-MW-14 and WM-15 were inaccessible. Groundwater levels are presented on Table 3-2 and shown on Figure 3-5. Groundwater was found at relatively shallow depths across the site at average depths of between 3.5 to 4.5 feet bgs. Groundwater elevations in the shallow monitoring wells across the study area ranged from 1.58 feet above mean sea level (amsl) at WW-MW-13 downgradient of the property to 10.05 feet amsl at WW-MW-07. The average onsite groundwater elevation in the shallow monitoring wells is 8 feet amsl. In the western portion of the property, groundwater flow is northwest towards the East River. There is a groundwater mound in the vicinity of the former holder locations. This mounding presumably is due to accumulation within the holder foundations. This local mound impacts the regional (northwestern) direction and with a radial flow of groundwater from the holder foundation area to the north, east and south.

The groundwater elevation in the intermediate zone ranged from 2.23 feet amsl (WW-MW-101I) to 3.84 feet amsl (WW-MW-102I). The groundwater elevation in the deep zone (WW-MW-102D) was at 3.74 feet amsl.

3.1.3 Hydraulic Conductivity Testing

Slug test results provide estimated values for hydraulic conductivity of multiple stratigraphic zones beneath the Site. Five wells, WW-MW-04, -05, -07, -08, & -17, are screened within the upper 22 feet of fill and overburden soils. Two wells, WW-MW-100I and -102I, are screened from approximately 47 to 57 feet bgs and 49 to 59 feet bgs, respectively. One well, WW-MW-102, is screened below the clay layer from 90 to 100 feet bgs.

Estimated hydraulic conductivities for the August 2012 slug tests are summarized on Table 3-3. Mean hydraulic conductivity for the shallow soils (0 to 22 feet bgs) was 4.34×10^{-4} centimeters per second (cm/s). Mean hydraulic conductivities for the intermediate (47 to 59 feet bgs) and deep zones (90 to 100 feet bgs) were 7.11×10^{-5} cm/s and 5.87×10^{-4} cm/s, respectively.

3.1.4 Test Pits

Test pit excavations were mainly comprised of fill material consisting primarily of sand, silt, gravel, and varying amounts of construction and demolition debris (i.e., bricks, concrete, paving stones, etc.). The fill layer generally extends beyond the vertical limit of the test pit excavations. The deepest test pit (WW-TP-111) was excavated to a depth of 10 feet bgs.

Various utilities and concrete/brick structures were encountered in 12 of the 14 test pits. No underground structures were identified in test pits WW-TP-111 and WW-TP-113. These structures and utilities are discussed in Section 3.2.

Coal tar and/or petroleum-like odors were encountered at 11 of the 14 test pits. Odors were not encountered at test pits WW-TP-105, -107, and -110. VOCs were detected in soil samples from 7 of the 14 test pits (WW-TP-101, -102, -104, -106, - 109, -111, and -113). The highest PID readings were recorded at test pits WW-TP-101 and WW-TP-102 at 218 ppm and 322 ppm, respectively, generally between 4 feet and 8 feet bgs. A small amount of NAPL free product was observed in test pit WW-TP-101 at 1 foot bgs. A heavy NAPL coating was also noted in test pit WW-TP-104. Petroleum blebs were observed on the water at test pit WW-TP-112.

Pooling water hindered visual inspection in test pits WW-TP-100, -103, -105, -107, -108, -110, and -112 beyond approximately 6 feet to 6.5 feet bgs.

3.1.5 Summary of MGP and Petroleum/Fuel Contamination

A summary of observed impacts is presented on Figure 3-6. MGP impacts (tar saturation, coatings, sheens, odors) were identified in borings across the IRM site. The highest degree of contamination, tar saturated soils, is found to the greatest extent surrounding the relief holder and extending to an approximate depth of 55 feet bgs. Within these tar saturated soils are areas of tar staining and coatings (moderate and light). Additional impacts (sheens and odors) are found below the depth of 55 feet to a depth of approximately 60 feet bgs, in the western portion of the site (WW-SB-106, WW-SB-107, WW-SB-108, and WW-SB-110). Impacts extend to approximately 69 feet bgs in the eastern portion of the site (coal tar odors in WW-SB-102), and to approximately 81 feet bgs near the central portion of the site (coal tar odor and light coating observed in WW-SB-100), and between the two former holders in the southeast portion of the Site (coal tar odor in WW-SB-103). However, observations of impacts in the clay layer in borings WW-SB-100 and WW-SB-103 may be a result of sampling equipment passing through more heavily contaminated zones at shallower depths rather than actual impacted soil.

MGP impacts (other than odors) along the periphery of the property, as observed within the test pits, were limited except in WW-TP-104 located adjacent to WW-SB-102. In this location it appears that MGP impacts extend to the property line. Due to the lack of MGP impacts observed in WW-TP-105, WW-TP-106, WW-TP-107, WW-TP-109, and WW-TP-110, it appears that the northeastern, eastern, and southeastern perimeters of the property are not impacted by MGP operations. Note that the edge of gas holder No. 2 was encountered in test pit WW-TP-108.

A summary of observed petroleum/fuel odors is presented on Figure 3-7. Petroleum/fuel odors were observed in the majority of soil borings and test pits in the western portion of the site both above and below the water table. They were generally not observed in soil borings and test pits in the eastern portion of the property (WW-SB-101, WW-SB-103, WW-SB-104, WW-TP-102, WW-TP-105, WW-TP-107, WW-TP-108, WW-TP-110, WW-TP-111) except in the northeast (WW-TP-106) and southeast (WW-TP-109) corners, and at depth in WW-SB-100 (32 feet bgs) and WW-SB-102 (29 feet bgs). In the western portion of the site, petroleum/ fuel odors were observed between depths of 1 to 19 feet bgs, generally in the range of 5 to 10 feet bgs.

3.2 Utilities and Subsurface Infrastructure

Figure 3-8 shows the results of the utility investigation. Utilities located through markouts and estimated through geophysical techniques are depicted. The purpose of the utility investigation was to determine whether utilities would interfere with construction of shoring systems for excavation. The results indicate that there are no utility obstructions parallel to the site border with 11th St. and parallel to the border with Kent St. Near these borders, the metal detector detected anomalies in some places. Furthermore, the edge of the former gas holder No. 2 was detected as a "utility", presumably due to the metal components (observed in TP-108)of the former holder foundation. Portions of the edge of the relief holder were also detected along North 12thStreet. The edge of the former holder No. 1 was not similarly detected.

There are utilities along 12th St. that may interfere with the installation of shoring. Utilities along this border include overhead wires, a water line, and telephone lines. The water line may have been used to serve the former NYCDOS building, so it may be able to be decommissioned to allow for shoring installation. This will have to be confirmed. The telephone lines would have to be moved by the telephone company to allow for shoring installation. The overhead lines would have to be shielded during shoring installation if they are currently active and in use.

Existing storm sewers traversing the Site southward from 12th St. would have to be removed or relocated if remedial actions were to be performed in these areas.

3.3 Soil Geotechnical Properties

The site soil properties are illustrated by the 4 geotechnical borings on the east half of the site (WW-SB-100, -101, -102, and -103), the geotechnical laboratory testing results associated with these borings, and the seven environmental borings on the west half of the site (WW-SB-104 through -110). Figures 3-2 through 3-4 illustrate the site stratigraphy. Table 3-4 summarizes the geotechnical laboratory testing results.

In general, the stratigraphy consists of, from top down, the following:

- Fill of a granular nature up to 30 feet thick;
- (Upper) Sandy silty native soil at least 30 feet thick;
- Clay soil starting at about 60 feet bgs and extending to about 90 feet bgs (WW-SB-103 shows the clay to consist of alternating layers about 1-foot thick of clay and silt/sand);
- (Lower) Sandy silty native soil about 10 feet thick;
- Bedrock at about 100 feet bgs.

Fill - The fill layer appears to be primarily silty sandy soil that also contains clay and brick materials. Based on blow count information, this layer appears generally medium dense to dense with some loose material, as well. The geotechnical laboratory test data shows that the non-plastic sandy portion of the fill contains enough fines (i.e., silt and clay sizes) – 12 weight percent per WW-SB-102 – to prohibit relatively free flowing groundwater. Fines content of about 10 to 15 percent by weight is considered sufficient to prevent free flowing condition. Such data is useful in determination/confirmation of hydraulic conductivity. Some fines in this amount will also hinder free flow of water through sheet pile joints if sheet pile is used as shoring. Since fill is likely highly variable, its properties are also more highly variable than a naturally deposited soil, and such variability and unpredictability should be expected. Debris such as the brick found in this layer can hinder the installation of sheet pile if used as shoring, particularly if debris pieces are concentrated together, so pile driving operations must account for the reduction in size or removal of such debris before and/or during pile driving. Other methods of shoring can more readily account for debris as discussed later in Section 4.

(Upper) Silty Sand/Silt Soil – The native silty sand/silt layer appears to contain a minimum of about 10 to 12 weight percent fines, although negligible fines, as well as a clay lens (WW-SB-104) and cobble zones (WW-SB-105) should be expected. The laboratory test data show that particles in the clay size range are present at least 2 weight percent which would help promote sealing of joint leakage in sheet pile.

Significantly high blow counts represent this layer. Blow counts over 30 per foot in granular material denote dense soil. Except for the upper 5 feet in WW-SB-101 and WW-SB-103, where loose and medium dense soil are found, respectively, the blow counts indicate dense soil and/or gravel.

Cobbles can hinder the installation of sheet pile if sheet pile is used as shoring, particularly if cobbles are concentrated together, so pile driving operations must account for the reduction in size or removal of cobbles before and/or during pile driving (other methods of shoring can more readily account for cobbles as discussed later in Section 4). In the shallower native silty sand/silt layer, gravel is present that likely caused blow counts to exceed counts associated with dense soils. This is shown by, for example, blow counts exceeding 100 over a few inches. The gravel cannot advance into the split spoon sampler and does not get pushed aside by the sampler. Thus, blow counts in such zones are not necessarily representative or a true measure of the native soil density. A better gauge is to view the zones where there is nearly or fully 100 percent recovery of soils by the sampler. For example, in the 30-foot bgs to 60-foot bgs zone near

full or full recovery soils demonstrate blow counts of about 30 to 100 per foot, which are very dense. Blow counts per foot that approach 100 can be challenging for shoring operations of sheet pile type as the sheets must be driven through such soil.

In contrast, boring WW-SB-100 from about 35 to 45 feet bgs is a good example of why we conclude gravel and not merely dense soil exists there. The blow counts exceed 100 in this zone with recovery typically less than 50 percent. Geotechnical laboratory test data show these soils to contain significant fines and clay that would prevent cohesionless soil from falling out of the sampler. Thus, it appears that gravel, shown on the boring log to exist at that interval, prevented full recovery.

Clay – The clay layer appears to exist as a minimum 12-foot thick low permeability barrier underneath the silty sand/silt native soil. The blow counts for the clay layer were indicative of a hard soil (i.e., blow counts greater than 32 per foot). Cohesive soil classified as "very stiff" fall in the blow count range of 16 to 32 per foot. The 3 unconfined compressive strength tests in the laboratory showed an average unconfined strength (UCS) of about 21 pounds per square inch (psi) which corresponds to 3 kilopounds per square foot (ksf), which is closer to a stiff material. There was no gravel of note to skew blow counts to the high side so the UCS testing appeared to underestimate the strength. This clay can provide a firm base for shoring installation and tie-in and shoring tie-in would require a moderate effort to accomplish such tie-in. The 3 hydraulic conductivity tests showed a narrow range of values from about 2×10^{-8} to 6×10^{-8} cm/sec, serving as a very low permeability seepage barrier.

(Lower) Sandy Silty Native Soil – The sandy silty native soil that exists underneath the clay appears very similar to the sandy silty native soil above the clay. Based on Remedial Investigation borings installed by GEI, the clay appears to be between 12 to 30 feet thick. Remedial construction such as shoring and excavation will not extend to the sandy silty native soil underneath the clay.

<u>Bedrock</u> – Boring WW-SB-102 shows weathered bedrock to exist about 100 feet bgs. Remedial construction such as shoring and excavation will not extend to the bedrock layer.

3.4 NAPL Stabilization

URS's subcontractor Remedius, LLC performed a bench-scale stabilization treatability study to evaluate the ability to solidify NAPL-contaminated soil to reduce its hydraulic conductivity and thus keep groundwater from flowing through the contaminated areas which serve as a source of contamination.

URS provided Remedius with the composite soil samples described in section 2.2.3. The soil, archived in five-gallon buckets following collection from the hollow-stem-auger flights, was manually composited prior to re-packing in five-gallon buckets for delivery to Remedius.

At Remedius, the contents of each bucket from a specific sample location were combined and homogenized to form a single composite sample for each specific sampling area (i.e., Soil 1, Soil 2, and Soil 3). A portion of each composite sample was used to characterize the physical properties of each sample. The soil characterization allowed an assessment of the variability of soil properties, which aided in evaluating whether more than one solidification mix design (i.e., reagent combinations) or mix strength (i.e., percent of reagents per dry weight of soil) was needed for the site. The soil characterization parameters are as follows:

- Moisture Content
- Particle-Size Distribution
- Density
- Atterberg Limits
- Hydraulic Conductivity

Prior to creating soil solidification reagent mixes, the soil samples were screened through a No. 4 sieve to remove oversize particles, and only soil passing through the screen was used to create solidified soil specimens. The ASTM testing methods require that particles larger than one tenth of the specimen diameter be removed so the large particles in the soil do not affect the geotechnical tests for UCS and permeability performed on small diameter solidified specimens. The moisture content of screened soil samples was determined for use as the base soil moisture content for each soil/reagent mix.

The moisture content of the composite soil samples ranged from 15.9% (Soil 2) to 22.6% (Soil 3). The wet densities of the soil samples were found to vary within a narrow range of 126.7 to 131.8 pounds per cubic foot (lb/feet³). The particle size distribution analysis found all soil samples to consist primarily of sand and silt, with a minor gravel component, with Soil 2 (with the lowest moisture content) containing a greater percentage of large particles than the other two soil samples. Atterberg limit analyses showed a very narrow range of plastic behavior, with liquid limits ranging from 20% to 24% and the plastic limits ranging from 17% to 18%. The hydraulic conductivities of the soil samples, following compaction to 100% of each sample's dry

density, were in the 10^{-6} to 10^{-7} cm/sec range; however, Remedius indicates these results overstate the impermeability of the native soil due to the compaction.

Remedius tested the solidification using a 3:1 mixture of ground granulated blast furnace slag (GGBFS) and Type I/II portland cement. The GGBFS was type 120 from LaFarge North America. No other reagents, such as bentonite were tested in this preliminary study. For each soil sample, Remedius prepared mixes of 6%, 9%, and 12% cementitious materials based on the dry weight of the soil. Water was added first to the extent needed to make the grout pumpable, and then to the amount needed when mixed with soil to make a soil/reagent mix with a slump in the range of 2 to 6 inches. In practice, water to reagent ratios (considering only added water) ranged from 0.81 to 1.99, with the low moisture Soil 2 requiring the most water, and the highest reagent dose samples requiring lower ratios (because of higher overall grout addition).

Prepared samples were molded into cylinders and allowed to cure under moist conditions for 7, 14, or 28 days prior to analysis for unconfined compressive strength (UCS) and hydraulic conductivity.

Typical performance goals for solidified source materials are a minimum UCS of 50 pounds per square inch (psi) (for structural stability) and a maximum hydraulic conductivity of 10^{-6} cm/sec to minimize flow of groundwater through a solidified monolith. All samples prepared in these treatability tests, regardless of curing duration, met these criteria, with UCS values ranging from 63 psi (a 7-day cured sample) to 868 psi. Hydraulic conductivities were in the range of 10^{-7} to 10^{-8} cm/sec. These results indicate that the soil submitted for testing, which was selected to be representative of the site and contained coal tar contamination, could be effectively treated by solidification.

3.5 Baseline Groundwater Modeling

URS performed modeling to estimate the rate of groundwater extraction that would be needed during the IRM's excavation. The modeling effort consisted of developing a model simulating the conditions at the site (i.e. the existing conditions), and then using this model to predict extraction rates and groundwater level depression during remediation (i.e. conditions during the IRM). A full summary of the modeling effort, including a description of the groundwater zone layers and assumptions regarding how the holder foundations influence groundwater flow, is presented in Appendix K. In this section, the results of the modeling of existing conditions are presented. Discussion of groundwater modeling during IRM activities is presented in section 4.4 - Dewatering.

The modeling results simulating existing conditions are shown in Figure 3-9. The differences between the modeled elevations and the actual existing elevations (the calculated residuals) ranged from -0.48 to +0.45 feet. This figure shows groundwater level contours without excavation or pumping. This figure shows the modeling correctly captures the groundwater mounding in the vicinity of the former holder foundations due the presence of holder foundation walls impeding the lateral flow of groundwater.

3.6 Noise and Vibration Assessment

3.6.1 Results of Vibration Assessment

The effect of vibrations for the assessment of building damage impacts is usually monitored based on the peak particle velocity (PPV) of vibratory ground motion and the predominant frequency. PPV is defined as the maximum value of the vibration during a selected time interval. It represents the maximum instantaneous speed at which a point on the floor moves from static position and is expressed in inches per second. As such, the installed seismographs recorded ambient ground vibrations in terms of PPV with a resolution of 0.005 in/s, and corresponding frequency in the 2 Hz to 300 Hz. ranges. These parameters were measured by a geophone in a continuous mode with a sampling rate of 1024 samples per second per channel, and maximum values were recorded with 1 minute intervals for each channel. Files were saved electronically and printed after the completion of monitoring at each location. The seismograph systems are laboratory calibrated on an annual basis. A calibration check was completed by a Vibra-Tech Technician prior to the study and the systems were programmed to check the calibration after each day of recording.

The absolute maximum PPV level at each location ranged from 0.015 in/sec to 0.1 in/sec. The typical background PPV level (defined as the median of the measured PPV levels at each location) ranged from 0.005 to 0.01 in/s, and the 99th percentile of the measured PPV levels at each location ranged from 0.01 to 0.035 in/s, excluding isolated infrequent high values due most probably to human interference.

The observed range of vibration frequencies mostly falls into those frequencies greater than 40 Hz, which are expected for regular street traffic. Lower frequency vibrations (i.e., 40 Hz and less) were also recorded; however, these vibrations represent less than 5% of all of the recorded vibrations at all locations except location #4. Approximately 56 % and 38 % of the vibrations measured in transverse and vertical directions (respectively) at location #4 had a

frequency of less than 40 Hz. The highest two PPV levels were measured at locations #3 and #6. This might be attributed to the routine urban activities near these locations. A summary of the vibration measurements, and the associated geophone locations, is presented in Table 3-5. A complete graphical record of the vibration measurements is included in the Vibra-Tech Ambient Vibrations Study Report in Appendix L.

3.6.2 Results of Noise Assessment

The installed sound level systems recorded ambient noise in terms of A-weighted decibels (dBA). A dBA sound level measurement weighs the various frequency components of a sound as perceived by the human ear in order to yield a single number indicator of its relative loudness. The effect of noise is usually monitored based on the exceedance level (Ln) and the equivalent sound level (L_{eq}) values. Ln is defined as the percentage of time of the total measurement period that the level was exceeded. For example, if L_{10} is 50 dBA, for 10 percent of the test period, the sound level present was 50 dBA or above. L_{eq} , describes a receiver's cumulative noise exposure from all noise events for a period of time. The ambient noise in dBA was measured by the sound level monitoring system, and L_{eq} and L_{eq}

April 23-29, 2012

The daily maximum measured sound levels at six locations ranged from 88.2 dBA to 124.1 dBA, the daily minimum measured sound levels at six locations ranged from 39.3 dBA to 42.6 dBA, and the equivalent measured sound levels at six locations ranged from 56.4 dBA to 71.8 dBA. The 1 hour spot checks were in general agreement with the measured values. The highest overall maximum dBA was measured at location #3. This might be attributed to routine urban activities near this location. Table 3-6 presents the overall maximum dBA, overall minimum dBA, overall equivalent dBA, and several Ln values. More detailed data from the sound level systems are included in the Vibra-Tech Ambient Sound Level Study Report dated May 10, 2012 (Appendix L).

November 21-27, 2012

The daily maximum measured sound levels at six locations ranged from 88.2 dBA to 103.5 dBA, the daily minimum measured sound levels at six locations ranged from 36.9 dBA to 43 dBA, and the equivalent measured sound levels at six locations ranged from 54.5 dBA to 67.5 dBA. The 1 hour spot checks were in general agreement with the measured values. The highest

overall maximum dBA was measured at location #4. This might be attributed to routine urban activities near this location. Table 3-6 presents the overall maximum dBA, overall minimum dBA, overall equivalent dBA, and several Ln values. More detailed data from the sound level systems are included in the Vibra-Tech Ambient Sound Level Study Report dated November 30, 2012 (Appendix L).

Overall, measured sound levels were higher during the April study. This may be attributable, in part, to the fact that the November study period encompassed Thanksgiving. Therefore, commercial activity in the area at this time may have been reduced when compared to normal business weeks.

3.6.3 Results of Sound Prediction and Control Evaluation

Vibra-Tech also performed a sound prediction and control program for the site. The sound prediction analysis focused on all major noise sources associated with the site, including pile driving, drilling, and excavation. Based on the noise predictions for the assumed equipment that will be used for the project, the vibratory pile driver is the loudest noise source (92 dBA). The next highest noise sources are the auger drill rig, roller, and dozer (all at 82 dBA). The backhoe and the front end loader had the lowest predicted noise levels. Maximum noise levels of 85 to 92 from the pile driver exceed the New York City Noise Code of 85 dBA at or beyond a distance of 50 feet from the source. For all other assumed equipment running individually, the predicted levels are below 85 dBA. Based on an analysis of combined noise levels from all noise sources running at the same time, predicted sound levels in excess of the 85 dBA New York City Noise Code were calculated at four of the six monitoring locations. If the pile driver was eliminated from this analysis, then only two locations would exceed 85 dBA. According to the New York City Department of Environmental Protection (NYCDEP) Environmental Protection Citywide Construction Noise Mitigation regulations, several noise mitigation efforts should be made to reduce noise at the receptor locations. Additional noise mitigation efforts must be made when operating the vibratory pile driver, dump trucks, and the auger drill rig. Sound should be monitored during the use of the construction equipment to verify sound level predictions for comparison to the levels noted in the Federal Highway Administration Roadway Construction Noise Model User's Guide, and to ensure compliance with local noise ordinances.

3.7 Adjacent Building Assessment

URS reviewed documents at the Brooklyn Borough Office building department at 210 Joralemon Street, 8th Floor, Brooklyn, NY 11201 to examine building foundation records of the

buildings which are in the scope of work. The record review was supplemented with subsequent observation by field personnel. Building locations are provided by Block and Lot on Figure 2-3. The following information was obtained:

- Block 2287, Lot 16 (west of the site): No record was found. Observation in the field indicated the building is about 4.5 feet from the property line marked with the fence. The building is a two story warehouse type structure with no basement.
- Block 2295 (across from Kent Avenue and south of 11th St): No record was found.
- Block 2277 Lot 1: There are two buildings in this block:
 - Duilding No. 1 at address 1 N. 12th St, Brooklyn, NY is a four-story located 140 feet to the northwest of the site. Record drawings show the building is on piles (unknown pile type). URS personnel inquired about the basement of the building and were informed by the building Superintendent that the building had no basement. Two drawings were copied from the records, DWG No. 1 (section) and DWG. No. 2 (plan) (date of the drawing were not found).
 - Building No. 2 is approximately 75 feet west of Kent Avenue and 65 feet from the south curb line of 12th Street. No record was found for this building. Based on visual observations, the building appeared to be a one story garage/storage facility.
- Building 2287 Lot 1 (the Site): Record was found for a warehouse type building having one story with steel column on pedestal. No foundation type was found on record drawing. It is likely that the foundation is shallow footing. Two drawings were copied, DWG. No. SP-1 Sprinkler system plan and DWG No. SP-2 Elevations (dated August 8, 1948). This building was demolished in 2009.
- Block 2288 Lot 1: Pictures of record drawings were taken. No foundation record was found. Building is a one story warehouse type supported on steel column.
- Block 2294 Lot 1: The building is located approximately 46 feet from the north sidewalk curb of N. 11th Street. Record drawing showed a two story warehouse on shallow foundation (strip footing and individual footing for column). Two

drawings were copied, DWG No. 3 and DWG No. 4 (dated May 2, and April 12, 1912) showing plan and section. However, it appears the building in the 1912 record drawing has been long demolished and has been replaced by the current document storage building. A record drawing of the current building foundation was not found.

This evaluation only identified record drawings of existing buildings from one adjacent parcel (Block 2271 across N. 12thSt. from the Site. However, considering that NYSDEC allows for excavation activities to remain a minimum of 55 feet away from adjacent buildings, there are no special procedures such as underpinning that must be implemented to preserve these features. Typical monitoring such as vibration monitoring and a preconstruction survey of buildings must be implemented, however.

3.8 NAPL Recoverability

NAPL recoverability was evaluated through review of the boring logs and measurement of NAPL levels in monitoring wells. Several soil borings exhibited 100% NAPL saturation, including WW-SB-100 (37 to 50 feet bgs), WW-SB-101 (33 to 49 feet bgs), WW-SB-106 (47 to 53 feet bgs), WW-SB-107 (49 to 58 feet bgs). However, no wells were observed to contain NAPL except for well WW-MW-13 (approximately 8 inches thick) which is not located adjacent to the Site. Based on these observations, it is not possible to predict to what extent NAPL could be recovered in wells.

4.0 CONCEPTUAL DESIGN

4.1 <u>Elements of the IRM</u>

The intent of the Interim Remedial Measure (IRM) is to implement a remedy at the Site where such remedy would be considered final and be considered interim only from the standpoint that it would be part of a larger remedy that would be implemented later. A "final" IRM would allow for the Site to be used by the property owner (the New York City (NYC) Parks Department) with few or no restrictions before the entire former Manufactured Gas Plant (MGP), which comprises parcels beyond the Site, is remediated. The IRM is therefore a remedy that shall not require any re-work/removal in the future and where there is minimal risk that implementing the IRM might be redundant as far as an eventual remedy of the entire former MGP is concerned, thereby creating a cost-efficient IRM. Pursuant to agreements with NYSDEC, National Grid has committed to implementing an IRM that:

- Excavates and removes holders and surrounding soil and source material.
- Excavates and removes other shallow source material on the Site.
- Considers treating isolated deep materials through solidification, if feasible.
- Considers use of product recovery wells, if feasible.
- Preserves city infrastructure and maintains access to infrastructure for CitiStorage and Bayside Fuel Oil;
- Creates no building/appurtenances, utility or other structure damage from vibrations. This will include preservation of document racks inside surrounding buildings;
- Restoration of the remediated Site to a state that can be developed by NYC Parks
 Department in accordance with existing plans for Bushwick Inlet Park, which
 show that the ultimate disposition of the Site will be as part of a large lawn area
 with no buildings present.

The IRM Pre-Design Investigation (PDI) was performed to refine and define the elements that will comprise the IRM. Based on the soil boring observations from the PDI, the option of insitu stabilization (ISS) has been ruled out as a component of the IRM. Although the mixture of sand and silt in the native soils allowed for preparation of solidified samples in the treatability

study that provided high strength and low permeability for all mixes tested, the soil borings observations argued against ISS for two reasons.

First, the deeper source material was generally found in zones well below (typically greater than 30 to 40 feet below ground surface [bgs]) the surface, with cleaner soils above. For example, boring WW-SB-106 showed 100% saturation at a depth interval of 47 to 52 feet bgs, but had no NAPL saturation above, although odors and slight sheen were observed in certain shallower intervals. ISS treatment of this soil would require solidification of dozens of feet of cleaner overburden soil, increasing costs and potentially spreading source material over a greater depth interval at each ISS column. Additionally, the depths at which these zones of contamination are found are at the far end of the limits of the depths reachable by commonly used ISS technology.

Second, the boring logs revealed occurrences of cobbles and/or gravel. For example boring WW-SB-107 showed cobbles at depth interval of 37 to 39 feet bgs. Also, the frequently limited recovery of soil in the split spoons – soils that included cohesive material that would exhibit high recovery should gravel not be present – indicated the frequent presence of undesirable gravel. The presence of gravel/cobbles may prevent or significantly impede augering. High blow counts in many areas also point to the presence of dense soils which are hard to mix.

The presence of non-aqueous phase liquid (NAPL) only at greater depths is consistent with the conceptual site model describing coal tar contamination migrating vertically downward from the former holders until reaching lower permeability lenses whereupon the NAPL would migrate horizontally downgradient. An IRM program targeting the significant amounts of NAPL present at the former holder locations would contribute to preventing further contribution to such horizontal migration.

The feasibility of product recovery wells as a component of the IRM was not clarified by the IRM PDI. Only one well, WW-MW-13, which is not located on or adjacent to the IRM area, was found to contain NAPL. It is not possible to select locations for potential recovery wells based on the investigation data. Pursuant to discussions held with the New York State Department of Environmental Conservation (NYSDEC) on November 28, 2012, recovery wells could be installed along the downgradient edge of the Site (the side bordered by N. 12th Street) to see the extent to which NAPL could be collected, and decisions could be made for collection frequencies and possible additional "infill" well installations depending on performance observations.

Based on these considerations, the IRM will comprise excavation of the gas holder/foundations, contaminated soil immediately below the gas holder foundations, and excavation of shallow soils elsewhere on the Site. Product recovery would be pursued through installation of recovery wells along the edge of the Site along N. 12thStreet.

The gas holder/foundations and associated contamination are expected to extend approximately 26-28 feet bgs. Dewatering would be required to excavate these structures and soils. As discussed below, this would be accomplished through construction of excavation support barrier walls hydraulically confining the areas of excavation. Because these excavation support barrier walls would be keyed into a deeper low permeability layer and left in place following completion of the IRM, they would additionally serve as containment mechanisms for deeper, unexcavated source material.

Shallow soils would be excavated throughout the rest of the Site. There is only limited data on the extent of contamination of the shallow soils throughout the Site. However, to prepare the Site for future use as parkland, shallow soil will be removed throughout the Site and be replaced with appropriate backfill, eliminating direct contact exposure pathways from surface soil. None of the borings installed demonstrated the presence of source material in soil above the water table, therefore excavation of soil to the groundwater table (depth varies, but averages approximately 4 feet bgs) throughout the Site, apart from the gas holder locations, is sufficient, as discussed in Section 4.7.

In summary, the major components of the IRM, include the following:

- Installation of passive product recovery wells;
- Installation of excavation support to act as both temporary structure and a final barrier wall;
- Dewatering during construction including treatment, as necessary, and discharge to a Publicly-Owned Treatment Works (POTW) or off-site disposal;
- Excavation and removal of gas holders and soil immediately below the holder foundations;
- Backfill with clean compacted fill;
- Restoration to include removal of excavation support portion above the average groundwater surface (for prevention of bathtub mounding effect within IRM area), grading and approved surface topping.

• Excavation, disposal, and backfill of shallow soils (above groundwater surface) throughout the rest of the Site.

4.2 **Product Recovery Wells**

Product recovery wells would be installed in a single line starting along the sidewalk area of N. 12th St. adjacent to the Site and then continuing southwest along the edge of the 55-foot zone between the western edge of shallow excavation and the CitiStorage building. The spacing between the wells will be determined during the design phase. Based on observations of product in site borings, the depth of the wells would be as deep as 55 to 60 feet. The wells would be installed with sumps to collect product. After several months of monthly product recovery, a determination would be made on which wells produce sufficient product to warrant continued recovery. A determination would also be made on whether additional wells should be installed between high-producing wells. Recovered product would be drummed and shipped off-site for disposal.

4.3 Holder Foundation Deep Excavation Support Barrier

Excavation support will be required along the property line (along the sidewalk) to support sidewalls for expected excavation depth of about 30 feet bgs, which is a couple of feet below the bottom of the gas holders that will be removed. In addition, there will be consideration during design for some form of excavation support inside the property line for cell by cell excavation. Due to space limitations and high groundwater surface level, open cut excavation without excavation support and dewatering is not feasible at the Site. A haul road/ramp into the excavation is also not feasible as a maximum 10 percent slope for loaded haul trucks access road/ramp would be required. The west portion of the Site provides very limited space for any such ramp as the east side will be the subject of the gas holder excavation effort. Such open cut and ramping must be dewatered – and protected by supports– and would also require the soil excavated for the access ramp to be permanently removed from the Site and treated as necessary. Thus, vertical excavation support will be the proposed method of external, deep excavation support.

The gas holder remediation area consists of three approximately 100-foot by 100-foot squares in plan. Remediating this area would require breaking these into 50-foot by 100-foot, or smaller sub-areas or "cells." The type of excavation support to be implemented, dewatering volumes/rates, and the likely need for temporary containment structures for vapor management are the key drivers of cell size. Where open cut excavation/berms are not employed, excavation

support must be braced by way of, for example, diagonal corner bracing and/or straight-across bracing. The first level of bracing will be installed at the groundwater surface level, at about 5 to 10 feet deep. Secant pile and slurry walls may need only one level of bracing but interlocking steel sheet pile may need additional levels of bracing. Bracing must be pre-stressed at each side of the brace, as well. Excavation support of any sort will require bracing as discussed herein, so manageable cell sizes, possibly with substantial truss-type bracing – or with intermediate pile support at cell midpoints to reduce unsupported bracing length – dictates the need for a minimum of 3 or 4 cells. Where multiple cells are implemented and construction proceeds cell by cell, bracing and dewatering equipment would be moved from cell to cell as each cell remediation is completed.

Excavation support methods generally considered for excavation work include steel interlocking sheet pile – either cantilevered or braced, secant pile consisting of cement/bentonite and aggregate (i.e., concrete), cutter soil-mixed (CSM), slurry wall consisting of cement/bentonite and aggregate (i.e., concrete), deep soil mixed (DSM) wall, and soil berms. Soldier piles with lagging are not feasible as groundwater surface level is high and such supports contain many joints that will leak significantly. Excavation support will be carried into the underlying clay layer that is about 60 feet bgs in order to create a fairly water-tight barrier that will provide suitable containment and prevent groundwater from seeping into the excavation. Regarding the clay layer, boring WW-SB-103 indicated the presence of sandy lenses or sandy layers alternating with clay layers. Thus, it may be necessary to advance excavation support more than a few feet into the top of clay so that any potential pervious sandy zones will be cut off. The feasible excavation support methods will be more closely assessed during detailed design. The perimeter excavation support may act as a long term vertical barrier that will remain in place after the IRM construction is complete. The excavation support, whether perimeter or interior, will be cut off at or below the groundwater surface elevation so that groundwater elevation within the cells would equilibrate with the elevations outside the supports.

It is critical to note that there appears to be limited space available next to each holder along the property line to install excavation support. As an example of confined working space for excavation support, Test Pit WW-TP-103 shows what evidently was the holder sidewall to be about 8 to 10 feet from the fence line. Additionally, an existing waterline within this test pit cut this distance in half so space available for excavation support installation is potentially limited. Excavation support methods that employ wet cement/bentonite methods to seal or act as excavation support ingredients require spoils containment such as berms that can encroach

beyond the excavation support footprint itself, towards the Site perimeter, so this must be carefully considered during detailed design when laying out the excavation support alignment. It should be noted that all excavation support methods will likely encounter undetermined obstructions such as cobbles, boulders, concrete debris, other buried and abandoned concrete facilities, and the foundations for the holders, for example if there is a ring foundation and the excavation support encroaches upon it. Thus, some degree of noise and vibration from such obstruction demolition and removal should be expected for any type of excavation support at the Site.

Similarly, unless existing concrete and debris such as those uncovered by previous test pits at the Site perimeter can be left in place, their removal will also require demolition work. Strong consideration during detailed design can be given to leaving some perimeter foundation obstructions in place while installing the excavation support barrier wall to the inside of these obstructions, space and remedy effectiveness permitting.

In order to install interior excavation support (excavation support other than the outermost perimeter) into the solid base of existing gas holders, pre-drilling of such existing materials would be necessary to puncture them so that excavation support can be punched through the resulting void.

At a minimum, a single type of excavation support that is effective as a barrier to groundwater will be required around each proposed deep holder excavation area. If all sides of the remediation area are vertically supported and typical manageably-sized TCBs are implemented, then excavation support subdividing the remediation area further into manageable cells (interior excavation support) may also be required. The use of more than one type of interior excavation support will be considered in the detailed design. As is discussed herein, cell size can vary. For example, cells smaller than 100 feet by 100 feet would likely be required to provide for vapor management in a temporary containment structure.

Each excavation support method that was considered is described briefly, below.

4.3.1 Interlocking Steel Sheet Pile

Interlocking steel sheet pile will only be considered for interior support that subdivides the Site into cells due to their leakage potential, deflection of sheets, and that they are removable and reusable. Interlocking steel sheet pile can be driven via impact hammer, via typical vibratory hammers, or via quiet and minimal vibration press pile method. The impact hammer method is eliminated from consideration due to sometimes-unacceptable vibration and noise. Press pile

equipment is typically the most expensive and requires very specialized equipment. It is unlikely that press pile will be selected during design due to expected time duration of the project, significant quantity of piles to be pressed, and availability/cost of the equipment when weighed against scheduling of the driving operations and equipment availability. Thus, use of a vibratory hammer should be anticipated and is a feasible method given the distance of existing buildings from the proposed work.

Typical interlocking sheet pile in a cantilever configuration can withstand about 15 feet of unsaturated soil but the Site has about 25 feet on average of fully saturated soil above the bottom of the planned excavation, so braced or specialized sheets are necessary. Braced or other specialized sheets would also be implemented in the case of 30-foot excavation. Because of sheet flexibility and deflection, one or more levels of bracing will be required. The pile driver would set up within the Site so no equipment encroachment beyond the excavation support line would be needed. Since undetermined concrete debris, cobbles and boulders are known to exist at the Site, such obstructions must be removed via excavator during pile driving. Contending with obstructions will inhibit fast and efficient interlocking sheet pile installation so such conditions must be anticipated and explicitly accounted for in construction bidding and scheduling. Interlocking sheet pile joints are known to leak so this condition will be accounted for in the final excavation drainage design. Bracing for interlocking sheet pile are expected to be on the order of about 20 feet apart from each other, tied into horizontal steel supports or "walers," so bracing would not hinder excavator movement to any appreciable degree. If intermediate vertical steel members are elected to be used so that bracing lengths/sections can be reduced, such vertical members would need to be drilled into the existing gas holder bottoms for proper anchorage. Tiebacks can be considered if necessary in lieu of vertical supports in locations where they would not encroach upon adjacent buried infrastructure and foundations.

4.3.2 Cutter Soil Mixing

Cutter Soil Mixing (CSM) is a deep soil mixing operation that consists of dual mixing/cutting heads that can be equipped with teeth and that has been reported to cut through cobbles up to about 8 inches in diameter or bedrock with up to 5,000 psi unconfined compressive strength. Resulting wall thickness can be up to 3 feet with each pass of the equipment. The CSM method is reported to have well exceeded the required 60 to 70-foot depths needed for this project. Vertical steel supports can be installed into the still-wet soil mixed mass if necessary to strengthen the wall and tiebacks can be attached, as well, provided the soil-cement is chipped away to expose the vertical steel supports.

A 30-foot deep gravity wall without supports would require this wall to be at least 20 feet wide – which would be of prohibitive cost to construct. Regardless, due to horizontal space limitations between existing gas holders and street rights-of-way, a massive, wide gravity wall created by CSM, in lieu of vertical steel supports, would not be possible. Therefore, installation of vertical supports into the CSM soil-cement would be expected. Tie-backs are discouraged as they can encroach upon adjacent, buried infrastructure and foundations.

Existing soils would be left in place during construction of the CSM wall but soil-cement spoils would need to be disposed. Groundwater surface elevation is high, so spoils volume would be significant. Since the existing soils are incorporated into the CSM wall, its strength and permeability are not as predictable as, say, a slurry wall, secant wall, or interlocking sheet pile wall. The cutting of debris and cobbles would generate noise and vibration, as well, if a separate obstruction removal operation is not employed.

4.3.3 Slurry Wall

A slurry wall would be a soil-cement or concrete structure that displaces existing in-place soils. Typical slurry walls are, like a CSM wall, about 3 feet thick. The preferred wall would consist of cement/bentonite and aggregate (i.e., concrete) primarily and be of predictable strength and permeability. Like a CSM wall, however, internal reinforcement (steel bar cages or vertical steel beams) must be placed within the slurry wall since it will be used for excavation support.

Slurry walls canalsobe constructed by incorporating the excavated on-site soil, in a 2-step procedure, as a wall ingredient in order to preclude off-site disposal of such soil but the resulting slurry wall would be of less predictable – and less desirable - strength and permeability. The two steps involve keeping the trench open with water/bentonite slurry then replacing such slurry with slurry/cement/aggregate (i.e., concrete) backfill. Full replacement method of slurry wall construction is the preferred method as this method removes completely the existing trench soil and replaces it in one step with concrete. Slurry wall construction has the advantage of accommodating the removal of obstructions in the path of the slurry wall.

It must be recognized that zones of large voids such as large concrete debris and nested cobble layers can be problematic in that some water/bentonite slurry used to keep the trench open can escape through large voids. Such slurry loss is more likely to occur within debris zones and not in cobble zones present at the Site, as the cobble voids evidently are filled with soil fines_(i.e., they are not nested). This can occur particularly above the groundwater surface where existing water pressure to contain the slurry does not exist. Slurry loss must be replenished by

slurry pumping, otherwise there can be lowering of the slurry level in the slurry trench, creating trench collapse near the top of the trench. Slurry walls are most effective to construct where the slurry creates a filter cake on trench sidewalls that prevents slurry loss into the surrounding formation. Consideration of slurry loss through nested cobble and large debris voids must be accounted for during detailed design and construction document preparation. Nested cobble zones have not been identified and are not expected for the Site geology, so any real concern for nested large objects is for the fill zone. Constructing the wall in typically manageable trench segments, say 3 feet by 10 feet at a time, will limit risk of widespread slurry loss. Segments of cement/bentonite/aggregate would be constructed in leapfrog fashion and then doubled back to interlock each segment.

4.3.4 Secant Pile

A secant pile wall is similar to a full replacement slurry wall in that vertical, augered, interlocking cylinders of cement/bentonite/aggregate (i.e., concrete) are drilled into place in leapfrog fashion and then doubled-backed to tie together each augered cylinder. This creates contiguous concrete cylinders that are a continuous excavation support and barrier wall. Vertical steel supports would be installed in every other cylinder for reinforcement. Obstructions will need to be removed from the secant wall alignment or otherwise mitigated (e.g., drilling/blasting)during the wall construction as a supplemental operation if secant wall auger equipment is not capable to do so. The use of temporary casing in lieu of water/bentonite slurry can preclude any slurry loss and promote borehole stability, as well. Also, each cylinder is installed individually so there is more control of integrity of the excavated area. Secant pile walls are water tight, would require no more than one level of bracing, are suitable to serve as underpinning where foundation types are unknown, and their lateral deflections can be controlled by pre-stressing the bracing as necessary.

4.3.5 <u>DSM Wall</u>

A DSM wall would be very similar to a CSM wall constructed using excavated soil as one of the DSM wall components. Such wall would require supplemental vertical supports. The known cobbles and debris at the Site would make DSM wall construction difficult, if not impractical, as such obstructions would impede advancement downward of the DSM augers. DSM is a much less robust form of soil mixing than provided by CSM. Therefore, DSM construction would require having an excavator on hand to remove obstructions during DSM operations or reducing in size — to about 4 inches — isolated obstructions by pre-drilling or

removal during DSM operations. DSM walls have spoils that must be removed and disposed of offsite, as well.

Like CSM, DSM would commence from existing grade prior to any other intrusive work with the possible exception of excavating a few feet from existing grade to create a working surface that can also contain generated spoils. The potential for cobbles – known to exist at the Site – and other debris will require having an excavator on standby to remove such material as DSM proceeds. DSM augers can knock aside the occasional fist-sized cobble but generally cannot contend with interlocking zones of such material. Borings show the existing fill layer to end at a maximum depth of about 30 feet bgs so debris fill in that zone should be expected. Typical DSM auger diameters are 2 to 12 feet. Smaller diameter augers should be anticipated at problem areas, auger diameter as small as 2 feet. Spoils from DSM would be removed and disposed of offsite.

DSM would be made difficult by the dense soil conditions that contain stone, cobbles and debris at the Site. The soil conditions at the Site appear to lend themselves to very slow DSM operations due to the need for smaller augers and obstruction removal. Supplemental operations before or during DSM operations such as pre-drilling to loosen the soil, reducing in size of obstructions and/or removal of obstructions should be anticipated throughout DSM phase. These supplemental operations will increase construction costs accordingly. If detailed design and associated cost estimating show that these types of DSM and supplemental operations are not cost-and-schedule feasible then alternatives to DSM can be considered at that phase in the design.

Soil mixing alternatives to DSM such as soil mixing via an excavator is not feasible given inefficiencies due to the depths involved, at least 60 feet to top of clay.

4.3.6 <u>Interior Soil Berms</u>

To minimize noise and vibration, internal shoring within the deep excavation area (as may be required to create sub-cells of suitable size to accommodate temporary containment buildings for vapor control, native or clean imported soil could be used to build berms for internal excavation support. The drawback of the use of soil berms is the slopes necessary to maintain the berm integrity would reduce the workable footprint of each cell. Cells would require significant overlap to excavate contaminated soil from throughout the footprint defined by the holders. Repositioning of the cells would require multiple handling of soil. The advantage of soil berm support would offer the promise of less noise and vibration compared to the other forms of support evaluated.

4.3.7 Excavation Support Summary and Recommendations

The preferred types of perimeter excavation support barrier wall are full replacement secant pile or slurry wall. These are of predictable strength and hydraulic conductivity. The secant pile method can implement casing to prevent slurry loss prior to placement of concrete backfill and encountered obstructions would require operation with separate equipment to remove them. The slurry wall method can seamlessly handle obstructions encountered during excavation with the equipment performing the slurry wall excavation, but potential loss of slurry into large nested debris voids must be accounted for.

For the interior support barriers needed to define each excavation cell, secant pile and slurry walls would also be preferred. In addition, the possible use of soil berms will be considered during the design to weight the potential increased costs of such an interior support system against the noise and vibration considerations of the IRM implementation.

URS recommends that additional soil explorations should be performed in order to more precisely characterize the likelihood of obstructions and to better delineate the highly variable soil conditions at the Site. Additional borings to close the information gap to about 50 feet apart should be considered. This would necessitate an additional 12 to 14 borings advanced at least to the clay layer, varying 60 to 80 feet deep. Design given only the amount of subsurface information currently available would require (pending comparative cost estimates and evaluation of construction staging) more conservative assumptions and higher construction costs related to such conservatism. The additional borings would be useful in developing construct contract documents and will also better delineate obstructions that are a major driver of construction cost unit pricing. Assumption of many obstructions, for example, based on minimal geotechnical information will drive up construction bid pricing.

4.3.8 Excavation - Additional Considerations

There are no special procedures such as underpinning that must be implemented to preserve structures near the excavation. This is because existing buildings are at least 55 feet from the proposed heavy construction zone. Typical monitoring such as vibration monitoring and preconstruction survey of buildings must be implemented, however. Also, utilities must be prelocated and marked, and close coordination with each affected utility for their utility protection requirements included in the work.

4.4 Dewatering

Dewatering of the planned excavation area is necessary because the groundwater table is more than 25 feet above the anticipated elevation at the bottom of the excavation. A firm dry surface will also be required during demolition of the holder foundations at 26-28 ft bgs. Since groundwater is very shallow, dewatering operations will be kept in place throughout the excavation operations and subsequent backfill operations.

The approach to dewatering was developed through modeling the conceptual IRM design. The modeling approach and results are presented in Appendix K. This appendix describes the model design, including the stratigraphic layers. The IRM requires installing shoring to the underlying contiguous clay layer to serve two purposes: 1) to allow deep excavation of the gasholders and 2) to hydrologically isolate the excavations to minimize infiltration. Therefore, the predictive modeling evaluated the extraction of groundwater from within the shored excavation areas.

The model initially evaluated surrounding the entire gas holder area and dewatering this area using a single extraction well (Scenario 1). The results of this simulation are shown in Figures 4-1 and 4-2. The results of this simulation indicate that a single well would not be able to sufficiently draw the water table down to the 30 feet bgs required to allow for excavation. Although the hydrostatic head of the deeper groundwater zone (layer 2) can be lowered to 30 feet bgs or lower (Figure 4-1), the presence of the holders foundation floors and walls would prevent the upper groundwater zone (layer 1) from dropping greater than about 4 feet bgs (5 feet above mean sea level [amsl]) or less (Figure 4-2).

Therefore, the predictive model was revised to incorporate a different approach where sumps are used to dewater excavations at each gas holder (Scenario 2). This approach was modeled based on the following assumptions:

• Shoring was installed to the clay layer such that each gas holder was surrounded in its own excavation cell before dewatering. This corresponds to three separate 100-foot by 100-foot excavation cells (one for each gas holder) as shown on Figure 4-3. The shoring was assumed to have an hydraulic conductivity of 2.8×10^{-6} feet/day (10^{-9} cm/sec). This hydraulic conductivity, one commonly used in modeling for sealed sheet pile, was selected in order to provide the modeling focus inside the remedial area soil block/zone, and to yield the maximum drawdown of the groundwater there. This is considered an appropriate assumption for this conceptual level design.

- Groundwater would be extracted from sumps excavated at the bottom of the
 excavation cells. These sumps would be continuously reestablished as excavation
 proceeds from the surface to the bottom of the planned excavation. For modeling
 purposes, nine sumps (trenches) are assumed to be located within each cell.
- Soil excavation is assumed to remove from 2 to 3 feet of soil from each cell per day. The model assumes that the excavation of each gas holder will require nine days followed by the excavation of soil beneath the gas holder for an additional two days.

The simulated groundwater elevations inside and outside of the shoring wall by end of nine days before excavation of the concrete bottom of gas holder are presented in Figure 4-3. Inside of the shoring the groundwater level drops to -16 feet amsl. Outside of the shoring the change of water level is less than 0.5 feet.

The simulated dewatering rate of nine sumps ranges from 4 gallons per minute (gpm) to 16 gpm. For each day, the sump dewatering rate is relatively high at the beginning of each day's lowering of the sump elevation by 2 to 3 feet, and then gradually decreases to a relatively stable rate of 4 gpm.

The simulated total volume of dewatering in nine days is 11,300 ft³ (84,500 gallons). Thus, the average dewatering rate over nine days is approximately 6.5 gpm.

Extracted groundwater will have to be treated and discharged to a storm sewer.

4.5 Excavation and Removal of Gas Holders

Excavation cell size would have to be about 50 feet by 100 feet or less to accommodate vapor management with a temporary containment building of a size suitable for repositioning by means of crane picks and sliding on rails at ground surface. Excavation equipment based at ground surface would be able to reach the target depths of contamination. Excavators and demolition equipment would commence work until final excavation depth is achieved.

The groundwater mounding around the gas holder area suggests that the gas holders are intact and is causing the observed adjacent groundwater to rise up around these structures. Borings WW-SB-03 through -08 were drilled into the gas holder and indicate the gas holders are filled with soil type fill. Excavation around and within gas holders must proceed with extreme caution in case of large unstable voids, gas pockets, liquid zones, etc. These considerations will

be accounted for in the placement of the sumps as lowering of groundwater in and around the holders could be uneven with the presence of holder walls acting as vertical barriers to flow.

4.6 Backfill

Backfilling operations will commence immediately after the excavation is completed, cell by cell. Backfilling will proceed as soon as possible so that dewatering operations and, if bracing is implemented with the excavation support method, bracing for that cell or cells can be removed and moved over to a subsequent cell for eventual work. In order to ensure firm compact subgrade for future construction, backfilling will commence while the cell is dewatered and dry. Dry operations will permit controlled filling and compaction operations, typically in 12-inch lifts or less. A dry operation will also permit a wide variety of fill to be used as backfill. Otherwise, backfilling in submerged conditions would only permit expensive high quality stone to be used as backfill.

The dewatering equipment – and any interlocking sheet pile, if interlocking sheet pile is the selected as an interior (subdividing) cell excavation support mechanism, or soil used in berms, if soil berms are selected as an excavation support system – will be reused for subsequent cells. Interlocking sheet pile has the unique advantage of being reusable but, as discussed earlier, obstructions and vibrations are a significant concern with interlocking sheet pile at the Site. Regardless, from a safety standpoint, as well, a cell where excavation is completed should be backfilled as promptly as possible. A 30-foot deep excavation that is shored and dewatered must be backfilled to eliminate any potential problem, for example, such as failure of the dewatering system that creates additional forces on the excavation support, or from loads at the original ground surface. Sufficient safety factor will be built into design of the excavation support system, however, to account for reasonable amount of adjacent water level and adjacent surcharge loads at the existing ground surface.

4.7 Shallow Soil Excavation and Disposal

Shallow soil excavation would typically be about minimum 6 inches for areas subject only to occasional light foot traffic, about 2 feet for more heavily trafficked by persons, and about 4 feet for areas where minor structures such as trees, fences, utilities and small shelters would be constructed. As the Site is planned to be used by NYC Parks Department, a minimum 4-foot soil removal and backfill is recommended to protect persons against dermal exposure. This corresponds to the approximate depth to groundwater. By excavating only to the groundwater

surface, no dewatering would be required. However, if tar saturated material is observed during excavation, the contractor would be directed to wet-excavate such areas to the extent possible.

4.8 **Summary of IRM Components**

The IRM will require detailed design and possible further evaluation and thus is only discussed conceptually in this report. The primary components of the IRM will consist of the following:

- Installation of product recovery wells.
- Installation of excavation support barrier.
- Soil excavation and tank removal of the three approximately 100-foot by 100-foot holder areas down to and just below tank foundations (~30 feet bgs).
- Implementation of vapor management for excavation work is expected to be required so its specifications will be determined during detailed design. Likewise, the use of a temporary containment structure to manage vapors is expected to be required so detailed design will assess related criteria such as cell size, potential locations of vertical supports and cut side slopes, as well as required location of earth-moving equipment (e.g., remain perched up at original grade or within the excavation).
- Perimeter construction phase excavation support will remain in place as a long term barrier to groundwater. Full replacement slurry wall or secant pile wall are preferred due to short term and long term performance reliability. Slurry wall methodology can remove obstructions as they are encountered at vibration/noise level lower than other typical excavation support systems. Loss of slurry and limited trench sidewall instability may be an issue for slurry wall where, if at all, nested cobbles/debris form large voids, so means to address this in construction documents and unit pricing must be incorporated. Secant pile is also desirable as a full replacement method but has the disadvantage of requiring separate obstruction removal equipment.
- Shallow soil will be excavated and disposed/reused as appropriate. The Site will
 be backfilled with appropriate backfilland vegetated for subsequent use by the
 Parks Department.

5.0 REFERENCES

- Bouwer, H., 1989. The Bouwer and Rice Slug Test An Update, *Ground Water*, Vol. 27, No. 3, pp 304 309
- Freeze, R. Allan and John A. Cherry, 1979, Groundwater, 604 pages, Prentice Hall, Inc. Englewood Cliffs, New Jersey 07632.
- GEI, 2010, Draft Remedial Investigation Interim Data Summary, Williamsburg Works Former Manufactured Gas Plant (MGP) Site, Brooklyn, New York 11211, Index No. A2-055-0606, Site No. 224055, August.
- GEI, 2011, Final Interim Remedial Measure Design Work Plan, 50 Kent Avenue Parcel, Williamsburg Works Former MGP Site, Brooklyn, New York, Index No. A2-055-0606, Site No. 224055, August.
- McDonald, M.G. and A.W. Harbaugh, 1988, A Modular Three-Dimensional Finite Difference Groundwater Flow Model, Techniques of Water Resources Investigations of the United States Geological Survey, Washington, D.C.
- Metcalf & Eddy/AECOM, 2006, Site Investigation Report, Property West of Kent Avenue Between and Including North 10th and North 12th Streets Block 2287, Lot 1, 16, & 30, Block 2294, Lot 1 & 5 Brooklyn, New York, November.
- URS Corporation, 2012, Proposal to Provide Pre-Design Investigation Services Williamsburg Works Former MGP Site, Brooklyn, New York JJM RFP 055-11 Williamsburg IRM Work Plan, January.

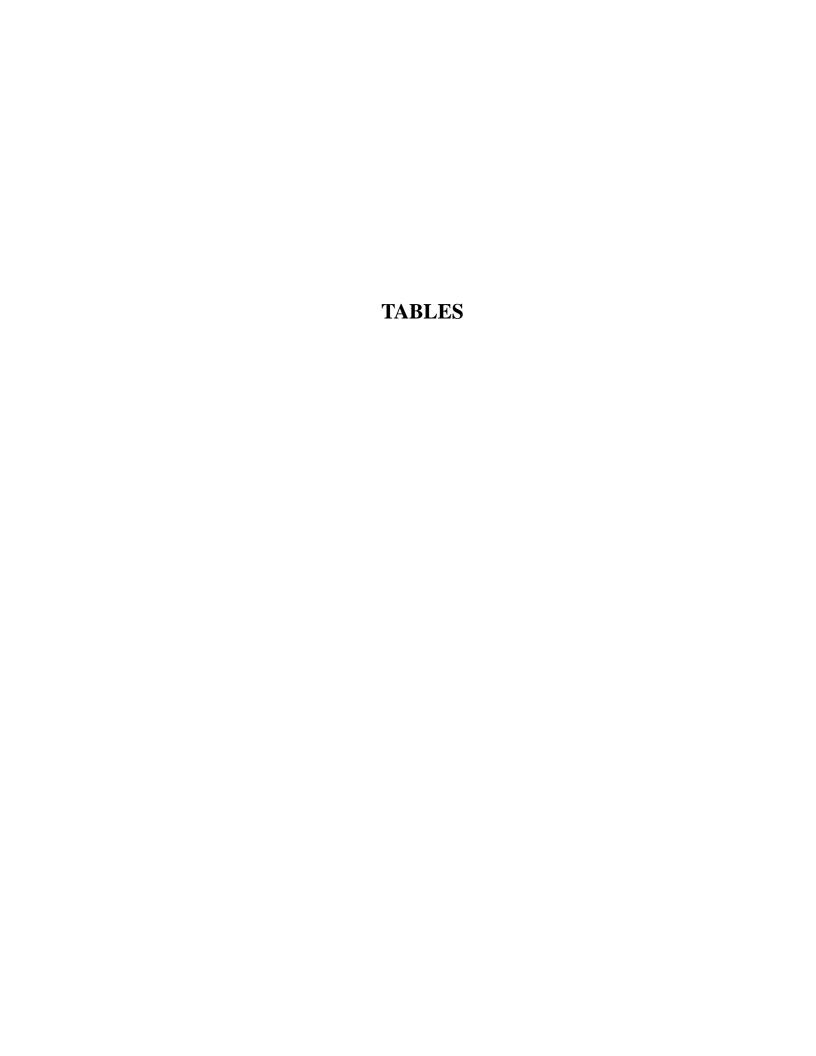


Table 2-1 Monitoring Well Construction Summary Williamsburg Works Former MGP Site Brooklyn, NY

Well ID	Northing	Easting	Ground Surface Elevation	Riser Elevation (feet NAVD88)	Borehole Diameter (inch)	Well Diameter (inch)	Total Well Depth (feet)	Screen Interval (feet)	Screen Slot Size (inch)	Sand Filter Pack Interval (feet)	Sand Type	Bentonite Seal Interval (feet)	Sump Interval (feet)	Installation Method
WW-MW-01	688406.1	642399.31	21.55	21.05	6	2	25	13 - 23	0.010	11 - 25	#0	1 - 11	23 - 25	Hollow Stem Auger
WW-MW-02	688484.29	642128.99	19.19	18.59	6	2	17.7	7.4 - 17.4	0.010	5 - 17.7	#0	1 - 5	17.4 - 17.7	Hollow Stem Auger
WW-MW-03	688683.91	642207.81	13.99	13.69	6	2	16	4 - 14	0.010	2.5 - 16	#0	0.5 - 2.5	14 - 16	Hollow Stem Auger
WW-MW-04	688733.54	642033.04	13.34	12.71	6	2	22	10 - 20	0.010	8 - 22	#0	0.75 - 8	20 - 22	Hollow Stem Auger
WW-MW-05	688775.73	641946.36	12.48	12.05	6	2	16	4 - 14	0.010	2 - 16	#0	1 - 2	14 - 16	Hollow Stem Auger
WW-MW-06	688730.17	641823.66	12.23	11.81	6	2	12.3	0.3 - 10.3	0.010	0.4 - 12.3	#0	-	10.3 - 12.3	Hollow Stem Auger
WW-MW-07	688889.72	641970.87	10.69	11.84	6	2	13	1 - 11	0.010	1.1 - 13	#0	-	11 - 13	Hollow Stem Auger
WW-MW-08	688854.11	641670.88	9.93	9.89	6	2	12.3	0.3 - 10.3	0.010	0.4 - 12.3	#0	-	10.3 - 12.3	Hollow Stem Auger
WW-MW-10	689118.5	641685.93	8.07	7.67	6	2	16	4 - 14	0.010	3 - 16	#0	1 - 3	14 - 16	Geoprobe
WW-MW-11	688957.02	641529.95	9.2	8.72	3.25	2	16	4 - 14	0.010	3 - 16	#0	1 - 3	14 - 16	Geoprobe
WW-MW-12	689010.95	641395.17	7.89	7.42	3.25	2	17	5 - 15	0.010	4 - 17	#0	2 - 4	15 - 17	Geoprobe
WW-MW-13	689223.85	641556.91	7.07	6.89	3.25	2	16	4 - 14	0.010	3 - 16	#0	1 - 3	14 - 16	Geoprobe
WW-MW-14	689120.85	641312.56	6.75	6.38	3.25	2	16	4 - 14	0.010	3 - 16	#0	1 - 3	14 - 16	Geoprobe
WW-MW-15	689376.89	641364.64	6.35	5.94	3.25	2	16	4 - 14	0.010	3 - 16	#0	1 - 3	14 - 16	Geoprobe
WW-MW-16	688979.55	642265.93	9.99	9.73	6	2	17	4 - 14	0.010	3 - 17	#0	1 - 3	16 - 17	Hollow Stem Auger
WW-MW-17	688916.75	641757.91	11.62	11.25	6	2	16	4 - 14	0.010	2 - 16	#0	1 - 2	14 - 16	Hollow Stem Auger
WW-MW-100I	688815.7878	641893.7957	11.04	10.51	8	2	58.5	46.5 - 56.5	0.010	44.5 - 57.5	#2	42.5 - 44.5	56.5 - 58.5	Hollow Stem Auger
WW-MW-102I	688714.6543	642010.6524	11.64	11.07	8	2	61	49 - 59	0.010	47 - 61	#2	44 - 47	59 - 61	Hollow Stem Auger
WW-MW-102D	688710.055	642019.1811	11.73	10.98	6	2	102	92 - 102	0.010	91 - 102	#2	89 - 91	-	HSA/Mud Rotary

Notes:

Data for all wells except WW-MW-100I, WW-MW-102I, & WW-MW-102D provided by GEI Consultants.

Table 2-2
Typical Vibration Levels for Common Construction Equipment
Williamsburg Works Former MGP Site
Brooklyn, New York

Equ	uipment	PPV at 25 ft (in/sec)	Approximate RMS* Velocity Level at 25 ft
Pile Driver (impact)	Upper Range	1.518	112
File Driver (Impact)	Typical	0.644	104
Pile Driver (sonic)	Upper Range	0.734	105
File Driver (Soffic)	Typical	0.170	93
Clam Shovel	Drop (slurry wall)	0.202	94
Hydromill (slurry	In soil	0.008	66
wall)	In rock	0.017	75
Vibra	tory Roller	0.210	94
Ho	oe Ram	0.089	87
Large	Bulldozer	0.089	87
Caiss	on Drilling	0.089	87
Loaded Dur	np Trucks (6 yd³)	0.076	86
Jack	chammer	0.035	79
Small Bull	dozer / Shover	0.003	58
*RMS velocity in decil	oels (VdB) re: 1 micro-inch,	/ second	

Source: Transit Noise and Impact Assessment, United States Department of Transportation Publication FTA-VA-90-1003-06, May 2006

Table 2-3
Typical Noise Levels for Common Construction Equipment
Williamsburg Works Former MGP Site
Brooklyn, New York

Equipment	Typical Noise Level (dBA)
Equipment	50 ft from Source
Air Compressor	81
Backhoe	80
Ballast Equalizer	82
Ballast Tamper	83
Compactor	82
Concrete Mixer	85
Concrete Pump	82
Concrete Vibrator	76
Crane, Derrick	88
Crane, Mobile	83
Dozer	85
Generator	81
Grader	85
Impact Wrench	85
Jack Hammer	88
Loader	85
Paver	89
Pile-Driver (Impact)	101
Pile-Driver (Sonic)	96
Pneumatic Tool	85
Pump	76
Rail Saw	90
Rock Drill	98
Roller	74
Saw	76
Scarifier	83
Scraper	89
Shovel	82
Spike Driver	77
Tie Cutter	84
Tie Handler	80
Tie Inserter	85
Truck	88

Table based on an EPA Report, (4) measured data from railroad construction equipment taken during the Northeast Corridor Improvement Project, and other measured data.

Source: Transit Noise and Impact Assessment, United States Department of Transportation Publication FTA-VA-90-1003-06, May 2006

Table 2-4
Vibration and Noise Monitoring Locations
Williamsburg Works Former MGP Site
Brooklyn, New York

April 23-29, 2012

Location	Seismograph/ Sound Level Meter Serial Number	Description	GPS
1			N 40° 43' 24.02"
	BD8002/1816	20 N. 12th Street Block 2287 - South Corner	W 73° 57' 38.02"
2			N 40° 43' 22.24"
2	BF11110/1817	Block 2294 Lot 1 - North Side of Building	W 73° 57' 36.30"
3			N 40° 43' 20.67"
5	BD6674/1861	51 Kent Avenue - North Corner	W 73° 57' 33.76"
4			N 40° 43' 22.62"
4	BD8340/1821	35 Kent Avenue Block 2288 Lot 1 - North Corner	W 73° 57' 31.43"
5			N 40° 43' 24.27"
3	BF14209/1862	Block 2277 Lot 1 - South of Building	W 73° 57' 33.02"
			N 40° 43' 25.49"
6	BF10975/1855	20 N. 12th Street Block 2287 - Northeast Corner	W 73° 57' 36.07"

Source: Vibratech Ambient Vibration and Sound Level Studies, Williamsburg Works, dated May 10, 2012

November 21-27, 2012

Location	Sound Level Meter Serial Number	Description	GPS
1			N 40° 43′ 24.02″
	1893	Northwest corner of site, along 11th Street	W 73° 57′ 37.76″
2			N 40° 43′ 22.79″
2	1577	West side of site, along 11th Street	W 73° 57′ 35.69″
2		South Corner of site - Intersection of Kent Ave.	N 40° 43′ 21.55″
3	1827	and 11th Street	W 73° 57′ 33.73″
4		Southeast Corner of site - Intersection of Kent	N 40° 43′ 23.07″
4	1857	Ave. and 12th Street	W 73° 57′ 32.13″
F			N 40° 43′ 24.22″
5	1532	East side of site, along 12th Street	W 73° 57′ 33.96″
			N 40° 43′ 25.51″
6	1692	North corner of site, along 12th Street	W 73° 57′ 36.13″

Source: Vibratech Ambient Sound Level Study, Williamsburg Works, dated November 30, 2012

Table 3-1 Boring Sample Information IRM Investigation Report 50 Kent Avenue Parcel Williamsburg Works Former MGP Site

		Total	Depth to		
Boring	Location	Depth (ft)	Water (ft)	Max PID	Comments
WW-SB-100	Central area of property	81.0	9	438 ppm at 37 ft	Fill to 15 ft. Sand and silt from 15 to 55.5 ft. Clay from 55.5 to 65 ft followed by mostly sand and silt from 65 to 81 ft. Coal Tar-like odor throughout. NAPL saturation from 5 to 19 ft and 37 to 51 ft.
WW-SB-101	Southeast end of property along N. 12th Street	61.0	21	2,238 ppm at 22 ft	Mostly sand and silt with some clay and gravel from 7 to 57 ft. Clay from 57 to 61 ft. Coal Tarlike odor throughout. 100% NAPL saturation from 21 to 25 and 33 to 49 ft.
WW-SB-102	Southeast end of property along Kent Avenue	101.0	5	57 ppm at 29 ft	Fill to 29 ft. Mostly sand and silt with some gravel from 29 to 59 ft. Clay from 59 to 90 ft followed by mostly sand and silt from 90 to 99 ft. Weathered bedrock from 99 to 101 ft. Coal Tar-like odor from 5 to 69 ft.
WW-SB-103	Southeast end of property along N. 11th Street	81.0	11	840 ppm at 40 ft	Mostly sand and silt with some clay from 5 to 71 ft. Mostly clay from 71 to 81 ft. Coal Tarlike odor from 5 to 25 ft and 33 to 81 ft.
WW-SB-104	Central area of southeast end of property	63.0	7	4,119 ppm at 36 ft	Mostly sand and silt with some clay from 9 to 61.5 ft. Clay from 61.5 to 63 ft. Coal Tar-like odor from 9 to 59 ft. NAPL saturation from 19 to 23 ft and 33 to 35 ft.
WW-SB-105	Central area of property	55.0	7	555 ppm at 41 ft	Cobbles from 9 to 15 ft. Mostly sand and silt with some clay and cobbles from 15 to 45 ft and 50 to 53.5 ft. Clay from 45 to 50 ft and 53.5 to 55 ft. Coal Tar-like odor interspersed throughout. NAPL saturation at 16 and 53 ft.
WW-SB-106	Northwest end of property near N. 12th Street	59.0	11	498 ppm at 51 ft	Mostly sand and silt with some clay and cobbles from 10 to 56.5 ft. Faint petroleumlike odor from 8.5 to 19 ft. Coal Tar-like odor from 37 to 59 ft. NAPL saturation from 47 to 53 ft.
WW-SB-107	Central area of northwest end of property	61.0	7	2,485 ppm at 53 ft	Mostly sand and silt with some clay from 13 to 57.5 ft. Clay from 57.5 to 61 ft. Petroleum-like odor from 7 to 11 ft. Coal Tar-like odor from 13 to 27 ft and 41 to 61 ft. NAPL saturation from 49 to 58.5 ft.
WW-SB-108	Central area of northwest end of property	57.0	5	27 ppm at 23 ft	Mostly sand and silt with some clay from 11 to 25 ft and 29.5 to 55 ft. Cobbles from 25 to 29.5 ft. Clay from 55 to 57 ft. Coal Tar-like odor from 15 to 27 ft and 39 to 57 ft.
WW-SB-109	West corner of northwest end of property	55.0	5	219 ppm at 46 ft	Mostly sand and silt with some clay and cobbles from 6 to 55 ft. Coal Tar-like odor throughout. NAPL saturation from 6 to 7 ft.
WW-SB-110	Northwest end of property	64.0	6	640 ppm at 25 ft	Mostly sand and silt with some clay and gravel from 9 to 17 ft and 23 to 64 ft. Petroleum-like odor from 5.5 to 11 ft. Coal Tar-like odor from 11 to 29 ft and 37 to 62 ft. NAPL saturation at 17 ft and from 24 to 26.5 ft.

Table 3-2 Groundwater Elevations Williamsburg Works Former MGP Site April 23, 2012

Well ID	Measuring Point Elevation (ft amsl)	Groundwater Depth (feet)	Groundwater Elevation (ft amsl)
WW-MW-01 ⁽¹⁾	21.05	NM	NA
WW-MW-02	18.59	12.25	6.34
WW-MW-03	13.69	7.88	5.81
WW-MW-04	12.71	3.76	8.95
WW-MW-05	12.05	4.52	7.53
WW-MW-06	11.81	3.59	8.22
WW-MW-07	11.84	1.79	10.05
WW-MW-08	9.89	3.72	6.17
WW-MW-10	7.67	4.58	3.09
WW-MW-11	8.72	5.82	2.90
WW-MW-12	7.42	4.77	2.65
WW-MW-13	6.89	5.31	1.58
WW-MW-14 ⁽²⁾	6.38	NM	NA
WW-MW-15 ⁽³⁾	5.94	NM	NA
WW-MW-16	9.73	4.48	5.25
WW-MW-17	11.25	4.16	7.09
WW-MW-100I	10.51	8.28	2.23
WW-MW-102I	11.07	7.23	3.84
WW-MW-102D	10.98	7.24	3.74

Notes:

amsl - above mean sea level

NAPL - non-aqueous phase liquid

- (1) Well could not be located.
- (2) Well was inaccessible due to parked car.
- (3) Well was inaccessible due to fence.

Table 3-3 Summary of Results Williamsburg Works Former MGP Slug Tests

Well	8/28/201	2 Hydraulic	Conductivit	y [cm/sec]	Formation
ID	FH	RH	N(**)	Mean (***)	Mean K (cm/sec)
WW-MW-04	1.57E-04	3.11E-04	2	2.21E-04	
WW-MW-05	2.38E-04	1.63E-04	2	1.97E-04	
WW-MW-07	2.06E-03	1.95E-03	2	2.00E-03	4.34E-04
WW-MW-08	5.78E-04	2.47E-04	2	3.78E-04	
WW-MW-17	4.30E-04	5.01E-04	2	4.64E-04	
WW-MW-100I	4.61E-06	6.33E-05	2	1.71E-05	7.11E-05
WW-MW-102I	3.44E-04	2.54E-04	2	2.96E-04	7.11E-05
WW-MW-102D	5.26E-04	6.56E-04	2	5.87E-04	5.87E-04

 $(\ensuremath{^{**}})$ - number of vlid tests

(***) - geometric mean

FH - Falling Head test

RH - Rising Head test

Note:

- -For all graphs, normalized head is defined as H(t)/Ho, where H(t) is the displacement measured at time t and Ho is the initial displacement at time t=0.
- -Results that are bold and italicized are considered invalid (see Data Useability sheet).
- -While the geometric mean for both the falling and rising head tests are given, it is understood that the rising head tests more accurately describe the overall hydraulic characteristics of the aquifer.

(See attached reference, The Bouwer and Rice Slug Test - An Update)

TABLE 3-4
GEOTECHNICAL LAB TEST RESULTS

SAMPLE IDENTIFICATION INDEX TESTS REMARKS

REMARKS

BORING	SAMPLE	DEPTH	USCS	LIQUID	PLASTIC	PLAS.	SIEVE	HYDRO.	ORGANIC	TEST	WATER	TOTAL	DRY	HYDRAULIC	PEAK	STRAIN	
NO.	NO.		SYMB.	LIMIT	LIMIT	INDEX	MINUS	% MINUS	CONTENT	TYPE	CONTENT	UNIT	UNIT	CONDUCTIVITY	COMP.	@ PEAK	
			(1)				NO. 200	2 μm	(burnoff)			WEIGHT	WEIGHT		STRESS	STRESS	
		(ft)		(-)	(-)	(-)	(%)	(%)	(%)		(%)	(pcf)	(pcf)	(cm/sec)	(psi)	(%)	
SB-100	S-3,4,5	9-15	SC-SM	22	17	5	40.0	9		W	17.1						
	S-10,11,12	23-29	SM	np	np	np	41.5	11		W	14.5						
	S-18,19,20	39-45	SC-SM	26	21	5	40.3	10		W	15.3						
SB-100		59-61								UW		126.6					
SB-100		59.35								W	30.1						
SB-100	Α	59.6								K	24.0	128.4	103.6	2.1E-8			P9395
SB-100		59.9								W	23.6						
SB-100	В	60.15	CL	48	23	25	91.5	41		UC	21.8	131.0	107.6		32.6	8.4	UC122b
SB-100		60.45								W	20.2						
SB-100	S-31,32,33	67-73	SC-SM	24	18	6	47.2	6		W	23.8						
SB-100	S-35,36	75-79	SM	27	22	5	47.3	8		W	29.9						
SB-101	S-2,3,4	7-13	SM	np	np	np	27.7	5		W	15.5						
SB-101	S-8,9,10	19-25	SM	np	np	np	21.3	5		W	15.7						
SB-101	S-17,18,21	37-47	SC	30	19	11	37.4	11		W	16.0						
SB-101	S-20	43-45	SC	30	18	12	49.2	12		W	12.0						
SB-101		59-61								UW		128.7					
SB-101	Α	59.4	CL	45	25	20	90.0	41		W	27.2						
SB-101		59.7								W	27.0						

Prepared by: JR Reviewed by: GET Date: 5/17/2012 **TerraSense, LLC** 45H Commerce Way Totowa, NJ 07512 Project No.: T11176638 File: Indx1.xls Page 1 of 2

TABLE 3-4 GEOTECHNICAL LAB TEST RESULTS

SAMPLE IDENTIFICATION INDEX TESTS **ENGINEERING TESTS** REMARKS

BORING	SAMPLE	DEPTH	USCS	LIQUID	PLASTIC	PLAS.	SIEVE	HYDRO.	ORGANIC	TEST	WATER	TOTAL	DRY	HYDRAULIC	PEAK	STRAIN	ı
NO.	NO.		SYMB.	LIMIT	LIMIT	INDEX	MINUS	% MINUS	CONTENT	TYPE	CONTENT	UNIT	UNIT	CONDUCTIVITY	COMP.	@ PEAK	
			(1)				NO. 200	2 μm	(burnoff)			WEIGHT	WEIGHT		STRESS	STRESS	
		(ft)		(-)	(-)	(-)	(%)	(%)	(%)		(%)	(pcf)	(pcf)	(cm/sec)	(psi)	(%)	
SB-102	S-5,6,7	13-19	SM	np	np	np	15.9	2		W	19.4						
SB-102	S-9,10,11	21-27	SP-SM	np	np	np	11.5	2		W	23.9						
SB-102	S-16,17,18	35-41	SP-SM	np	np	np	11.6	2		W	21.3						
SB-102		63-65								UW		111.3					
SB-102		63.4								W	20.4						
SB-102	В	63.65								K	31.5	122.6	93.2	5.8E-8			P9396
SB-102		63.95								W	31.5						
SB-102	С	64.2	CL	47	22	25	83.2	41		UC	26.7	126.2	99.6		10.3	15.0	UC123e
SB-102	S-33,34,35	71-77	CL	41	23	18	97.9	33		W	29.0						
SB-102	S-38,39,40	81-87	CL	32	20	12	55.7	32	4.4	W	23.5						
SB-103	S-5,6,7	13-19	SM	np	np	np	29.7	4		W	16.4						
SB-103	S-10,12,13	23-31	CL	33	17	16	64.4	11		W	17.0						
SB-103	S-20,21,22	43-49	SP-SM	np	np	np	10.3	2		W	17.9						
SB-103	S-26,27,28	55-61	SC	26	17	9	43.1	7		W	24.2						
SB-103	S-33,34,35	69-75	CL	26	15	11	59.7	15		W	24.7						
SB-103		75-77								UW		125.3					
SB-103	Α	75.15								K	26.2	125.9	99.8	2.3E-8			P9394
SB-103		75.4								W	25.8						
SB-103	В	75.65	CL	37	22	15	94.3	20		UC	23.2	129.5	105.2		23.0	15.0	UC122a
Note:	(1) USCS s	ymbol ba	sed on vi	sual ob	servation	n, Sieve	results,	and Atte	rberg limits	repo	rted.					_	

Prepared by: JR Reviewed by: GET Date: 5/17/2012

TerraSense, LLC 45H Commerce Way Totowa, NJ 07512

Project No.: T11176638 File: Indx1.xls Page 2 of 2

Table 3-5
Summary of Ambient Vibration Data
Williamsburg Works Former MGP Site
Brooklyn, New York

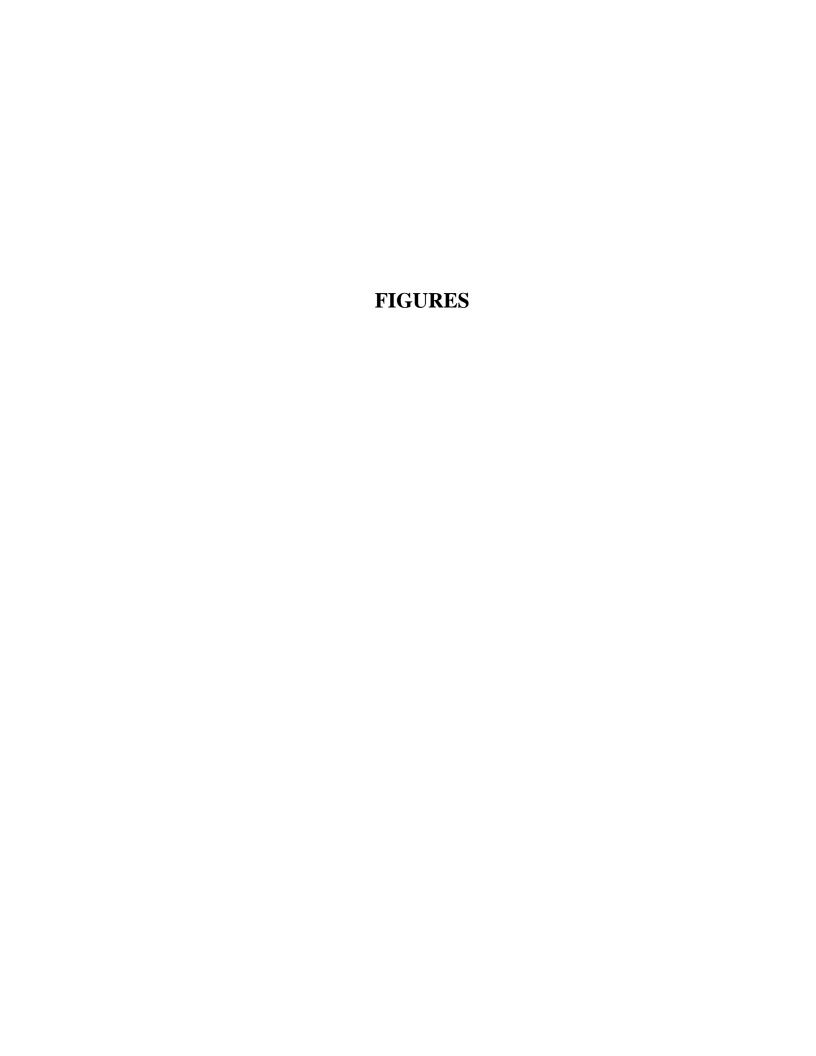
Geophone Location	Measured Pe	eak Particle Vel	ocity (in/sec)	Percent Eve	nts of Measure	d Frequency
Address in Brooklyn, NY	Typical (Median) PPV	99th Percentile PPV	Absolute Maximum PPV	20Hz<	20-40Hz	>40Hz
Location 1	0.010(L)	0.010(L)	0.020(L)	0.00%(L)	0.00%(L)	100.00%(L)
20 N. 12th Street Block 2287 -	0.010(T)	0.010(T)	0.015(T)	0.04%(T)	0.05%(T)	99.91%(T)
Southwest Corner	0.005(V)	0.010(V)	0.040(V)	0.06%(V)	0.29%(V)	99.65%(V)
Location 2	0.005(L)	0.010(L)	0.040(L)	0.02%(L)	0.29%(L)	99.69%(L)
Block 2294 Lot1	0.010(T)	0.015(T)	0.020(T)	0.29%(T)	0.55%(T)	99.17%(T)
North Side of Building	0.005(V)	0.010(V)	0.055(V)	0.00%(V)	0.09%(V)	99.91%(V)
Location 3	0.010(L)	0.010(L)	0.085(L)	0.01%(L)	0.02%(L)	99.97%(L)
51 Kent Avenue	0.010(T)	0.015(T)	0.040(T)	0.04%(T)	0.22%(T)	99.74%(T)
North Corner	0.010(V)	0.010(V)	0.090(V)	0.03%(V)	0.09%(V)	99.88%(V)
Location 4	0.005(L)	0.010(L)	0.015(L)	0.00%(L)	0.01%(L)	99.99%(L)
35 Kent Avenue Block 2288 Lot 1 -	0.015(T)	0.015(T)	0.030(T)	43.99%(T)	12.49%(T)	43.52%(T)
North Corner	0.010(V)	0.035(V)	0.080(V)	6.95%(V)	30.73%(V)	62.32%(V)
Location 5	0.010(L)	0.010(L)	0.025(L)	0.01%(L)	0.03%(L)	99.96%(L)
Block 2277 Lot 1 7 ft South of Building	0.010(T)	0.010(T)	0.015(T)	0.00%(T)	0.01%(T)	99.99%(T)
55 5. 2	0.010(V)	0.010(V)	0.060(V)	0.01%(V)	0.03%(V)	99.96%(V)
Location 6	0.010(L)	0.010(L)	0.035(L)	0.00%(L)	0.00%(L)	100.00%(L)
20 N. 12th Street Block 2287 - Northeast	0.010(T)	0.010(T)	0.045(T)	0.00%(T)	0.00%(T)	100.00%(T)
Corner	0.010(V)	0.010(V)	0.100(V)	0.00%(V)	0.00%(V)	100.00%(V)

Source: Vibratech Ambient Vibration Study, Williamsburg Works, dated May 10, 2012.

Table 3-6
Summary of Ambient Noise Data
Williamsburg Works Former MGP Site
Brooklyn, New York

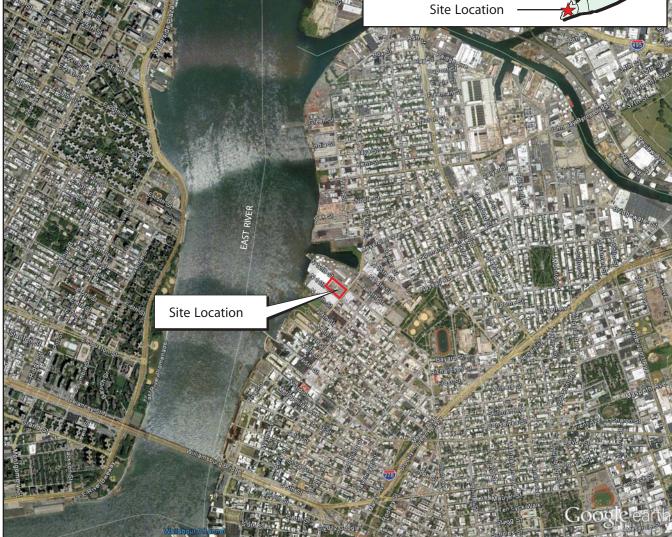
April 23-29, 2012

Location	1	2	3	4	*5	6
Overall Maximum dBA	88.2	92.9	124.1	115.8	107	103.9
Overall Minimum dBA	39.6	40.2	41.7	42.6	40.5	39.3
Overall Leq	56.4	60.4	71.8	69.4	63.5	63.4
Ln 10	58.7	63.2	72.4	71.8	64.2	61.6
Ln 20	55.9	59.7	68.9	68.8	61.3	57.9
Ln 30	50.5	57	65.9	66.3	59.6	55.5
Ln 50	50.5	53.4	60.6	61.6	57.1	52.1
Ln 90	45.2	47.2	49.1	51.2	53.1	45.5
Ln 95	44.2	45.8	47.4	49.2	52.4	44.2

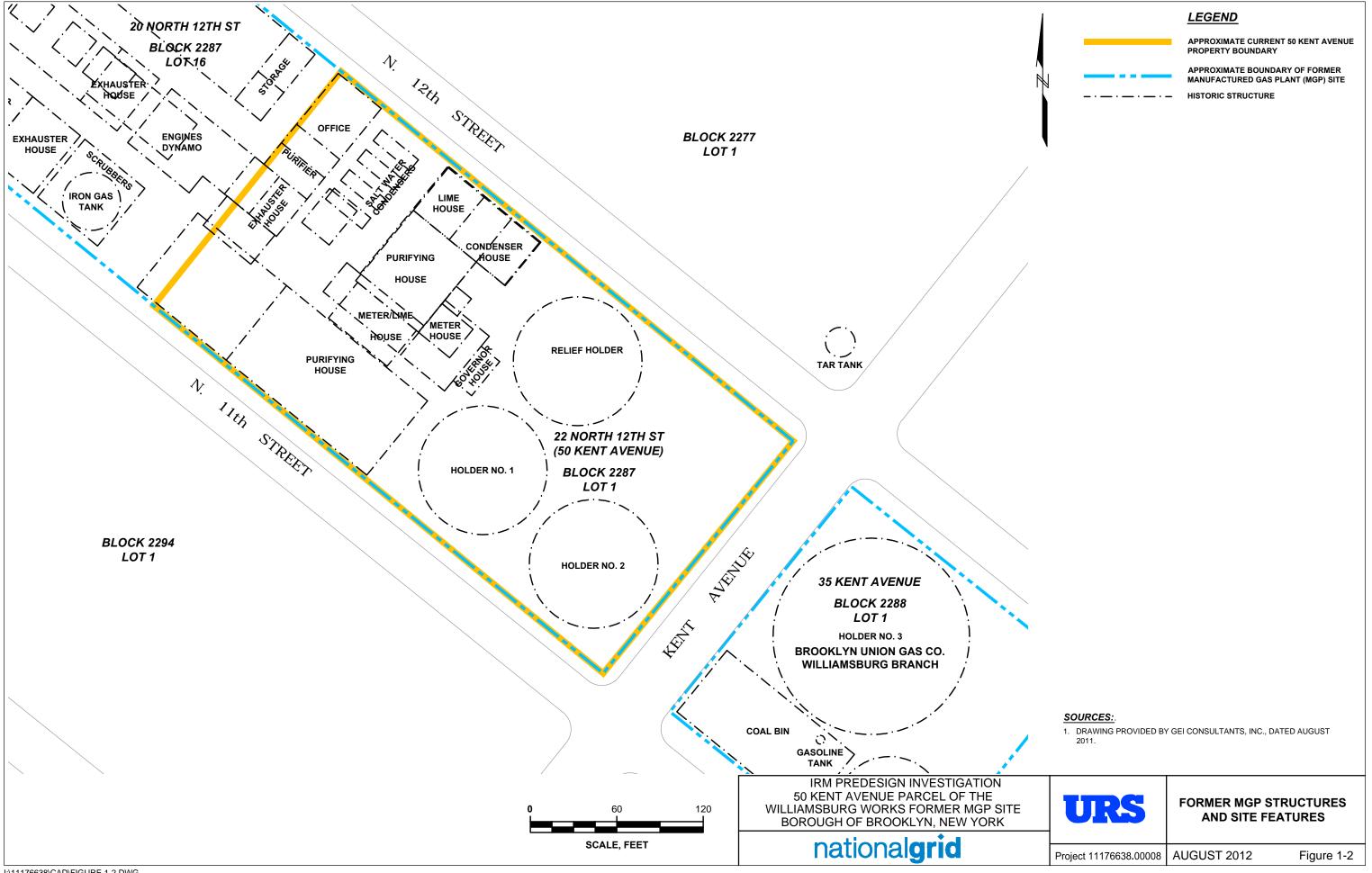

^{*} Data up to time of microphone theft.

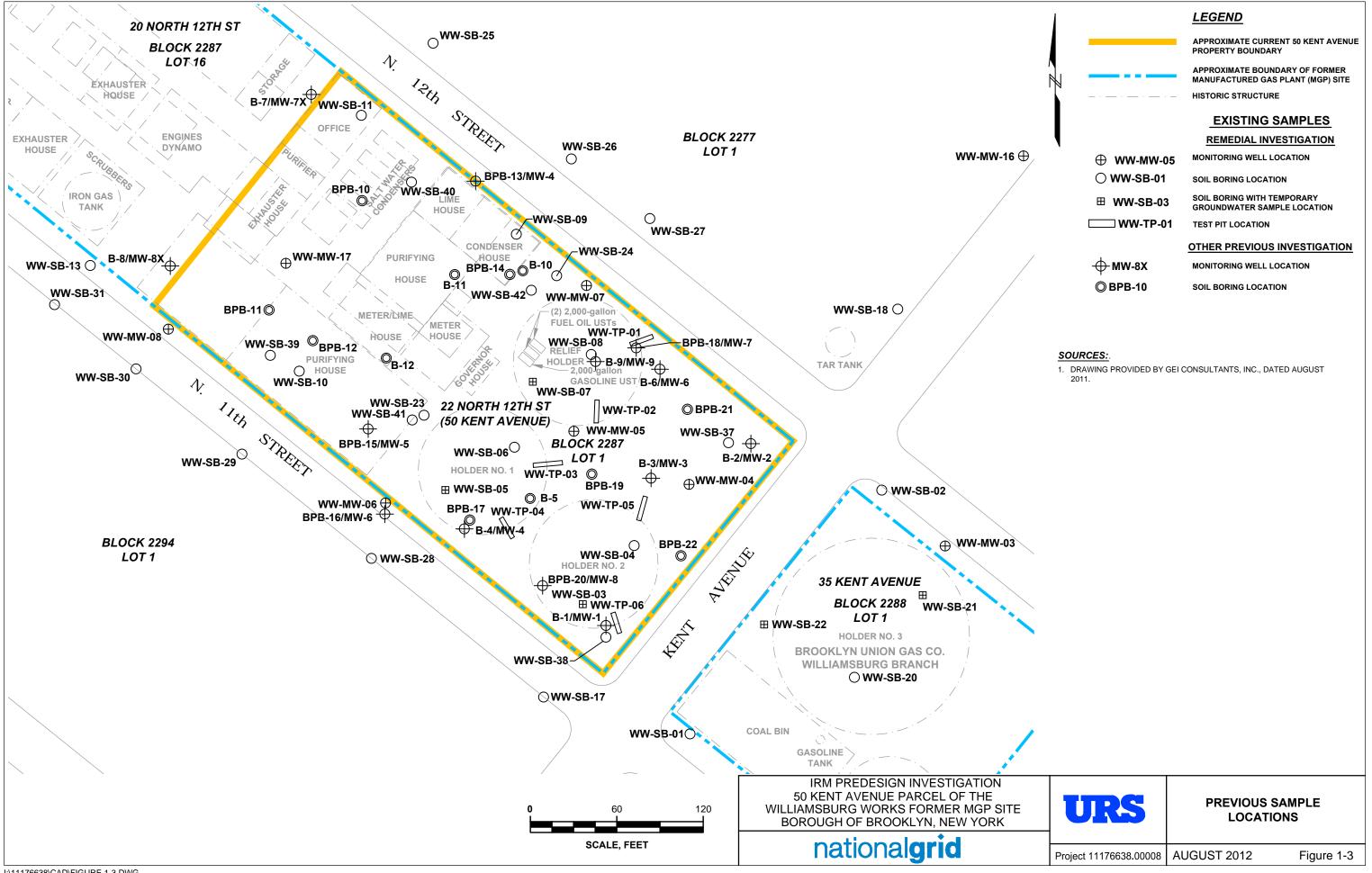
Source: Vibratech Ambient Sound Level Study, Williamsburg Works, dated May 10, 2012.

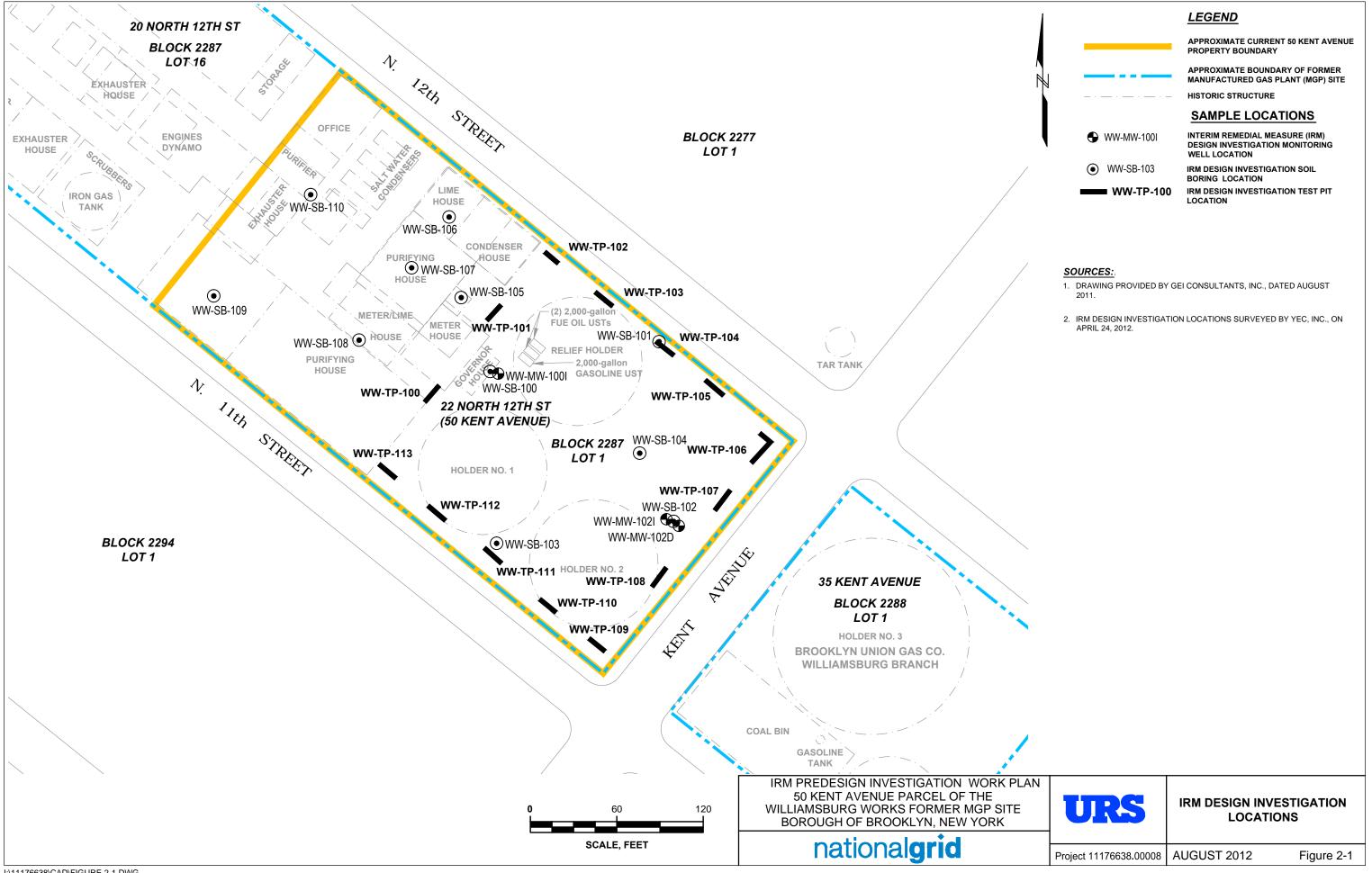
November 21-27, 2012

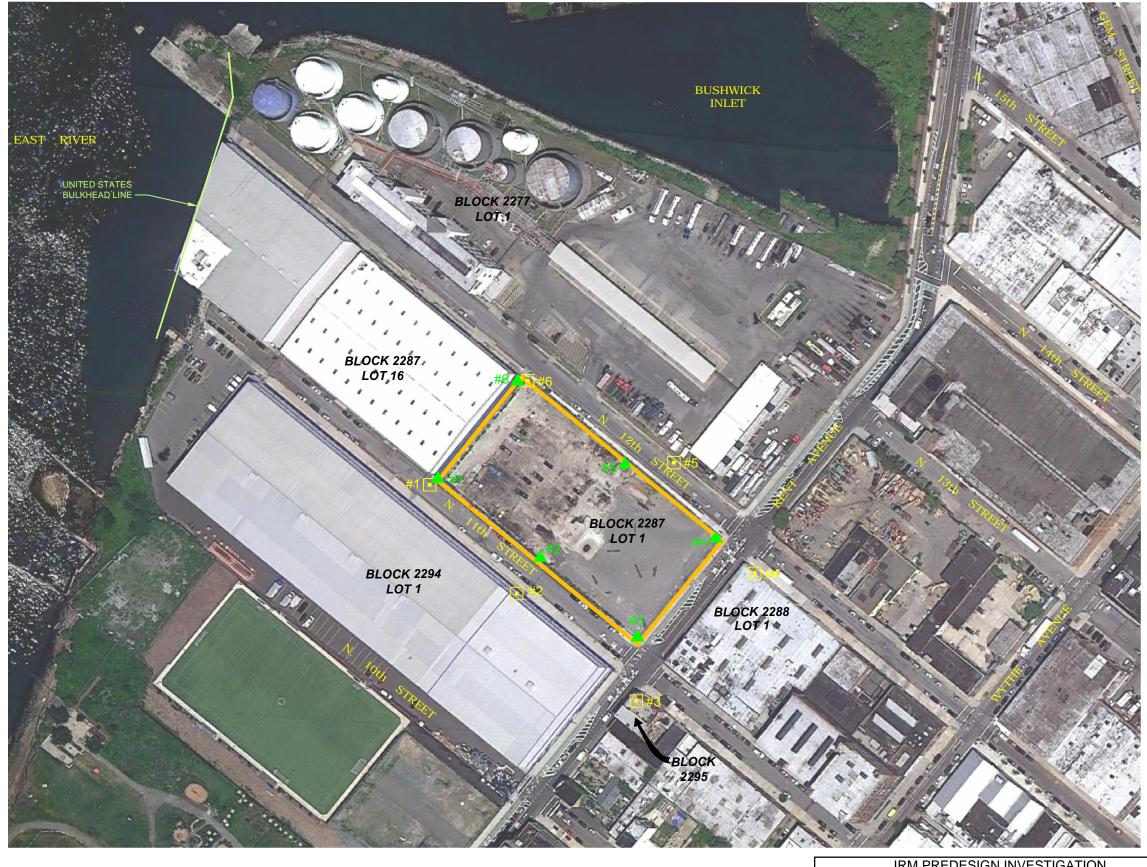

Location	1	2	3	4	5	6
Overall Maximum dBA	102.2	89.3	100.6	103.5	88.2	89.7
Overall Minimum dBA	37.6	39.2	40.9	43	40.1	36.9
Overall Leq	58.9	54.8	66	67.5	57.4	54.5
Ln 10	60.9	57.3	68.4	72.1	59.5	55.6
Ln 20	56.6	55.2	64.9	67.7	57.5	53.4
Ln 30	54.5	53.6	62.2	64.6	55.3	51.9
Ln 50	51	50.8	57.9	58.8	52.3	49.2
Ln 90	43.7	45.1	49.2	49.7	46.4	43
Ln 95	42.7	44.1	47.6	47.7	44.9	41.9

Source: Vibratech Ambient Sound Level Study, Williamsburg Works, dated November 30, 2012.






Source: Google Earth Pro - $\ \odot$ 2012 Google



SCALE, FEET

LEGEND

NOISE AND VIBRATION MONITORING LOCATIONS (APRIL 23-29, 2012)

NOISE MONITORING LOCATIONS (NOVEMBER 21-27, 2012)

SOURCES:

- 1. DRAWING PROVIDED BY GEI CONSULTANTS, INC., DATED AUGUST 2011. PHOTOGRAPH OBTAINED FROM BLUE SKY INTERNATIONAL LTD. ALL RIGHTS RESERVED. COPYRIGHT 2007.
- SOUND AND VIBRATION LOCATIONS SURVEYED BY VIBRA-TECH ENGINEERS, INC., APRIL AND NOVEMBER 2012.

IRM PREDESIGN INVESTIGATION 50 KENT AVENUE PARCEL OF THE
WILLIAMSBURG WORKS FORMER MGP SITE
BOROUGH OF BROOKLYN, NEW YORK

nationalgrid

URS

NOISE AND VIBRATION MONITORING LOCATIONS

Project 093060-1-1108

AUGUST 2012

Figure 2-2

1. PHOTOGRAPH OBTAINED FROM BLUE SKY INTERNATIONAL LTD. ALL RIGHTS RESERVED. COPYRIGHT 2007.

I:\11176638\CAD\ FIGURE 2-2-REV1.dwg \Jan 11, 2013

SCALE, FEET

LEGEND

APPROXIMATE CURRENT PROPERTY BOUNDARY

IRM PREDESIGN INVESTIGATION 50 KENT AVENUE PARCEL OF THE WILLIAMSBURG WORKS FORMER MGP SITE BOROUGH OF BROOKLYN, NEW YORK

nationalgrid

URS

ADJACENT BUILDING LOCATIONS

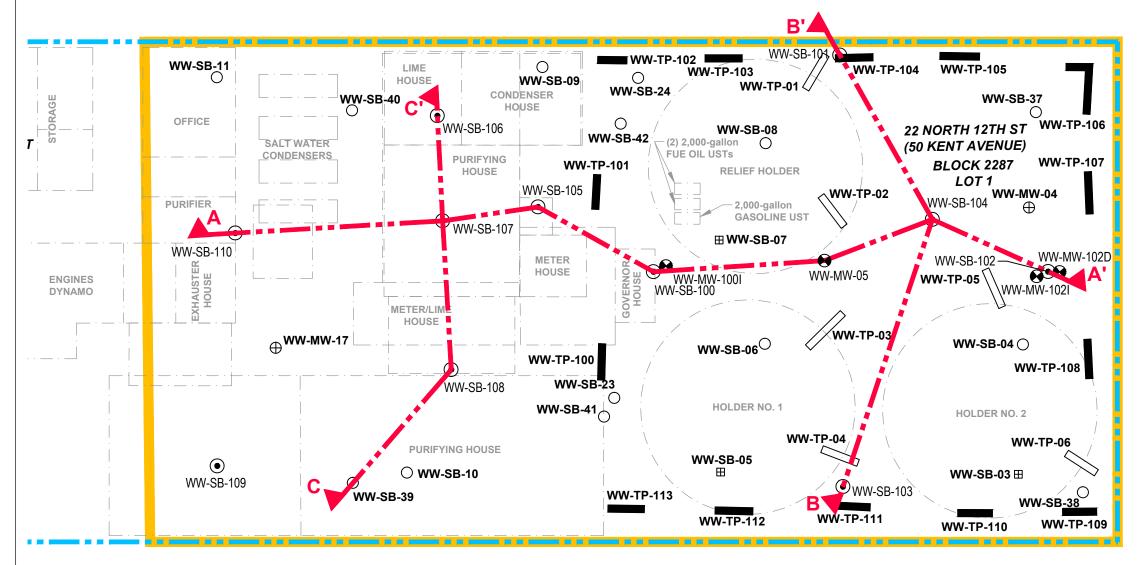
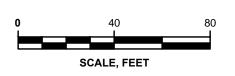

Project 093060-1-1108 | AUGUST 2012

Figure 2-3

1. PHOTOGRAPH OBTAINED FROM BLUE SKY INTERNATIONAL LTD. ALL RIGHTS RESERVED. COPYRIGHT 2007.

SOURCES:


N. 12th STREET

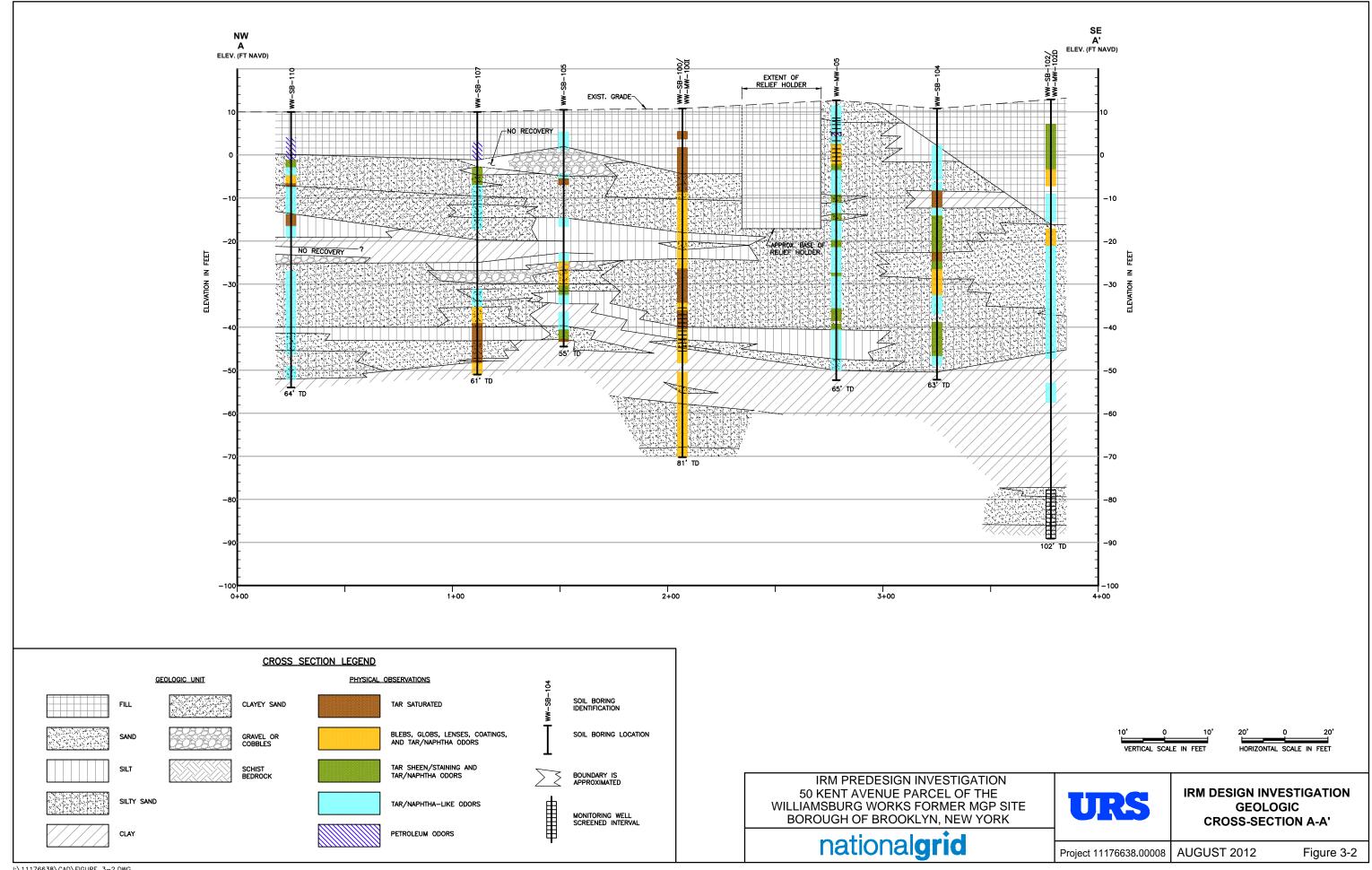
N. 11th STREET

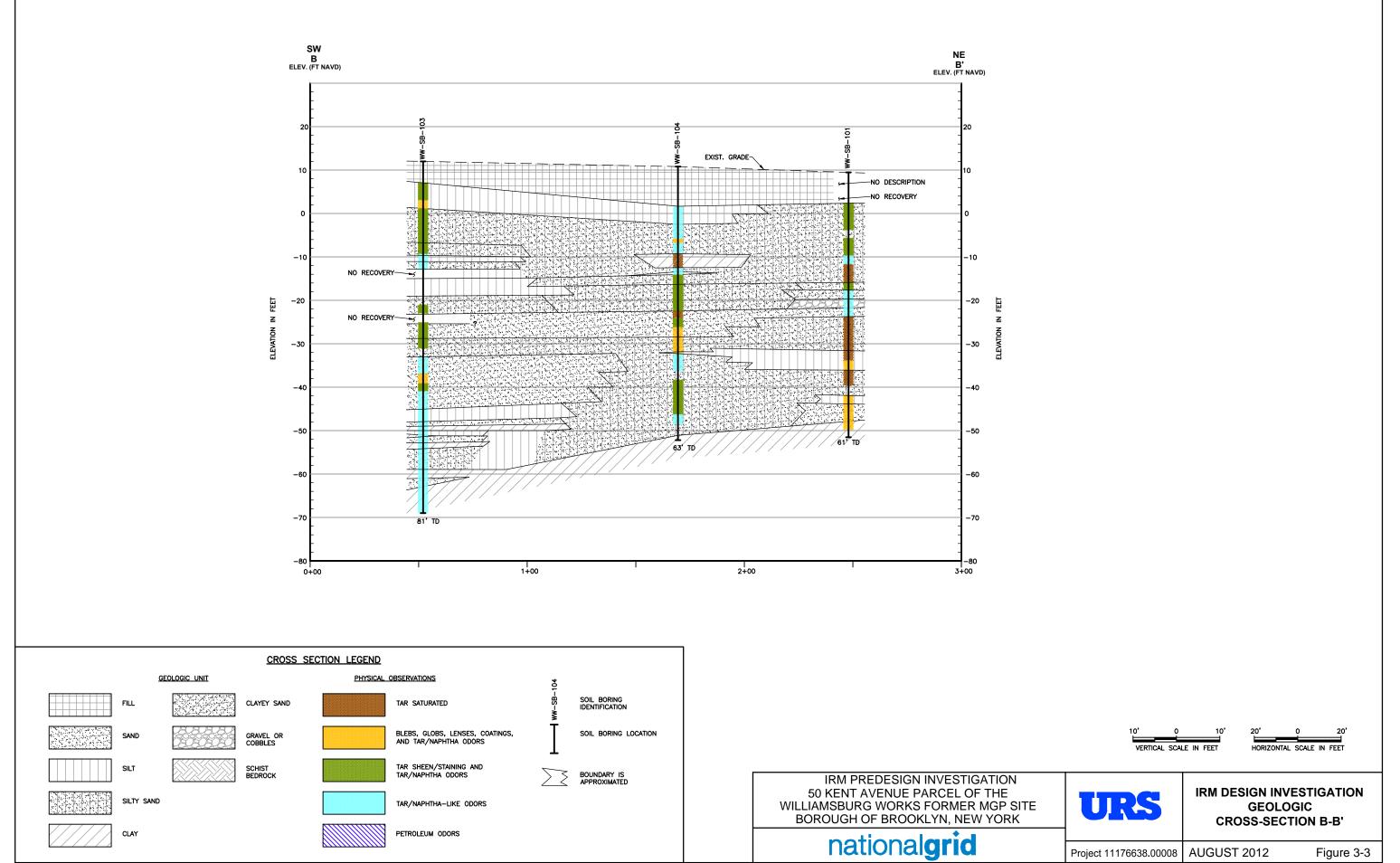
LEGEND APPROXIMATE CURRENT 50 KENT AVENUE PROPERTY BOUNDARY APPROXIMATE BOUNDARY OF FORMER MANUFACTURED GAS PLANT (MGP) SITE HISTORIC STRUCTURE SAMPLE LOCATIONS INTERIM REMEDIAL MEASURE ● WW-MW-100I (IRM) DESIGN INVESTIGATION MONITORING WELL LOCATION IRM DESIGN INVESTIGATION • WW-SB-103 SOIL BORING LOCATION WW-TP-100 IRM DESIGN INVESTIGATION TEST PIT LOCATION EXISTING SAMPLES REMEDIAL INVESTIGATION MONITORING WELL **⊕ ww-mw-05** LOCATION ○ WW-SB-01 SOIL BORING LOCATION SOIL BORING WITH TEMPORARY GROUNDWATER **⊞ WW-SB-03** SAMPLE LOCATION WW-TP-01 TEST PIT LOCATION SOURCES: 1. DRAWING PROVIDED BY GEI CONSULTANTS, INC., DATED AUGUST 2011.

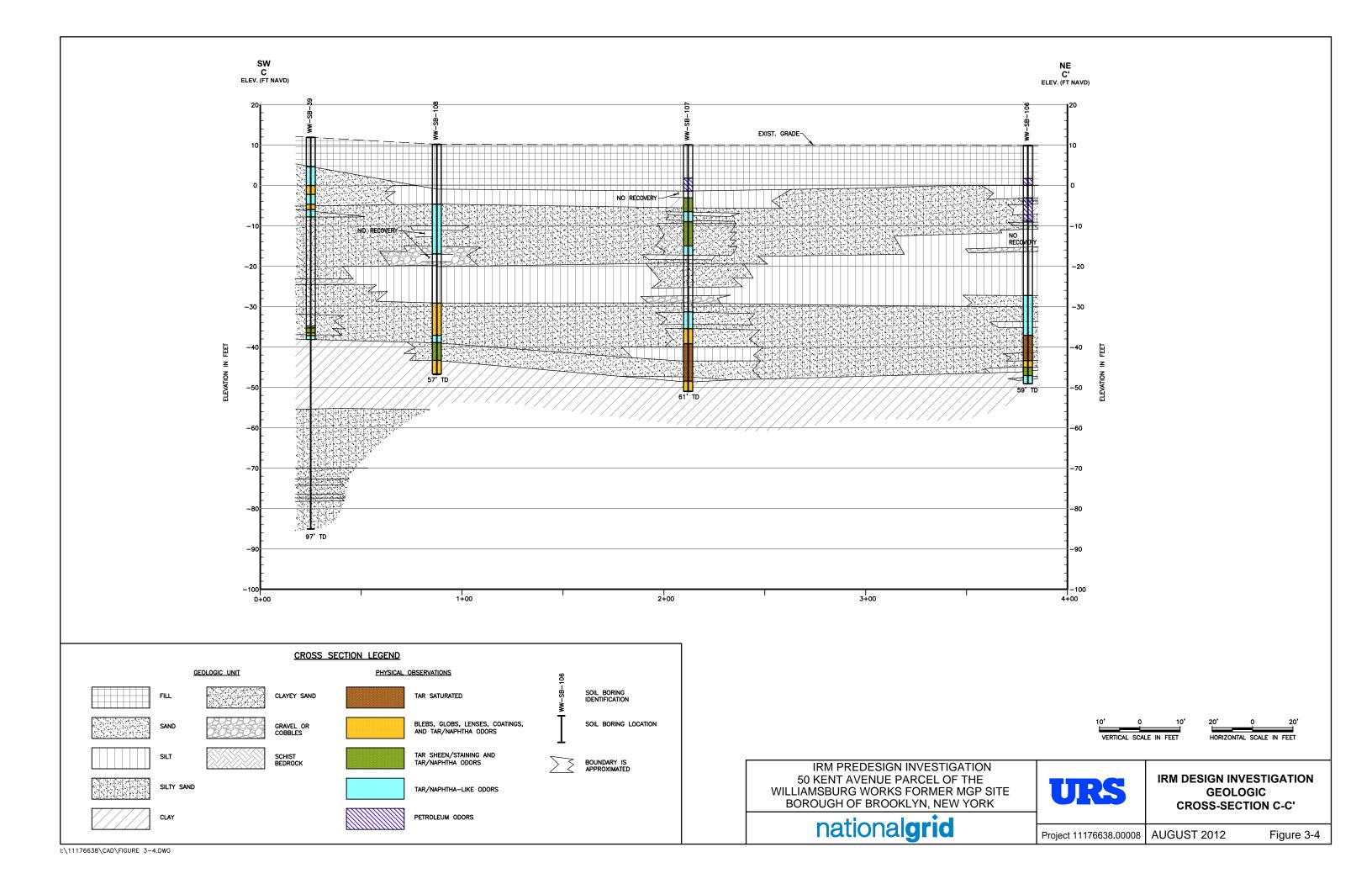
2. IRM DESIGN INVESTIGATION LOCATIONS SURVEYED BY YEC, INC., ON APRIL 24, 2012.

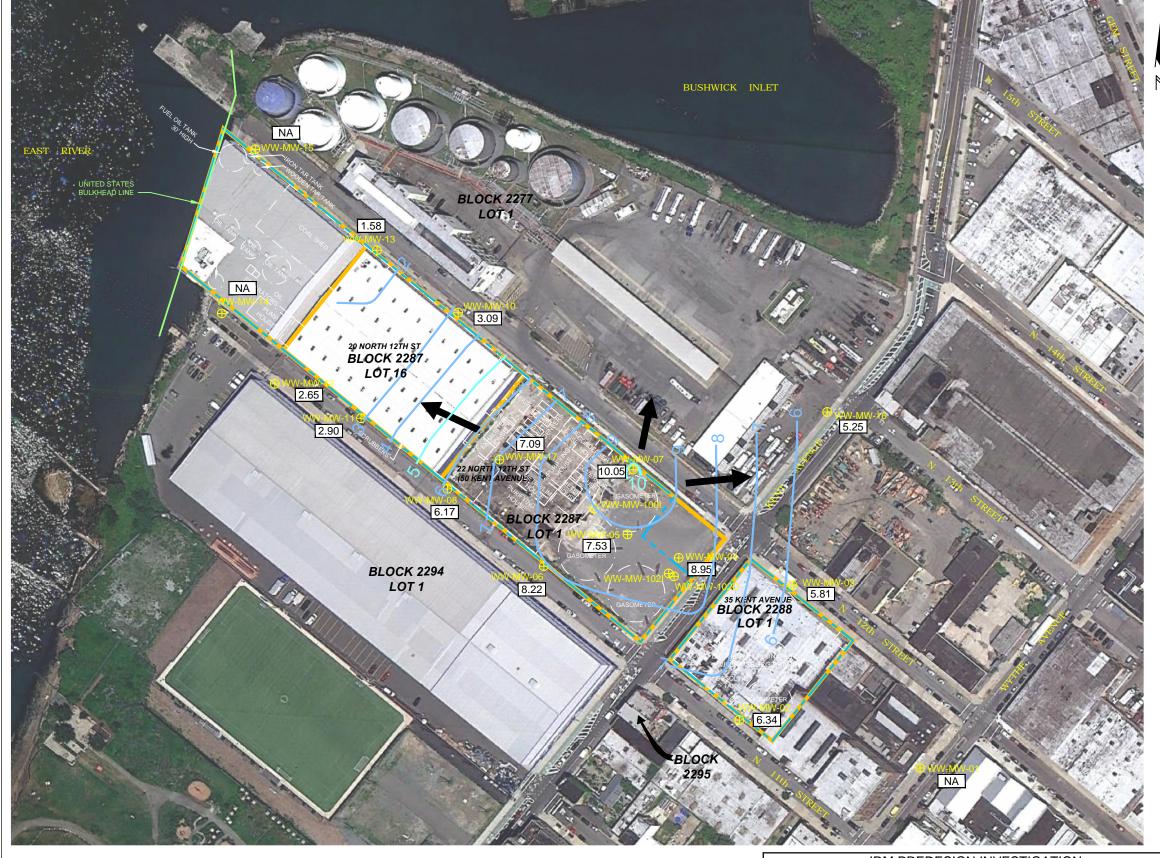
IRM PREDESIGN INVESTIGATION
50 KENT AVENUE PARCEL OF THE
WILLIAMSBURG WORKS FORMER MGP SITE
BOROUGH OF BROOKLYN, NEW YORK

nationalgrid


AVENUE


KENT


GELOGIC CROSS-SECTION LOCATION MAP


Project 11176638.00008

8 AUGUST 2012

LEGEND

APPROXIMATE CURRENT PROPERTY BOUNDARY

APPROXIMATE BOUNDARY OF FORMER MANUFACTURED GAS PLANT (MGP)

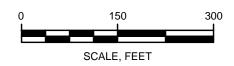
HISTORIC STRUCTURE

REMEDIAL INVESTIGATION (RI) MONITORING WELL LOCATION

GROUNDWATER ELEVATION (FEET AMSL)

GROUNDWATER CONTOUR (FEET AMSL)

GROUNDWATER FLOW DIRECTION

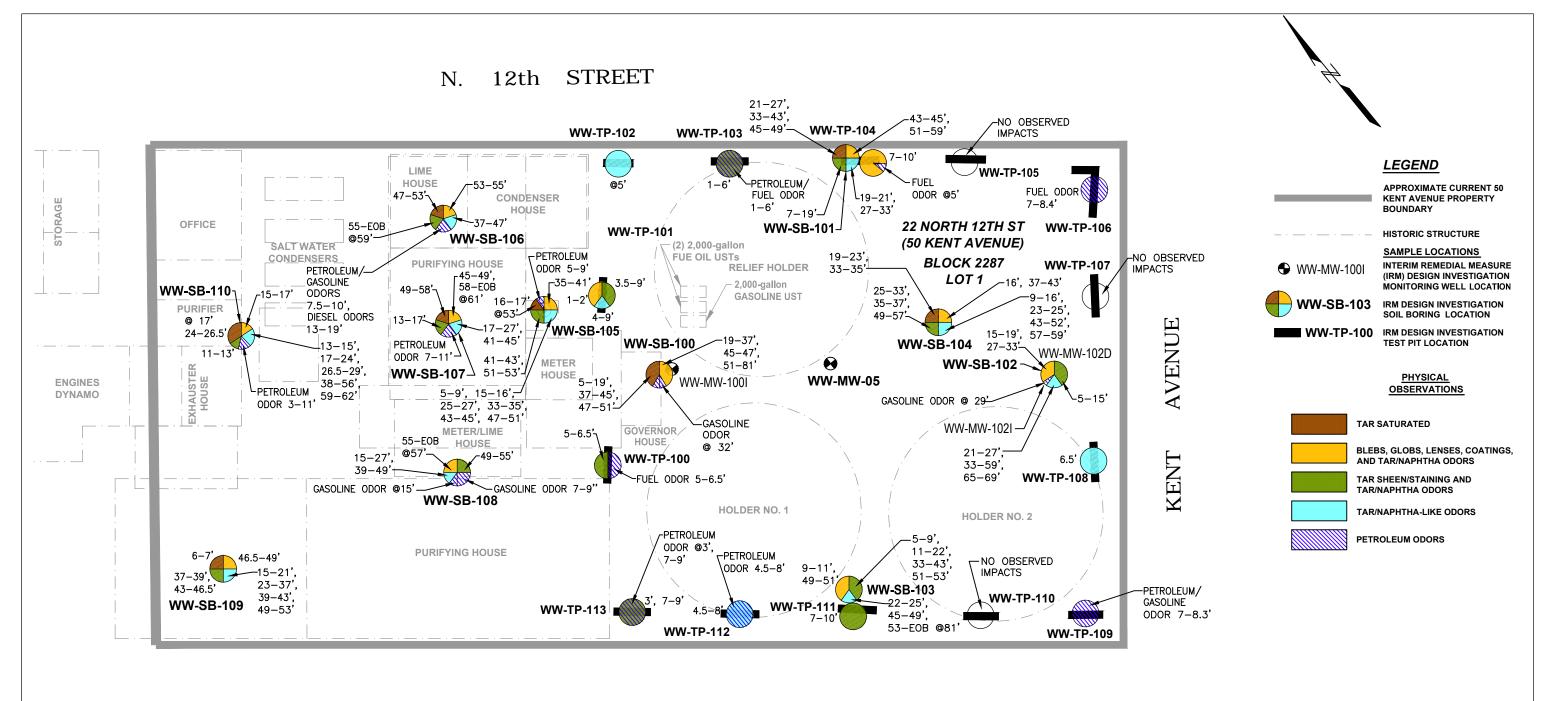

NOTE:

7.74

THE WATER LEVEL AT WW-MW-07 IS ELEVATED DUE TO WATER DRAINING INTO THE AREA FROM THE ADJACENT HOLDER. THE WATER ELEVATION WITHIN THE HOLDER IS 8.27 FEET NAVD.

1. PHOTOGRAPH OBTAINED FROM BLUE SKY INTERNATIONAL LTD. ALL RIGHTS RESERVED. COPYRIGHT 2007.

2. GROUNDWATER LEVELS MEASURED ON APRIL 23, 2012.


IRM PREDESIGN INVESTIGATION 50 KENT AVENUE PARCEL OF THE WILLIAMSBURG WORKS FORMER MGP SITE BOROUGH OF BROOKLYN, NEW YORK

nationalgrid

GROUNDWATER CONTOURS (FEET AMSL)

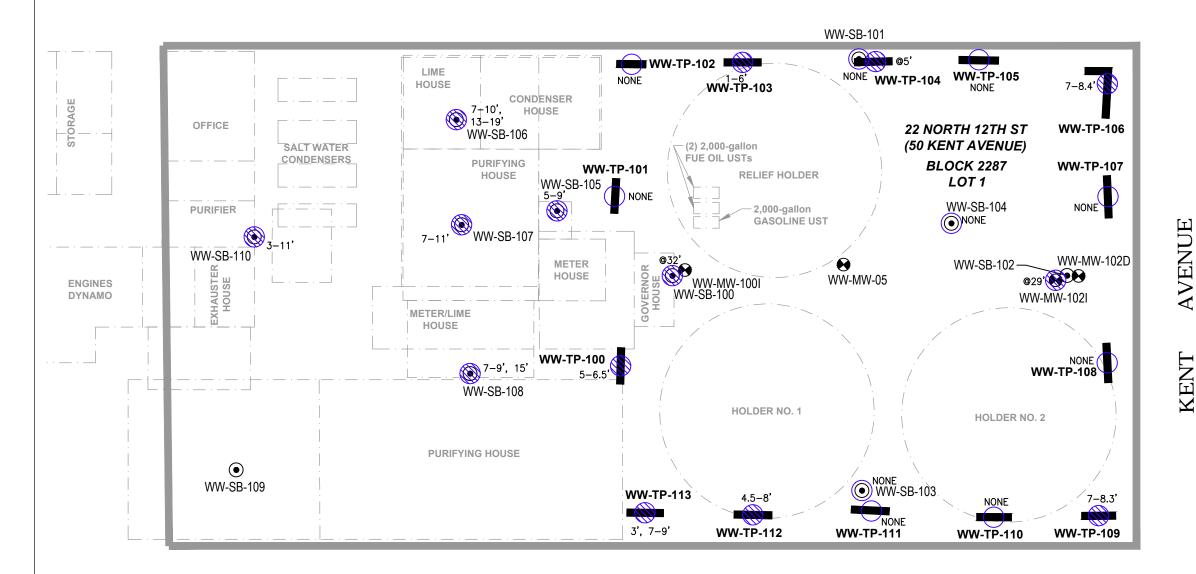
Project 093060-1-1108 | AUGUST 2012

N. 11th STREET

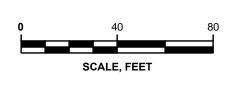
SOURCE:

1. IRM DESIGN INVESTIGATION LOCATIONS SURVEYED BY YEC, INC., ON APRIL 24, 2012.

IRM PREDESIGN INVESTIGATION
50 KENT AVENUE PARCEL OF THE
WILLIAMSBURG WORKS FORMER MGP SITE
BOROUGH OF BROOKLYN, NEW YORK



QUALITATIVE OBSERVATIONS
IN SOIL BORINGS
AND TEST PITS


Project 11176638.00008

AUGUST 2012

N. 12th STREET

N. 11th STREET

IRM PREDESIGN INVESTIGATION
50 KENT AVENUE PARCEL OF THE
WILLIAMSBURG WORKS FORMER MGP SITE
BOROUGH OF BROOKLYN, NEW YORK

PETROLEUM / FUEL ODORS

Project 11176638.00008

AUGUST 2012

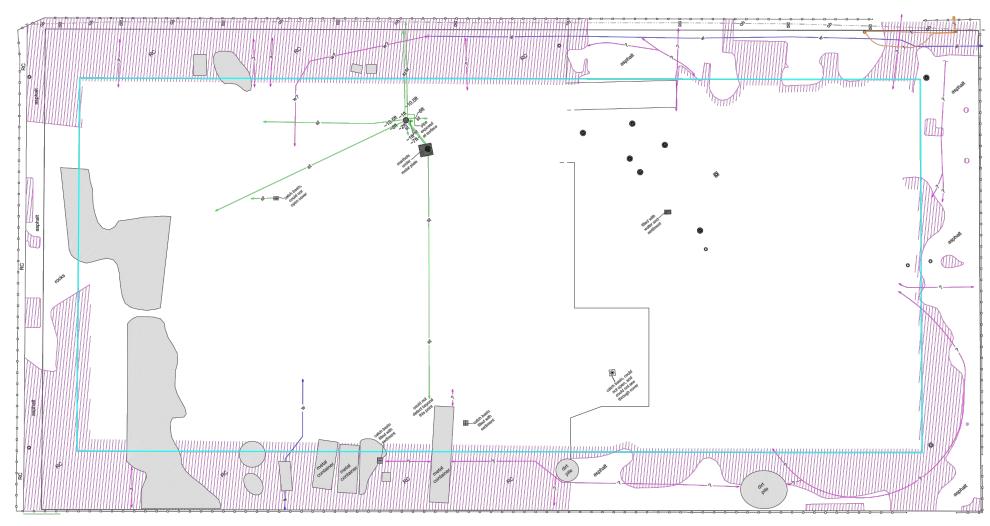
Figure 3-7

 IRM DESIGN INVESTIGATION LOCATIONS SURVEYED BY YEC, INC., ON APRIL 24, 2012.

I:\11176638\CAD\FIGURE 3-7.DWG

APPROXIMATE CURRENT 50
KENT AVENUE PROPERTY
BOUNDARY
HISTORIC STRUCTURE

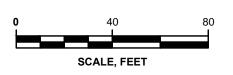
SAMPLE LOCATIONS
INTERIM REMEDIAL MEASURE
(IRM) DESIGN INVESTIGATION
MONITORING WELL LOCATION
SOIL BORING LOCATION
IRM DESIGN INVESTIGATION
TEST PIT LOCATION
FUEL ODOR INVESTIGATION


7–8.3'

WITH DEPTH INTERVAL

PETROLEUM / FUEL ODOR

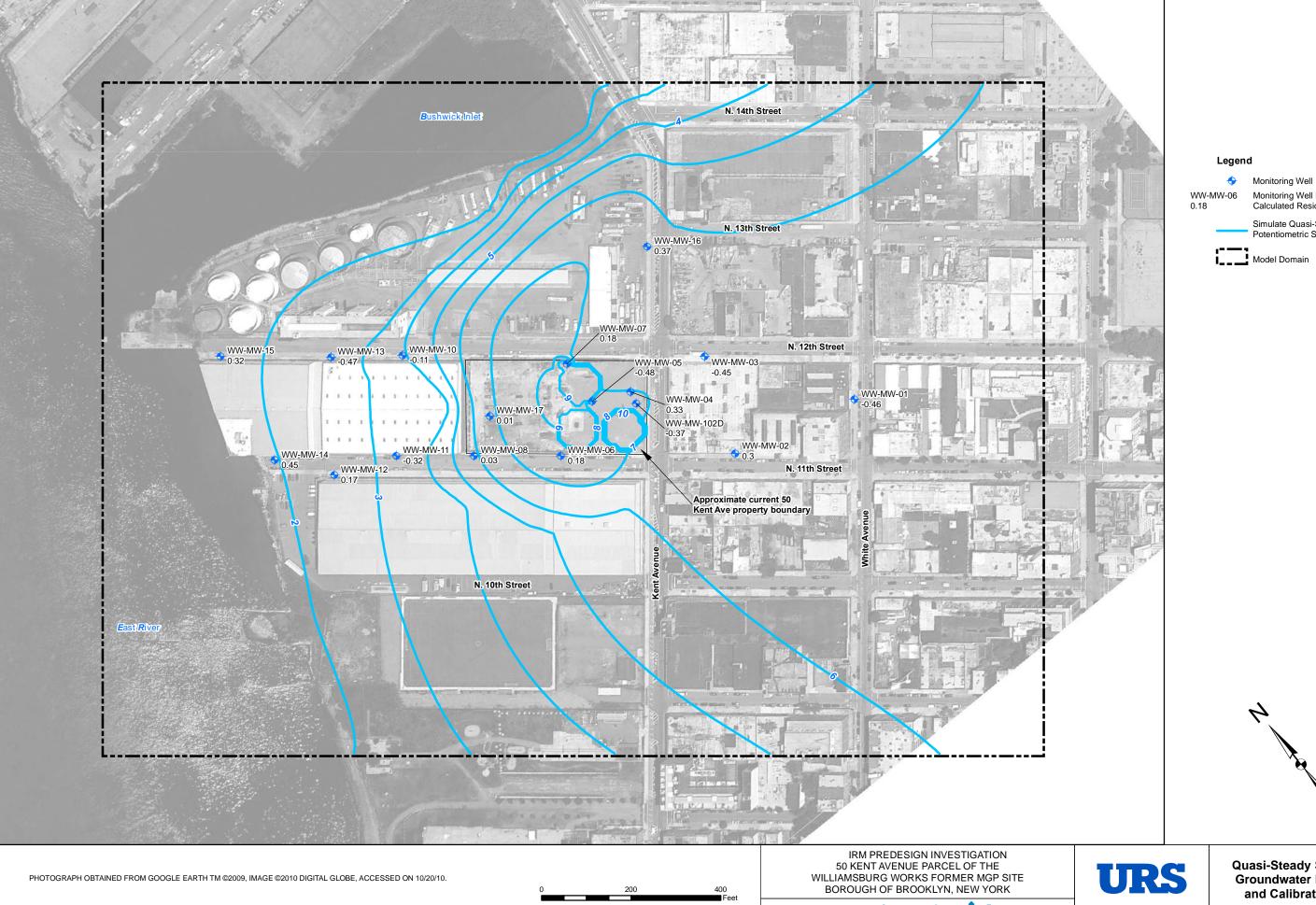
NORTH 12TH STREET



<u>LEGEND</u>

NORTH 11TH STREET

DRAWING PROVIDED BY NAEVA GEOPHYSICS, INC., TITLED FIGURE 1:
 RESULTS OF A GEOPHYSICAL INVESTIGATION, DATED FEBRUARY 23,
 AND APRIL 30, 2012.


IRM PREDESIGN INVESTIGATION 50 KENT AVENUE PARCEL OF THE WILLIAMSBURG WORKS FORMER MGP SITE BOROUGH OF BROOKLYN, NEW YORK

nationalgrid

SITE-WIDE UTILITIES (COMPOSITE)

Project 11176638.00008 AUGUST 2012

Monitoring Well ID

Simulate Quasi-Steady State Potentiometric Surface

Quasi-Steady State Calibrated Groundwater Level Contours

nationalgrid

Project 11176638

and Calibration Residuals

APPENDIX A SOIL BORING LOGS

			TI	Т	•						TEST BOR	ING LO	OG
			U	772	Cor	por	atic	on			BORING NO.: WW-SB-100		
PROJE	CT/PROJE	CT LOC	ATION	۱:	National Gr	id - W	/illiams	burg			SHEET: 1 OF 3		
CLIENT	Г:				National Gr	id					JOB NO. : 11176638.00001		
BORIN	G CONTRA	ACTOR:			Fenley & N	icol					NORTHING: 688817.2756 EA	ASTING: 6	341888.2556
GROUN	NDWATER	:				CAS	s. s.	AMPLER	CORE	TUBE	GROUND ELEVATION: 10.69		
DATE	TIME	LEVE	L	TYPE	TYPE		Sp	olit Spoon			DATE STARTED: 3/30/2	2012	
					DIA.			2"			DATE FINISHED: 4/3/20		
					WT.			140 lb				Meade	
					FALL			24"				as Papan	eocleous
											REVIEWED BY: Tim B	urmeier	T
DEPTH		VISUAL			MPLE	,	REC%				MATERIAL		
FEET	STRATA	IMPACTS	"S" NO.	"N" NO.	BLOW COUNT	-	RQD%	COLOR			DESCRIPTION	PID	REMARKS
			NO.	NO.				<u> </u>					
0				1	1			1				1	1 5
													Boring hand cleared to 5 ft
													bgs
1													
1													
-													
-5								Brown	EII	· cond o	nd silt, little gravel	21.3	100% NAPL
4			1	7	2, 3, 4, 3		50		FIL	L. Saliu ai	nd Siit, iittie gravei		saturation, heavy black
4								-				10.5	coating, strong CT-like odor
			2	32	10, 14, 18,	19	0		No	Recovery			-
					, , ,								
40			2	22	44 44 40	24	62				nd silt, trace gravel, brick, clay and	72.6	Moist to wet 100% NAPL
-10 —			3	33	11, 14, 19,	24	63		mid	ca			saturation, heavy black
-		•						-				83.4	coating, strong CT-like odor
-			4	40	12, 17, 23,	29	79					17.4	
-	\bowtie							-				11.1	100% NAPL
+			5	7	10, 4, 3, 1	0	58						saturation, heavy black
-15 —		-						Gray				8.2	coating, strong CT-like odor
-			6	43	12, 19, 24,	28	42	,	Fine	e to medio e silt and	um SAND (SW), some gravel, clay	24.1	
	•••••	-										18.8	4000/ 1445/
			7	31	9, 14, 17, 2	22	71	Brown		e to coars	e SAND (SW), some silt, gravel	2.6	100% NAPL saturation, light
			,		0, 14, 17, 2		,,		anu	Clay			brown coating, strong CT-like
1					_			Gray				1.8	odor, dry Heavy coating,
-20 —			8	45	5, 19, 26,	33	33					2.1	moderate CT-
-	<u> </u>	-						-	Fine		and SILT (SM), trace clay	0.5	like odol
-			9	80	21, 37, 43,	48	42			CAND	ind OILT (OIVI), trace day	0.2	
-		-											Moist
4			10	70	24, 34, 36,	39	42					0.4	
-25												0.1	
COM	MENTS: PA	ring adva	inced i	usina a (Cantera CT-	.450 d	rill ria						
	Coal Tar	my auva	o c u (using a (Jantera UT-	-tJU U	ıııı ııy.						
l ——	. = Non-Aqı	ueous Ph	ase Li	quid									

BORING NO.:

WW-SB-100

TEST BORING LOG Corporation WW-SB-100 **BORING NO.:** PROJECT/PROJECT LOCATION: National Grid - Williamsburg OF SHEET: 2 3 CLIENT: National Grid JOB NO.: 11176638.00001 **SAMPLE** REC% DEPTH VISUAL **MATERIAL** REMARKS **STRATA** COLOR PID "S" "N" **BLOW FEET** IMPACTS DESCRIPTION RQD% NO. COUNT NO. Heavy coating, strong CT-like odor 1.5 11 70 18, 32, 38, 41 21 3.1 39.1 12 79 48, 42, 37, 26 50 25.4 Heavy coating, 6.8 SILT (ML), some fine sand, trace gravel, clay moderate CT-13 112 48, 51, 61, 63 33 -30 and mica like odor 4.8 Wet Fine to medium SAND (SW), some silt 3.7 Strong gasoline 14 170 58, 70, 100/1, -42 odor, blebs 2.1 6.6 SILT (ML), some clay, trace fine sand and 15 126 41, 62, 64, 71 50 gravel 5.0 -35 Fine to coarse SAND and SILT (SW/ML), 31.5 Heavy coating, 16 100 150, 100/3, -, -33 some gravel, trace mica strong CT-like 29.1 odor, blebs 100% NAPL 438 saturation, 100/2, -, -, -17 100 8 strong CT-like 226 odor 100% NAPL saturation. 90, 100/3, -, --40 18 100 strong CT-like odor, blebs 5.1 100% NAPL Fine to medium SAND (SW), some silt 361 saturation, 19 100 100/6, -, -, -25 strong CT-like 171 odor trace gravel 333 50 20 100 100, 100/5, -, -266 -45 Heavy coating, 76.5 Fine SAND (SP), some silt, trace mica strong CT-like 50, 35, 53, 33 21 88 75 odor 110 100% NAPL 233 saturation, 22 111 37, 48, 63, 90 100 strong CT-like 116 odor 50.2 23 100 62, 100/3, -, -42 -50 60.1 Dry, product in 50.7 SILT (ML), some clay, trace fine sand and spoon, heavy 24 112 38, 49, 63, 90 58 mica coating, blebs 64.2 Strong CT-like 104 Brown odor, heavy 60, 100/5, -, -25 100 50 Fine to medium SAND (SW), trace silt coating 134 Wet Moderate CT--55 Fine to medium SAND and SILT (SM) 22.6 like odor, light 26 135, 35, 63, 80 CLAY (CL), medium plasticity coating COMMENTS: Boring advanced using a Cantera CT-450 drill rig. CT = Coal Tar NAPL = Non-Aqueous Phase Liquid

BORING NO.: WW-SB-100

TEST BORING LOG Corporation WW-SB-100 **BORING NO.:** PROJECT/PROJECT LOCATION: National Grid - Williamsburg SHEET: 3 OF 3 **CLIENT:** National Grid JOB NO.: 11176638.00001 **SAMPLE** REC% **DEPTH** VISUAL **MATERIAL STRATA** COLOR PID **REMARKS** "S" "N" **BLOW FEET** IMPACTS **DESCRIPTION** RQD% NO. COUNT NO. Dry 24 Blebs, 28 moderate CT-103 27 35, 50, 53, 47 42 like odor 23.7 Shelby Tube collected from -60 SH₁ -, -, -, -59 to 61 ft bgs Gray to Faint CT-like 5.3 CLAY (CL), medium plasticity Orange odor, light 28 126 57, 63, 63, 75 58 coating 3.5 36.8 29 129 42, 63, 66, 100 100 28.1 -65 Gray Fine SAND and SILT (SM), some clay and Moderate CT-79 like odor, heavy 30 196 73, 96, 100/3, -83 coating 173 CLAY (CL), medium plasticity 35.5 200 64, 100, 100/4, 100 SILT and CLAY (ML/CL), some fine to coarse 31 43.7 sand and mica Light coating, blebs, faint CT-9.8 Fine SAND and SILT (SM), some clay and -70 32 234 70, 134, 100/1, 13 like odor 7.7 5.5 33 42 200 78, 100, 100/2, 3.5 64.3 58 34 190 75, 90, 100/2, -58 -75 Faint CT-like 1.5 odor, light 35 183 47, 83, 100/5, coating 1.2 35.6 36 86 21, 21, 65, 79 100/5 17.3 Moist to wet, 20.2 Fine SAND (SP), trace silt light coating, 37 163 43, 63, 100/2, -66 -80 faint CT-like 17.5 odor End of boring at 81 ft bgs. -85 COMMENTS: Boring advanced using a Cantera CT-450 drill rig. CT = Coal Tar NAPL = Non-Aqueous Phase Liquid **BORING NO.:** WW-SB-100

			T 1	ТС	•		_					TEST BOR	ING LO)G
			U		Cor	por	atic	n <u>n</u>				BORING NO.: WW-SB-101		
PROJE	CT/PROJE	CT LOC	ATION	1 :	National Gr	rid - W	/illiams	burg				SHEET: 1 OF 3		
CLIENT	Γ:				National Gr	rid						JOB NO.: 11176638.00001		
BORIN	G CONTRA	ACTOR:			Fenley & N	licol						NORTHING: 688837.9514 EA	ASTING: 6	642005.5190
GROUN	NDWATER	: 21'				CAS	s. s	AMPLER	СС	ORE	TUBE	GROUND ELEVATION: 9.47		
DATE	TIME	LEVE	EL	TYPE	TYPE		St	olit Spoon				DATE STARTED: 3/26/2	2012	
					DIA.			2"				DATE FINISHED: 3/28/2	2012	
					WT.			140 lb				DRILLER: Mike	Meade	
					FALL			24"				GEOLOGIST: Andre	as Papan	eocleous
		1										REVIEWED BY: Tim B	Burmeier	
		<u> </u>			 MPLE	Ή.			Т				Ι	
DEPTH	STRATA	VISUAL	"S"	"N"	BLOW	-	REC%	COLOR	۱ ۶			MATERIAL DESCRIPTION	PID	REMARKS
FEET		IMPACIS	NO.	NO.	COUNT	· F	RQD%					DESCRIPTION		
														<u>. </u>
0—									\neg				T	Boring hand
4 !			l											cleared to 5 ft bgs
_			l											
			l											
7														
-5 —		1 1							+	No P	ecovery			
4 !			1	3	2, 1, 2, 1	i	0			NO K	ecovery			
4								Drown	_					Maiat
			2	2	1, 1, 1, 2	,	33	Brown				um SAND (SW), some silt, trace	9.0	Moist Strong CT-like
			_		1, 1, 1, 2		55			grave	el, very lo	oose	6.2	odor, slight sheen,
7 1	<u> </u>							_		Fine	SAND a	nd SILT (SM), trace clay, loose	9.0	moderate staining
-10 —			3	9	2, 3, 6, 5	,	13						7.6	
-		-						_					100	-
4 !			4	7	2, 3, 4, 3	3	79							
_								_	L				92.3	
			5	11	1, 3, 8, 8	,	0			No R	ecovery			
]	''	1, 5, 6, 6	'	U							
-15 —										Fine	to mediu	um SAND and SILT (SW/ML),	1.6	Strong CT-like odor, slight
+	<u> </u>		6	39	36, 24, 15,	22	100			some	clay and	d mica, dense	0.5	sheen
		-						-		mediı	um dens	se	10.8	Faint CT-like
4 !			7	29	8, 10, 19, 2	20	29							odor
_	<u> </u>		<u> </u>	<u> </u>		\perp		_	L				7.7	F : . OT !!!
-20 —			8	40	12, 22, 18,	10	50					SP), some silt, clay and mica,	4.7	Faint CT-like odor
-20				40	12, 22, 10,	10	30			dense	Э		3.1	
7 1								1		Fine 1	to mediu	um SAND (SW), some silt,	900	Wet
+ !	•••••		9	30	11, 14, 16,	17	58				um dens		2,238	100% dark brown NAPL
4 1		·			<u> </u>	-		_		dense	е		2,200	saturation, strong CT-like
4			10	31	10, 11, 20,	20	75							odor
-25			<u></u>											PID not working properly
-25					•			,	·				•	
									_					
		ring adva	anced	using a C	Cantera CT-	-450 d	rill rig.							
l ——	Coal Tar													
NAPL	_ = Non-Aqı	ueous Ph	ase Li	quid										
												BORING NO	D.: W	W-SB-101

TEST BORING LOG Corporation WW-SB-101 **BORING NO.:** PROJECT/PROJECT LOCATION: National Grid - Williamsburg OF SHEET: 2 3 CLIENT: National Grid JOB NO.: 11176638.00001 **SAMPLE** REC% DEPTH VISUAL **MATERIAL** REMARKS **STRATA** COLOR PID "S" "N" **BLOW FEET** IMPACTS **DESCRIPTION** RQD% NO. COUNT NO. Strong CT-like odor, moderate trace silt and mica, very dense 11 71 26, 32, 39, 41 75 staining, slight sheen Moderate CT-Fine to medium SAND and CLAY (SW/CL), like odor 50/2, -, -, -12 50 8 trace silt and mica, very dense Fine to coarse SAND and GRAVEL (SW/GW), 13 125 45, 50, 75/3, -50 -30 trace silt, very dense Fine SAND (SP), some gravel, trace silt, very 14 120 150, 120, -, -25 dense 100 % NAPL Fine SAND and SILT (SM), trace mica, very saturation, 15 100 80, 100/4, -, -42 dense strong CT-like odor -35 some gravel 16 130 40, 50, 80, 75 100/4 265 150/3, -, -, -17 150 13 600 18 30, 42, 52, 80 -40 94 Strong CT-like odor, 50-75% Gray SILT (ML), some fine to coarse sand, very 130 19 98 35, 42, 56, 48 54 dense NAPL saturation Light coating, 531 strong CT-like 20 56 18, 24, 32, 56 71 odor 232 -45 Brown 100% NAPL 914 Fine to coarse SAND and SILT (SW/ML), trace saturation, 56 18, 24, 32, 52 100 21 mica, very dense strong CT-like 613 odor 100% NAPL 82.9 saturation, 22 78 41, 55, 23, 45 92 strong CT-like Brown and 57 odor Gray No Recovery 23 50 24, 28, 22, 33 0 -50 Moderate CT-58.2 SILT (ML), some clay, trace fine to medium like odor, light 24 49 25, 28, 21, 29 38 sand and mica. dense coating 73.3 Brown

COMMENTS: Boring advanced using a Cantera CT-450 drill rig.

25

26

78

21, 32, 46, 53

40, 44, 50, 95

42

CT = Coal Tar

NAPL = Non-Aqueous Phase Liquid

BORING NO.: WW-SB-101

15.5

2.3

Fine SAND (SP), trace silt and mica, very

very dense

Fine to coarse SAND (SW), trace silt and mica,

			TI	D(S Corpo		_			ST BORI	NG LC	OG
									BORING NO.: W			
	CT/PROJE	ECT LOC	ATION		National Grid -	Williamsh	ourg		SHEET: 3 OF			
CLIENT	<u>: </u>				National Grid				JOB NO.: 11176	638.00001		
DEPTH FEET	STRATA	VISUAL IMPACTS	"S" NO.	"N" NO.	MPLE BLOW COUNT	REC%	COLOR		MATERIAL DESCRIPTION		PID	REMARKS
-65 — -75 — -85 — -	MENTS: Bo		27 SH1	138	50, 62, 76, 83	drill rig.		CLAY (CL), tr plasticity, hard		ca, medium	250	Shelby Tube collected from 59 to 61 ft bgs
		ning auva	anceu t	ising a (Januera C1-400	unii ng.						
	Coal Tar											
NAPL	. = Non-Aqı	ueous Ph	ase Lic	quid								
										BORING NO).: W	W-SB-101

			TI	Ф	Cor							T BOR	ING LO	OG
											BORING NO.: WW-	SB-102		
	CT/PROJE	ECT LOC	ATION	l:	National Gr		illiams	burg			SHEET: 1 OF 4			
CLIENT					National Gr						JOB NO. : 11176638			
	G CONTR				Fenley & N						NORTHING: 688713.1			42015.5750
	NDWATER	1	. 1		I	CAS	_	AMPLER	CORE	TUBE	GROUND ELEVATION	4/6/20		
DATE	TIME	LEVE	EL	TYPE	TYPE DIA.		5	olit Spoon			DATE STARTED: DATE FINISHED:	4/0/20		
					WT.			2" 140, 300			DRILLER:		Meade	
					FALL			24"			GEOLOGIST:		as P., Mir	a A.
					TALL						REVIEWED BY:		urmeier	
		 				Т			\top		1,121,121,125,131		<u> </u>	
DEPTH	STRATA	VISUAL IMPACTS	"S"	N"	MPLE BLOW	- -	REC%	COLOR	.		MATERIAL		PID	REMARKS
FEET		IMPACIS	NO.	NO.	COUNT	1	RQD%				DESCRIPTION			
						-								
0—														Boring hand
-														cleared to 5 ft bgs
-														
-														
-														
-5—								Crov						\\/at
			1	2	3, 1, 1, 7		25	Gray	FIL	L: sand a	and silt, trace gravel, clay a	and brick	0.0	Wet Faint CT-like
				_	0, 1, 1, 1									odor, heavy staining
			•				40						0.0	
			2	6	9, 3, 3, 3		42							
1													0.0	
-10 —			3	7	6, 4, 3, 3		33							
-													0.0	
-			4	21	4, 10, 11,	1	33						0.0	
-								1						
4			5	53	7, 13, 40,	0	33						0.0	
-15 —														Light posting
			6	42	15, 19, 23,	32	42			L: sand a	and gravel, some silt, trace	mica	0.1	Light coating, faint CT-like
					10, 10, 20,				and	DITOR				odor
			7	0.4	4 40 44 4		50						0.0	
1			7	24	4, 10, 14,	9	50							
									No	Recover	y			
-20 —			8	8	2, 1, 7, 2		0							
-									FII	I · silt and	d gravel, some brick		0.0	Faint CT-like
+			9	17	21, 10, 7,	7	17			Jiii ani	2 g. 470i, 00iii0 bii0k			odor
-								1					0.2	
			10	60	35, 24, 36,	30	75						0.2	
-25]						
COMI	MENTS: Bo	oring adva	anced (using a (Cantera CT-	450 d	rill rig.	140 lb ha	ammer u	sed 5'-81	'. 300 lb hammer used 81	I'-100'.		
	— Coal Tar													

NAPL = Non-Aqueous Phase Liquid

BORING NO.: WW-SB-102

TEST BORING LOG Corporation WW-SB-102 **BORING NO.:** PROJECT/PROJECT LOCATION: National Grid - Williamsburg OF SHEET: 2 4 **CLIENT:** National Grid JOB NO.: 11176638.00001 **SAMPLE** REC% **DEPTH** VISUAL **MATERIAL STRATA** COLOR PID **REMARKS** "S" "N" **BLOW FEET** IMPACTS **DESCRIPTION** RQD% NO. COUNT NO. 0.0 20, 7, 7, 7 11 14 42 Moderate CT-36.4 FILL: sand, trace silt and brick like odor, light 12 6 7, 3, 3, 100/0 58 coating 29.2 Heavy gasoline Fine to medium SAND and GRAVEL odor, light coating, slight 120, 30, 70, 13 100 100 -30 (SW/GW), trace silt and mica 100/5 46.1 sheen Moderate CT-3.3 like odor, light 14 58 12, 24, 34, 38 100 coating, slight 2.7 sheen Brown Dry 1.2 Fine SAND (SM), some silt, trace mica Faint CT-like 15 97 35, 44, 53, 60 100 odor 0.7 -35 1.2 17, 24, 50, 60 100 16 74 8.0 Moist Fine to medium SAND (SW), trace silt and 0.0 17 97 41, 67, 30, 73 75 Fine SAND (SP), trace silt and mica 0.0 18 7, 19, 24, 76 -40 43 0.0 19 79 25, 33, 46, 62 42 Moderate CT-2.2 like odor 28, 43, 46, 59 100 20 89 1.6 -45 Faint CT-like 11.6 odor 100 21 28, 36, 48, 63 84 9.5 7.7 22 52 21, 16, 36, 95 100 6.5 SILT (ML), trace fine sand and mica 3.3 23 59 14, 26, 33, 44 100 -50 Fine to medium SAND (SW), trace silt and 2.8 Dry 0.0 Fine SAND and SILT (SM), trace mica 24 155 25, 65, 90, 88 54 Fine SAND (SP), trace silt and mica 1.1 25 30 26, 15, 15, 17 75 0.3 -55 Moist 1.6 26 31 7, 14, 17, 21 COMMENTS: Boring advanced using a Cantera CT-450 drill rig. 140 lb hammer used 5'-81'. 300 lb hammer used 81'-100'.

CT = Coal Tar

NAPL = Non-Aqueous Phase Liquid

BORING NO.: WW-SB-102

TEST BORING LOG Corporation WW-SB-102 **BORING NO.:** PROJECT/PROJECT LOCATION: National Grid - Williamsburg SHEET: 3 OF 4 **CLIENT:** National Grid JOB NO.: 11176638.00001 SAMPLE REC% **DEPTH** VISUAL **MATERIAL STRATA** BLOW COLOR PID **REMARKS** "S" "N" **FEET** IMPACTS DESCRIPTION RQD% NO. COUNT NO. Faint CT-like 13.1 some clay odor 27 13, 18, 35, 60 53 71 72 No odor, dry CLAY (CL), medium plasticity 0.0 -60 28 46 12, 20, 26, 31 29 0.0 29 138 24, 68, 70, 51 63 Shelby Tube collected from SH1 -, -, -, -63 to 65 ft bgs -65 Faint CT-like CLAY (CL), medium to high plasticity, some 0.0 odor 30 20, 30, 39, 30 79 69 sand, trace silt some fine to coarse sand and silt 0.0 31 62 23, 27, 35, 36 No odor 0.0 32 40 7, 15, 25, 37 71 Brown to CLAY (CL), medium to high plasticity 0.0 Gray 33 48, 33, 52, 76 79 85 0.0 34 80 40, 40, 40, 28 83 0.0 35 17, 17, 30, 38 0.0 30, 34, 40, 56 36 74 100 0.0 37 101 39, 46, 55, 70 83 -80 Switch to mud Gray 0.0 rotary and 300 38 20 7, 10, 10, 11 33 lb hammer some silt and fine sand, trace mica 39 35 11, 15, 20, 21 67 -85 0.0 40 25 7, 10, 15, 16 100 COMMENTS: Boring advanced using a Cantera CT-450 drill rig. 140 lb hammer used 5'-81'. 300 lb hammer used 81'-100'. CT = Coal Tar

BORING NO.:

WW-SB-102

NAPL = Non-Aqueous Phase Liquid

TEST BORING LOG Corporation WW-SB-102 BORING NO.: National Grid - Williamsburg PROJECT/PROJECT LOCATION: SHEET: 4 OF 4 **CLIENT:** National Grid JOB NO.: 11176638.00001 SAMPLE REC% **DEPTH VISUAL MATERIAL** COLOR **REMARKS STRATA** "S" **BLOW** PID "N" IMPACTS **FEET DESCRIPTION** RQD% COUNT NO. NO. 0.0 11, 17, 19, 21 41 36 50 Moist 0.0 42 11, 24, 45, 52 92 69 Gray to White Fine to medium SAND and SILT (SM) Gray Dry 0.0 43 76 35, 26, 50, 63 100 White Fine to medium SAND (SW), trace silt and clay Gray 0.0 44 129 42, 63, 69, 115 79 -95 0.0 45 24, 40, 51, 38 0.0 19, 38, 57, 52 46 95 66 Weathered SCHIST BEDROCK 0.0 100 47 65 11, 26, 39, 51 92 End of boring at 101 ft bgs. 105 110 115 COMMENTS: Boring advanced using a Cantera CT-450 drill rig. 140 lb hammer used 5'-81'. 300 lb hammer used 81'-100'. CT = Coal Tar NAPL = Non-Aqueous Phase Liquid

BORING NO.:

WW-SB-102

TEST BORING LOG Corporation WW-SB-103 **BORING NO.:** PROJECT/PROJECT LOCATION: National Grid - Williamsburg SHEET: 1 OF 3 CLIENT: National Grid JOB NO. : 11176638.00001 NORTHING: 688697.9628 **EASTING:** 641892.6929 **BORING CONTRACTOR:** Fenley & Nicol 11.75 **GROUNDWATER: 11'** CAS. SAMPLER CORE TUBE **GROUND ELEVATION: DATE STARTED:** 3/21/2012 **TYPE** Split Spoon DATE TIME **LEVEL TYPE DATE FINISHED:** 3/23/2012 DIA. DRILLER: Mike Meade 140 lb WT Mira A., Andreas P. 24" **GEOLOGIST: FALL** Tim Burmeier **REVIEWED BY: SAMPLE** REC% DEPTH VISUAL **MATERIAL** STRATA COLOR PID **REMARKS** "S" **BLOW** "N" IMPACTS **DESCRIPTION** FEET RQD% COUNT NO. NO. Boring hand cleared to 5 ft Asphalt bgs FILL: sand, silt and gravel Black CT-like odor, SILT (ML), some very fine sand and mica, 58.4 slight sheen 1 16 7, 8, 8, 10 42 medium dense Moderate 222 staining, moist to wet 80 trace clay 2 12 83 4, 4, 8, 6 315 Moist loose Light NAPL 220 coating, CT 2, 4, 4, 8 83 -10 3 8 Green odor 338 Wet. Moderate Very fine to fine SAND (SM), some silt, 65.6 CT-like odor, 14 4, 7, 7, 10 75 medium dense slight sheen 51.6 Brown 390 Heavy staining 5 18 11, 8, 10, 7 54 794 -15 Heavy staining, 500 CT-like odor, some mica 6 21 4, 7, 14, 19 42 slight sheen 196 Faint CT-like 11.7 Fine to medium SAND (SM), some silt, very odor, slight 7 60 18, 24, 36, 24 25 sheen 38.3 Sandy SILT (ML), some fine to medium sand, 110 22, 20, 10, 17 42 -20 8 30 trace fine gravel, medium dense 28.7 111 Clayey SILT (ML), trace fine gravel and mica, Faint CT-like 9 29 8, 14, 15, 20 58 odor medium dense 36.8 Fine SAND (SM), some silt, trace medium 3.8 10 47 13, 24, 23, 24 50 sand, fine gravel and mica, dense -25 COMMENTS: Boring advanced using a Cantera CT-450 drill rig. CT = Coal Tar

NAPL = Non-Aqueous Phase Liquid

BORING NO.: WW-SB-103

URS Corporation **TEST BORING LOG** BORING NO.: WW-SB-103 National Grid - Williamsburg PROJECT/PROJECT LOCATION: SHEET: 2 OF 3 JOB NO.: 11176638.00001 National Grid PEC% SAMPLE

DEPTH		VISUAL		SAN	MPLE	REC%		MATERIAL		
FEET	STRATA	IMPACTS	"S" NO.	"N" NO.	BLOW COUNT	RQD%	COLOR	DESCRIPTION	PID	REMARKS
				I				No Recovery		
-			11	85	19, 35, 50/4, -	0		No Necovery		
	<u> </u>		12	100	100/1, -, -, -	4	Gray	SILT (ML), some clay, trace fine sand, mica and wood, very dense		No odor, dry
-									33.1	
-30 —			13	100	100/5, -, -, -	21			44.2	
-			14	50	50/4, -, -, -	8		Silty SAND (SM), some silt, trace clay, very dense	46 3.0	
-	'						Brown	Fine to medium SAND (SW), some silt, very	123	CT-like odor,
			15	50	42, 50/3, -, -	21		dense	36.9	slight sheen
-35 —			16	50	50/4, -, -, -	0		No Recovery		
_			17	58	32, 24, 34, 38	75		Fine to medium SAND (SW), trace silt and mica, very dense	32.6	CT-like odor, slight sheen
								1" clay lens	10	CT-like odor,
-40 —			18	36	21, 18, 18, 29	54		dense	543 840	light staining
									53.1	
			19	50	31, 50/3, -, -	46		some silt, very dense	28.7	
					04 40 40 00			dense	38.5	No odor
-45 —			20	38	21, 19, 19, 26	33			45.7	
-45			21	37	18, 19, 18, 21	100		Fine SAND (SP), trace silt and mica, dense	1.9	CT-like odor, wet
					-, -, -,				1.3	
-			22	25	19, 18, 17, 20	100			28	
								medium dense	3.2	Slight sheen,
-50 —			23	30	9, 15, 15, 21	100			3.1	blebs
				2.5	45 45 45 5	425		Fine to coarse SAND (SW), trace silt, dense	0.6	CT-like odor, slight sheen
			24	36	15, 18, 18, 20	100			0.5	<u> </u>
			25	57	32, 28, 29, 36	100		Fine SAND (SP), trace silt, clay and mica, very dense	9.2	Moderate CT-
-55 —					, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			Fine SAND and SILT (SM), trace mica, very	2.3	like odor
	• • • •		26	52	31, 24, 28, 36	100		dense	3.5	Dry

COMMENTS: Boring advanced using a Cantera CT-450 drill rig.

CT = Coal Tar

CLIENT:

NAPL = Non-Aqueous Phase Liquid

BORING NO.: WW-SB-103

TEST BORING LOG Corporation WW-SB-103 **BORING NO.:** PROJECT/PROJECT LOCATION: National Grid - Williamsburg SHEET: 3 OF 3 CLIENT: National Grid JOB NO.: 11176638.00001 **SAMPLE** REC% DEPTH VISUAL **MATERIAL STRATA** COLOR PID **REMARKS** "S" "N" **BLOW FEET** IMPACTS DESCRIPTION RQD% NO. COUNT NO. 8.6 Fine to medium SAND (SW), trace silt and mica, very dense 15.3 27 50 31, 25, 25, 29 100 SILT (ML), some clay, trace fine to coarse 11 7 sand and mica, dense 57.1 28 49 15, 18, 31, 36 100 -60 Fine to medium SAND (SW), trace silt, dense 45.1 Faint CT-like 1.8 CLAY (CL), plastic, very stiff odor 29 28 15, 16, 12, 19 75 0.6 SILT (ML), some fine sand, trace mica, medium dense 0.5 30 44 19, 21, 23, 25 100 CLAY (CL), some fine sand, hard 18 -65 Fine to medium SAND (SW), trace silt, dense Faint CT-like 4.5 odor 100 31 63 36, 31, 32, 28 CLAY and SILT (CL/ML), trace fine to medium 39 sand and mica, hard 4.1 32 36, 42, 24, 28 Fine to coarse SAND (SW), some silt, trace 66 100 mica, very dense 3.6 5.9 -70 33 54 18, 23, 31, 29 100 3.3 3" clay layer Faint CT-like 0.5 CLAY (CL), very stiff odor 34 28 19, 13, 15, 19 100 8.0 Fine to medium SAND and CLAY (SC), some silt, trace mica, medium dense 0.5 35 53 31, 25, 28, 32 75 CLAY (CL), some silt, medium to high 0.2 plasticity, hard Collected Shelby Tube from 75 to 77 ft Fine to medium SAND (SW), some silt, trace SH1 50 -. -. -. mica, very dense bgs Faint CT-like Brown to Lt CLAY (CL), medium to high plasticity, hard 0.3 Gray odor 36 35 12, 14, 21, 14 83 0.1 0.3 37 21, 18, 26, 24 100 -80 44 0.1 End of boring at 81 ft bgs. -85 COMMENTS: Boring advanced using a Cantera CT-450 drill rig. CT = Coal Tar NAPL = Non-Aqueous Phase Liquid WW-SB-103 **BORING NO.:**

			T	Т	•						TEST BOF	RING LO	OG
			U		Corp	oora	tion				BORING NO.: WW-SB-104		
PROJ	ECT/PROJE	CT LOC	ATION	l:	National Gri	d - Willia	amsburg				SHEET: 1 OF 3		
CLIEN	T:				National Gri	d					JOB NO. : 11176638.00001		
BORIN	IG CONTRA	ACTOR:			Fenley & Nic	col					NORTHING: 688760.5699 E	ASTING: 6	641992.0355
GROU	NDWATER	: 7'				CAS.	SAMPLE	R CO	DRE	TUBE	GROUND ELEVATION: 10.6	57	
DATE	TIME	LEVE	EL	TYPE	TYPE		Split Spoo	n			DATE STARTED: 3/19	/2012	
					DIA.		2"				DATE FINISHED: 3/19	/2012	
					WT.		300 lb				DRILLER: Mike	Meade	
					FALL		24"				GEOLOGIST: Meg	an Dascoli	
											REVIEWED BY: Tim	Burmeier	
DEDTU		VIOLIAL		SAI	MPLE	RE	3%				MATERIAL		
DEPTH FEET	STRATA	VISUAL	"S"	"N"	BLOW		COL	OR			MATERIAL DESCRIPTION	PID	REMARKS
			NO.	NO.	COUNT	RQ	D%						
0									Concr	rete			Boring hand cleared to 5 ft
+							Dk Br			cand c	ilt and gravel	1	bgs
+									trace	glass ar	nd brick at 2'		_
4									concre	ete and	cobbles from 2 to 4'		
4													
-5-												0.0	
			1		2, 2, 2, 2	10	Med B	rown					
]			'		2, 2, 2, 2	'	,0						
1									trace	wood		0.0	Wet
+			2		1, 1, 1, 1	9:	2					0.0	_
+	<u> </u>						Lt Bro		SII T /	(MI) sc	ome very fine sand and clay	3.7	Faint CT-like
-10 —			3		1, 4, 2, 1	5	o with C	Gray	SILT ((IVIL), SC	one very line sand and day		odor
4												3.7	
4			4		11, 14, 6, 3	0 8	3 Med B		some	wood		8.2	
							ivieu b	· -			ID (0D)	10.8	
			5		1, 6, 4, 2	1:	,			ine SAN e sand	ND (SP), some silt, trace very	8.1	
7			5		1, 0, 4, 2	'	Bla	ck	some	red and	d gray fine gravel		Anaerobic odor
-15 —							Med B	rown	Very f	fine to m	nedium SAND (SW), some silt,	8.6	Faint CT-like odor
+			6		1, 5, 4, 5	3:	3				arse sand	207	Light NAPL
+							-		C;l+···	on, fin -	to fine SAND (SM) trace fine	74.3	coating, strong CT-like odor,
4			7		2, 2, 6, 10	4:	2		gravel		to fine SAND (SM), trace fine		strong sheen Faint CT-like
4	<u>:::::::::::::::::::::::::::::::::::::</u>								\/on/f	fina SAN	ND (SP), some silt	24.1	odor 100% NAPL
-20 —			8		2, 2, 2, 2	8	В					178	saturation
					, , =, =				Silty C	CLAY (C	CL) with mica		
7			_		4.6.5							387	
1			9		4, 6, 8, 11	5	0					20.4	
1									Very f	fine SAN	ND (SP), some silt and mica	6.9	Moderate CT- like odor
+	· — · —		10		4, 8, 9, 13	5	Orang		SILT ((ML) wit	th mica, some very fine sand	119	1
-25 —	······································			<u> </u>			Dk Br	own		, ,	, ,	-\	Strong CT-like
COM	IMENTS: Bo	oring adva	anced	using a (Cantera CT-4	150 drill	rig.						
	Coal Tar												
NAP	L = Non-Aq	ueous Ph	ase Li	quid									
		-		_									

BORING NO.:

WW-SB-104

URS corporation

TEST BORING LOG

BORING NO.: WW-SB-104

PROJECT/PROJECT LOCATION: National Grid - Williamsburg

SHEET: 2 OF 3

CLIENT: National Grid

JOB NO.: 11176638.00001

DEPTH		VISUAL		SAI	MPLE .	REC%		MATERIAL		
FEET	STRATA	IMPACTS	"S" NO.	"N" NO.	BLOW COUNT	RQD%	COLOR	DESCRIPTION	PID	REMARKS
			44		5 0 40 04		Med Brown	Very fine SAND (SP), some silt and mica	215	odor, slight sheen
1			11		5, 8, 12, 24	63			66.7	Slight sheen
			12		4, 6, 8, 9	63	Dk Brown	Very fine sandy SILT (ML) with mica, trace	244	Moderate CT- like odor
			12		4, 0, 0, 9	03		gravel	34.8	
-30 —			13		5, 6, 15, 14	54			50.3	
_					2, 2, 12, 11		Ded		37.7	
_			14		4, 8, 12, 18	71	Red Brick Red		17.3	
1	<u> </u>						Dk Brown		13.3	50% NAPL
-			15		1, 3, 4, 1	100	DK BIOWII	Very fine to fine SAND (SP)	1594	saturation, strong CT-like
-35 —								trace silt with mica	940	odor Strong sheen
-			16		4, 8, 13, 15	100			889	Carong chech
-									4119	
-			17		7, 10, 13, 14	100			663	Light NAPL
-								some silt	1037	coating Moderate CT-
-40 —			18		25, 56, 12, 15	58			836	like odor
-							Med Brown	Very fine SAND (SP), some silt	183	Heavy NAPL
-			19		12, 12, 12, 15	75		SILT (ML), some clay and mica	235	coating
-								Very fine SAND (SP), some silt and mica	2.7	Moderate CT- like odor
-			20		24, 54/2, -, -	25		very line SAND (SE), Some silt and filea	13.6	like odol
-45 —									20.3	Very faint CT- like odor
			21		10, 14, 14, 15	42		1" silt lens with mica at 46.5'	3.7	iiiko odoi
			00		400/0	40	Dk Brown	Very fine to fine SAND (SP), some silt	7.4	No odor
			22		100/3, -, -, -	13				
50			23		25, 18, 20, 14	100	Med Brown	trace medium to coarse sand	111	Faint CT-like odor, slight
-50 —			۷.		20, 10, 20, 14	100			72.8	sheen
			24		9, 12, 12, 11	100			81.7	
					O, 12, 12, 11				306	
			25		3, 4, 3, 5	96			167	Moderate CT- like odor, slight sheen
-55 —					-, , -, -				167	sneen
			26		13, 15, 11, 14	100		3-1" clay lenses from 56 to 56.5'	276	

COMMENTS: Boring advanced using a Cantera CT-450 drill rig.

CT = Coal Tar

NAPL = Non-Aqueous Phase Liquid

BORING NO.: WW-SB-104

TEST BORING LOG Corporation WW-SB-104 BORING NO.: National Grid - Williamsburg PROJECT/PROJECT LOCATION: OF 3 SHEET: 3 **CLIENT:** National Grid JOB NO.: 11176638.00001 SAMPLE REC% **DEPTH VISUAL MATERIAL** COLOR **REMARKS STRATA** "S" "N" **BLOW** PID IMPACTS DESCRIPTION **FEET** RQD% COUNT NO. NO. Very fine SAND (SP) 39.5 Very faint CT-like odor 5.0 Very fine SAND (SP), some silt with mica, 27 10, 6, 8, 11 50 trace medium to coarse sand 5.0 Dk Brown 4-~1" clay lenses interspersed throughout 2.8 -60 28 4, 4, 4, 8 42 2.2 Very fine to fine SAND (SP) with mica 0.0 No odor 29 5, 6, 8, 11 75 CLAY (CL) Red 0.0 End of boring at 63 ft bgs. -65 -70 -75 -80 -85 COMMENTS: Boring advanced using a Cantera CT-450 drill rig. CT = Coal TarNAPL = Non-Aqueous Phase Liquid **BORING NO.:** WW-SB-104

			TI	R9	Cor	nora	+i-					IESI BUR	ING L	JG
												BORING NO. : WW-SB-105		
	CT/PROJE	ECT LOC	ATION		National G		iams	burg				SHEET: 1 OF 2		
CLIENT					National G							JOB NO.: 11176638.00001		
	G CONTRA				Fenley & N		T -							641868.1283
	IDWATER	1			1	CAS.	+	AMPLER	COR	RE TU	JBE	GROUND ELEVATION: 10.25		
DATE	TIME	LEVE	iL	TYPE	TYPE		Sp	olit Spoon				DATE STARTED: 3/14/2		
					DIA.			2"				DATE FINISHED: 3/16/2	Meade	
		+			WT.			300 lb					n Dascoli	
		+			FALL			24					Burmeier	
								 	$\overline{}$			REVIEWED BY: Tim B	T	1
DEPTH	STRATA	VISUAL	"S"	1	IPLE	RE	C%	COLOR				MATERIAL	PID	REMARKS
FEET	SIRAIA	IMPACTS	NO.	"N" NO.	BLOW COUNT	RC	QD%	COLOR				DESCRIPTION	""	REWARKS
								<u> </u>					<u></u>	
0-	******	1 1		1				1	T _				T	Boring hand
4								Med Brown	- \ c	Concrete	9		0.0	cleared to 5 ft bgs
									\ F	FILL: sa	nd, si	ilt, gravel and asphalt, some brick	0.0	
									\ F	FILL: an	gular	gravel (road base)	0.0	
	>>>>>								F	FILL: sa	nd, si	ilt, gravel and brick, concrete	0.0	
1									С	cobbles	at 2.5	5'	0.0]
-5								Red	F	FILL: bri	ck an	nd cobbles, some silt and sand	0.0	Moist, petroleum and
-			1		1, 1, 2, 5	5	1	Black	\dashv _				0.0	CT-like odor
-								Red	-∦ F	FILL: bri	ck, tr	ace sand and silt	0.0	Wet
-			2		5, 7, 5, 6	5 5	50	Black	F	FILL: silt	and	wood, some sand and gravel	452	Strong petroleum and
-									-				432	CT-like odor Drilled to 13 ft
-10 —			3		50/0, -, -,	-	0			COBBLE	ES (G	eW)		bgs to get past cobbles
-		-												
			4		-, -, -, -									
		_												
			5		2, 2, 1, 1		0							
			3		2, 2, 1, 1		U							
-15 —								Dk Gray			to fi	ine SAND (SP), some silt, trace	9.5	Faint CT-like odor
1			6		2, 3, 2, 2	2 5	54	Med Brown	າ g	gravel			10.9	50% NAPL saturation
-									V	Verv fine	SAN	ND (SP), some silt, trace fine	0.0	No odor
+			7		6, 10, 12,	6 4	46			gravel		(= /, ==,	0.0	-
-		-											0.0	_
-20 —			8		1, 5, 5, 6	5 5	54							_
-		-						<u> </u>					0.0	_
_			9		2, 4, 90/4,	, -	0							
		_												
			10		16, 12, 6,	6	0							
_			10		10, 12, 0,	٦	U							
-25 ─				+									+	4
	_	oring adva	anced (using a (Cantera CT-	450 dril	ı rig.							
	Coal Tar . = Non-Aq	HAOHE DA	200 I i	auid										
IN/AFL	. – HUHTAY	uuuus FII	uot LI	quiu										

BORING NO.:

WW-SB-105

URS Corporation

TEST BORING LOG

BORING NO.: WW-SB-105

PROJECT/PROJECT LOCATION: National Grid - Williamsburg

SHEET: 2 OF 2

CLIENT: National Grid

JOB NO.: 11176638.00001

DEDTU		VISUAL		SAI	/IPLE	REC%		MATEDIAL		
DEPTH FEET	STRATA	IMPACTS	"S" NO.	"N" NO.	BLOW COUNT	RQD%	COLOR	MATERIAL DESCRIPTION	PID	REMARKS
I	· — · —			Ī		l	Dk Brown	Clayou CILT (MI) trace fine group was fine to	0.0	Faint CT-like
-			11		3, 6, 9, 9	38		Clayey SILT (ML), trace fine gravel, very fine to coarse sand and mica	0.0	odor
-	· · · · · · · · · · · · · · · · · · ·		12		4, 8, 9, 9	0				
-							Dk Gray to	some fine to medium subangular gravel	0.0	No odor
0 —			13		6, 7, 7, 9	50	Brown	g g	0.0	
+									0.0	
+			14		6, 9, 9, 13	25			0.0	
1	· - · -						Dk Gray	SILT (ML), some clay and mica, trace fine	6.6	Moderate naphthalene
_			15		3, 6, 6, 13	42		subangular gravel	0.0	odor
5 —			16		6, 100/1, -, -	8		COBBLES (GW), some very fine sand and silt	66.1	Naphthalen and CT-like odor, blebs
1			17		9, 11, 13, 15	58	Med Gray	Very fine to fine SAND (SP), trace silt	148	Strong CT-li odor, strong
					-, , -, -				128	sheen, bleb
0 —	• • • •		18		8, 9, 9, 10	63			338	
4								Fine to medium SAND (SW), trace coarse sand and silt	90.6 555	Strong CT-lil
-			19		6, 7, 7, 9	75		Very fine SAND (SP), some silt	158	odor, sligh sheen
1	· — · — · —						Med Brown	SILT (ML), some mica	55.3	Faint CT-lik odor
_	<u>: </u>		20		6, 4, 7, 8	42		some black staining	59.6	
5 —			21		8, 8, 12, 12	46	Med Brown to Gray	CLAY (CL), some silt	24.5	No odor
_							Med Gray		51.6	Moderate C
-			22		12, 3, 4, 8	63	Wed Oray		14.1	like odor
+									12.1	
0 —			23		10, 11, 23, 28	71		Very fine to fine SAND (SP), some mica, trace	55.6	
1			24		8, 11, 13, 16	67		medium to coarse sand and silt	36.5	
			24		0, 11, 13, 10	07		Very fine to medium SAND (SW), trace coarse sand, silt and mica	65	Strong CT-lil odor
			25		5, 7, 7, 7	63		CLAY (CL)	16.7	100% NAPI saturation, strong CT-lik
5 —									12.8	odor
								End of boring at 55 ft bgs.		

COMMENTS: Boring advanced using a Cantera CT-450 drill rig.

CT = Coal Tar

NAPL = Non-Aqueous Phase Liquid

BORING NO.: WW-SB-105

			TI	Ф	Cor							TEST BC	RING L	OG
			U									BORING NO.: WW-SB-106		
PROJE	CT/PROJE	CT LOC	ATION	l :	National Gr		Williams	burg				SHEET: 1 OF 3		
CLIENT	Γ:				National Gr	rid						JOB NO.: 11176638.00001		
BORIN	G CONTRA	ACTOR:			Fenley & N	icol						NORTHING: 688924.5794		641859.7369
GROU	NDWATER	: 11'				CA	s. s	AMPLER	CC	DRE	TUBE	GROUND ELEVATION: 9.		
DATE	TIME	LEVE	L	TYPE	TYPE		Sp	olit Spoon				_	2/2012	
					DIA.			2"					5/2012	
					WT.			140, 300					ke Meade	
					FALL			24"					egan Dascol	
												REVIEWED BY: Tir	n Burmeier	
DEPTH		VISUAL		SAI	MPLE		REC%					MATERIAL		
FEET	STRATA	IMPACTS	"S" NO.	"N" NO.	BLOW COUNT		RQD%	COLOR	2			DESCRIPTION	PID	REMARKS
0								Med Brov		Cond	crete		0.0	Boring hand cleared to 5 ft
-								Med Brov	- 1			silt group and brink	0.0	bgs
-									\			silt, gravel and brick	0.0	+
4										FILL	: gravel,	some silt, sand and brick		4
_													0.0	Moist
-5													0.0	
			1	14	4, 7, 7, 9	,	8					nd silt, some gravel, brick and	1.2	Wet
			'	14	4, 7, 7, 3	'	0			CODD	oles, med	dium dense		
1	\bowtie									very	dense		24.1	
-			2	79	14, 45, 34,	42	25						29.5	1
+								Black					14.6	Black stained Faint burnt
-10 —		· · ·	3	51	19, 24, 27,	28	38	Med Gra	ay	OU T	· (A 41)	d		petroleum odor, moist
4								to Brow	n	SILI	(IVIL), VE	ery dense	21.9	Faint gasoline odor Wet, no odor
4			4	48	15, 22, 26,	24	25						10.3	_
	<u> </u>								1	COB	BLES (G	GW), loose	\neg	
	出事出事的		5	9	3, 5, 4, 2	,	42	Med Brov	wn	Silty	SAND (S	SM), loose	18.2	Faint old diesel odor
	<u> </u>		3		3, 3, 4, 2	•	42		-				26.3	Faint old diesel
-15 —								Dk Gray	у	Silty	CLAY (C	CL), soft, plastic	26.0	odor, black staining
-			6	3	2, 2, 1, 3	3	58						28.5	
-	T. T. T. T.							Med Gra	ay	Verv	fine to fi	ine Silty SAND (SM), trace fine	1.6	Very faint odor
+	#=#=		7	28	4, 11, 17,	18	42	to Brow	n			gravel, medium dense		+
4									/	COB	BLES (G	GW), very dense	0.9	4
-20 —			8	130	29, 58, 72,	68	29				•	ND (SP), some silt, very dense	1.0	No odor
	_ · _ · _												0.1	
			9	50	99 20 20	20	0		\			ace clay, fine subrounded gravel ry dense	1	
1			9	50	88, 30, 20,	20	U		- 1				_	
1								1		INO P	Recovery	1		1
-			10	130	21, 26, 104	-,	0							+
-25 —				 				1	V	COB	BLES (G	GW), some silt and very fine sand	1, \	_
СОМ	MENTS: Bo	ring adva	anced	using a (Cantera CT-	450	drill rig.							
CT =	Coal Tar													
NAPI	= Non-Agi	ieous Ph	ase Li	auid										

BORING NO.:

WW-SB-106

TEST BORING LOG Corporation WW-SB-106 **BORING NO.:** PROJECT/PROJECT LOCATION: National Grid - Williamsburg OF SHEET: 2 3 CLIENT: National Grid JOB NO.: 11176638.00001 **SAMPLE** REC% DEPTH VISUAL **MATERIAL** COLOR REMARKS **STRATA** PID "S" "N" **BLOW FEET** IMPACTS **DESCRIPTION** RQD% COUNT NO. NO. very dense 0.0 11 60 32, 31, 29, 41 50 0.0 SILT (ML), some very fine sand, very dense Med Gray 0.0 trace clay, very fine sand, fine to coarse 12 34, 30, 36, 46 60 66 subangular gravel and mica, very dense 0.0 cobbles 0.0 13 97 36, 52, 45, 46 -30 0.0 cobbles 0.0 14 104 27, 34, 70, 67 8 0.0 Dk Gray 0.0 SILT (ML), trace very fine to medium sand and 15 132 61, 80, 52, 64 79 gravel, very dense 0.0 -35 0.0 68, 82, 77, 81 17 16 159 0.0 Dk Brown 18.2 CT-like odor Very fine to fine SAND (SP), trace silt and 17 59. 19. 7. 7 46 26 mica, medium dense 22 5 Moderate CT-40.7 like odor, slight some silt and subangular gravel, very dense 71 -40 18 32, 26, 45, 70 sheen 22.6 31.9 19 175 48, 78, 97, --75 51.2 medium dense Switched to 25.1 300lb hammer SILT (ML), trace very fine sand 20 9, 12, 15, 19 50 1/2" mica layer 70.9 Organic odor -45 Very fine SAND (SP), some silt and mica, trace 5.4 21 46, 28, 42, 19 8 fine subrounded gravel Used 140lb hammer 47-48 126 ft bgs 22 33, 70, 12, 15 70 Heavy NAPL 223 coating 100% NAPL 258 saturation 23 15, 16, 23, 26 75 -50 **75% NAPL** 231 saturation 100% NAPL 498 saturation 24 35, 26, 33, 28 75 Sandy SILT (ML) 470 Heavy NAPL coating Very fine to fine SAND (SP), some silt 113 25 4, 9, 12, 18 100 182 Moderate CT--55 SILT (ML) like odor, slight 74.5 some very fine sand sheen 10, 16, 18, 18

COMMENTS: Boring advanced using a Cantera CT-450 drill rig.

CT = Coal Tar

NAPL = Non-Aqueous Phase Liquid

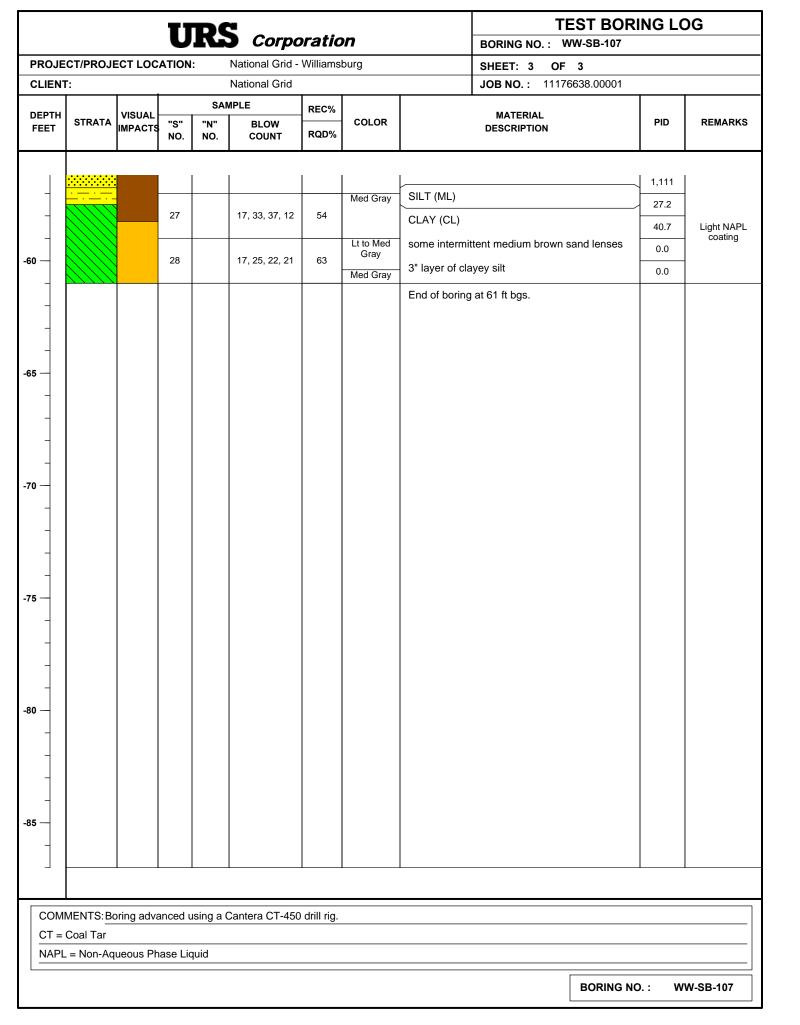
BORING NO.: WW-SB-106

			77	D¢	•		TE	ST BORI	NG LC)G			
			U	7/2	Corp	oratio	on		BORING NO.: W	/W-SB-106			
PROJE	CT/PROJE	CT LOC	ATION		National Grid	- Williams	burg		SHEET: 3 OF				
CLIENT	:				National Grid				JOB NO.: 11176	6638.00001			
DEPTH		VISUAL			/IPLE	REC%			MATERIAL]		
FEET	STRATA	IMPACTS	"S" NO.	"N" NO.	BLOW COUNT	RQD%	COLOR		DESCRIPTION		PID	REMARKS	
						<u> </u>	<u> </u>	<u> </u>					
ı	_ · _ · -		ı			ĺ	L	Y CLAY (CL)		V	60.6		
+							Dk Gray Med Brown	CLAY (CL)	ID (OD)		32	Faint CT-like	
+			27		4, 5, 12, 8	50	Med Gray		ND (SP), some silt		20.8	odor	
							Wed Gray	CLAY (CL)			20.0		
-60 —								End of boring	at 59 ft bgs.				
-													
1													
_													
-65 —													
]]													
11													
1													
-70 —													
-													
+ 1													
-													
-													
75 —													
-													
1 1													
-80 —													
-													
-													
-													
-													
.85 —													
0.5	45.75		_			0 1							
		ring adva	anced u	ising a C	Cantera CT-45	0 drill rig.							
	Coal Tar	uoous Ph	ace Lie	uid									
INAPL	= Non-Aqı	ueous PN	iase LIC	luiu									
										BORING NO	.: W	W-SB-106	

Т

URS Corporation												BORING NO.: WW-SB-107	ING LO	JG
PROJE	CT/PROJE	CT LOC			National G							SHEET: 1 OF 3		
CLIENT					National G			<u> </u>				JOB NO.: 11176638.00001		
	G CONTRA	ACTOR:			Fenley & N								ASTING: 6	641833.7093
	NDWATER				reniey & N	CAS		AMPLER	_	ORE	TUBE	GROUND ELEVATION: 10.0		711000.7000
		1	.	TVDE	TVDE	CAS	_	olit Spoon	_	OKL	TOBE	DATE STARTED: 3/5/2		
DATE	TIME	LEVE	-	TYPE	DIA.		- 4	2"				DATE FINISHED: 3/6/2		
					WT.			140, 300					Meade	
					FALL			24"				5111222111	an Dascoli	
					FALL			2.7					Burmeier	
												REVIEWED DT.	T	
DEPTH	STRATA	VISUAL	"S"	SAN	IPLE BLOW		REC%	COLOR	,			MATERIAL	PID	REMARKS
FEET		IMPACTS	NO.	NO.	COUNT	· ı	RQD%					DESCRIPTION		
								<u> </u>						l .
0-	 	1 1						1						Boring hand
4								Med Gra	ay	Con	crete		0.0	cleared to 5 ft
										FILL	.: sand, si	ilt and gravel, some brick	0.0	Moist
	>>>>							Med Brov	νn				0.0	Wet
													0.0	
1 1													0.0	-
-5 —		}						-		loos	е			Dry
+ 1	>>>>>	1	1	10	3, 5, 5, 6	3	4							
4 1								Black		very	dense			Wet, slight
4 1			2	85	8, 19, 66,	68	29						0.2	sheen, faint petroleum odor
]
-10 —			3		18, 10, 4,	,	46	Lt Gray	<i>'</i>				11.2	Petroleum and CT-like odor
-10			3		10, 10, 4,	"	40						20.6	Used 300lb hammer from 9
7 1										No F	Recovery			to 13'
1 1			4		1, 1, 1, 1		0							-
+ 1	:							Med Brov	νn	Clav	ev SILT ((ML), trace fine sand and gravel,	6.3	
+ 1			5	7	3, 2, 5, 3	3	71	to Gray	/	loos		(ME), trade into daria aria graver,	12.3	
-15 —								Med Gra	av	\/a=	. C C	no CAND (CD) come cité trace	+	Petroleum and CT-like odor,
4 1			6	21	6, 9, 12, 1	2	46				r fine to fil ls, mediu	ne SAND (SP), some silt, trace m dense	6.5	slight sheen
	<u> </u>									Clav	ev SILT ((ML), trace sand and fine gravel,	2.3	
			7	46	12, 18, 28,	32	50	Med Brov	wn		dense	,,	223	Moderate CT- like odor
	<u> </u>		•	40	12, 10, 20,	<i>-</i>	50	Lt Gray	,			ne Sandy SILT (ML), trace gravel,	7.7	
1	-7-7-7							Med Brov		den	se		13.1	Faint CT-like odor, slight
-20 —			8	19	8, 19, -,	-	42					(ML), some very fine to fine sand,		sheen
+ 1								_		dens	se 		30.7	
4			9	88	150, 50, 38	, 27	50			Very	fine to m	ned Sandy CLAY (CL), trace med nded gravel, med plasticity, hard	/	_
4 1										L			41.7	
			10	34	19, 20, 14,	17	42					ne SAND (SP), some clay and subangular gravel, very dense	24.6	
-25 —	-\-\-\				-,,,							ne Sandy CLAY (CL), hard	13.1	Faint CT-like
-25 —								•	'	. ,		-		
		oring adva	anced	using a C	Cantera CT-	-450 d	rill rig.							
<u> </u>	Coal Tar = Non-Ag	HOOMS DI	.000 1 '	aui d										
INAPI	= NOD-AO	ueous Ph	iase i i	CILICI										l l

BORING NO.:


WW-SB-107

TEST BORING LOG Corporation WW-SB-107 **BORING NO.:** PROJECT/PROJECT LOCATION: National Grid - Williamsburg SHEET: 2 OF 3 CLIENT: National Grid JOB NO.: 11176638.00001 **SAMPLE** REC% DEPTH VISUAL **MATERIAL STRATA** COLOR PID REMARKS "S" "N" **BLOW FEET** IMPACTS DESCRIPTION RQD% NO. COUNT NO. odor 10.2 11 53 6, 22, 31, 100/3 Med Gray Switched to CLAY (CL), some coarse subangular gravel 1.4 300lb hammer 12 28 15 18 12 13 Very fine to coarse SAND (SW), some silt and coarse gravel No odor 13 6, 8, 21, 14 -30 Clayey SAND (SC), some silt No Recovery 14 9, 10, 13, 15 0 2.5 Clayey SAND (SC), some silt 15 19, 13, 14, 8 13 -35 Dk Gray Dry SILT (ML), some very fine to medium sand, 0.0 trace clay and fine gravel 5, 13, 16, 22 42 16 cobble at 36' 0.0 Moist Sandy SILT and COBBLES (ML/GW), trace 0.0 7, 100/1, -, -17 25 fine gravel 0.0 Dk Brown 0.0 Very fine to fine SAND (SP), some silt 18 25, 22, 18, 18 -40 Med Brown Faint CT-like Very fine to medium SAND (SW), trace silt and 4.3 odor 19 11, 17, 1, 1 100 very fine to medium gravel 4.9 7.2 20 8, 12, 14, 25 50 Wet Very fine SAND and SILT (SP/ML) 5.2 -45 15.7 Very fine to fine SAND (SP), trace silt 21 3, 7, 13, 14 42 Light NAPL 70.8 coating, moderate CT-46.1 like odor 22 7, 10, 14, 17 67 Heavy NAPL 72 coating, strong CT-like odor 71.2 100% NAPL 23 15, 26, 48, 92 -50 saturation 100/5 30.1 SILT (ML) 449 some very fine sand 24 4, 6, 26, 53 100 100% NAPL 2,285 saturation Strong CT-like 2,485 Very fine to medium SAND (SW), trace silt odor 25 25, 22, 33, 37 96 1,295 -55 100% NAPL Very fine to fine SAND (SP), trace coarse sand 1,663 saturation 26 11, 17, 33, 51 and fine gravel COMMENTS: Boring advanced using a Cantera CT-450 drill rig.

CT = Coal Tar

NAPL = Non-Aqueous Phase Liquid

BORING NO.: WW-SB-107

TEST BORING LOG Corporation WW-SB-108 **BORING NO.:** PROJECT/PROJECT LOCATION: National Grid - Williamsburg SHEET: 1 OF 3 CLIENT: National Grid JOB NO.: 11176638.00001 NORTHING: 688839.0799 **EASTING:** 641797.2341 **BORING CONTRACTOR:** Fenley & Nicol 10.19 **GROUNDWATER:** 5' SAMPLER CORE TUBE **GROUND ELEVATION:** 3/7/2012 **DATE STARTED:** DATE TIME LEVEL **TYPE** Split Spoon **TYPE DATE FINISHED:** 3/29/2012 DIA. DRILLER: Mike Meade WT 140, 300 Megan D., Andreas P. 24" **GEOLOGIST: FALL** Tim Burmeier **REVIEWED BY: SAMPLE** REC% VISUAL DEPTH **MATERIAL** STRATA COLOR PID REMARKS "S" **BLOW** "N" IMPACTS **DESCRIPTION** FEET RQD% NO. COUNT Boring hand cleared to 5 ft Concrete bgs FILL: gravel, asphalt, concrete and cinders Dry FILL: brick Red Wet FILL: brick, concrete and cobbles, some sand, 0.2 1 100 57, 100/2, -, -38 silt, gravel and asphalt, very dense Switched to 15.8 300lb hammer, 2 28, 50/5, -, -25 50 gasoline odor Drilled through concrete to 11 -10 ft bgs Dk Gray 0.0 Clayey SILT (ML), trace brick 3 4 5, 2, 2, 1 42 0.3 cobble 0.1 some fine to medium angular gravel, trace very 4 2 1, 1, 1, 2 38 fine sand 0.1 Faint gasoline and CT-like Black 1.3 Very fine SAND (SP), some silt 5 2 1, 1, 1, 1 29 odors 1.9 0.1 trace clay Med Gray 12 1, 5, 7, 7 83 6 0.4 Very fine to fine SAND (SP), some silt Faint CT-like trace fine gravel and clay 0.6 odor 4 54 -20 7 1, 2, 2, 3 SILT (ML), some very fine sand, trace medium 1.3 to coarse sand 4, 4, 5, 8 No Recovery. cobble in shoe 9 27 Very fine to medium SAND and SILT (SW/ML), 9 6 1, 3, 3, 28 38 trace coarse sand and fine gravel 0.6 -25 COMMENTS: Boring advanced using a Cantera CT-450 drill rig. CT = Coal Tar NAPL = Non-Aqueous Phase Liquid

WW-SB-108

BORING NO.:

TEST BORING LOG Corporation WW-SB-108 **BORING NO.:** PROJECT/PROJECT LOCATION: National Grid - Williamsburg OF SHEET: 2 3 **CLIENT:** National Grid JOB NO.: 11176638.00001 **SAMPLE** REC% DEPTH VISUAL MATERIAL **STRATA** COLOR PID **REMARKS** "S" "N" **BLOW FEET** IMPACTS DESCRIPTION RQD% NO. COUNT NO. COBBLES (GW), some very fine sand, trace 1.7 28, 21, 14, 16 10 35 38 11.1 No Recovery 27 28, 14, 13, 10 O 11 COBBLES (GW) Med Gray 12 22 16, 12, 10, 11 42 -30 SILT (ML), some very fine to medium sand, to Brown 0.0 trace clay and coarse gravel Moist 0.0 13 20 16, 10, 10, 11 25 0.0 1.8 14 25 9, 12, 13, 19 8 0.0 -35 cobble in shoe 0.0 8, 7, 57, 50/6 15 64 4 0.0 Dk Gray some very fine to medium sand, trace fine to 0.2 1, 12, 17, 16 29 67 coarse gravel 100/1 0.4 Brown Faint CT-like Fine to coarse SAND and SILT (SW/ML), 0.0 odor, light 17 76 15, 34, 42, 62 -40 some clay and gravel, trace mica coating 0.0 63 18 116 34, 46, 70/6, -Moderate CT-100 0.0 Fine to coarse SAND (SW), some silt and mica like odor 15, 32, 63, 35 19 95 -45 100 0.0 20 40 15, 18, 32, 45 0.0 21 99 18, 37, 62, 71 Moderate CT-Fine to medium SAND (SW), some gravel, 8.0 like odor, slight 22 80 60, 80/3, -, --50 trace silt sheen 0.2 Strong CT-like 100 3.6 odor, sheen 23 52 18, 26, 26, 40 1.2 13.6 67 Fine to medium SAND and SILT (SW/ML) 24 95 35, 45, 50, 63 9.5 -55 Moderate CT-Br. Orange 58 13.6 like odor, light CLAY (CL), medium plasticity to Gray 35, 43, 58, 68 101 coating COMMENTS: Boring advanced using a Cantera CT-450 drill rig.

CT = Coal Tar

NAPL = Non-Aqueous Phase Liquid

BORING NO.:

WW-SB-108

			TT	DC	•		TE	ST BORI	NG LC	G		
			U	72	Corpo	ratio	n		BORING NO.: W	W-SB-108		
	CT/PROJE	CT LOC	ATION		National Grid -	Williams	ourg		SHEET: 3 OF			
CLIENT	:				National Grid				JOB NO. : 11176	638.00001		
DEPTH		VISUAL		SAM		REC%			MATERIAL			
FEET	STRATA	IMPACTS	"S" NO.	"N" NO.	BLOW COUNT	RQD%	COLOR		DESCRIPTION		PID	REMARKS
1			ı	1 1		I I		Ì		ĺ	7.5	
-								End of boring	at 57 ft h ma		7.5	
-								End of boning	at 57 it bgs.			
-												
-60 —												
-												
-												
-												
-												
-65 —												
4												
-70 —												
]												
-75 —												
-												
-												
-												
-80 —												
+ 1												
-												
-												
-												
-85 —												
-												
COM	MENTS: Bo	ring adva	anced u	ısing a C	Cantera CT-450	drill ria						
	Coal Tar											
	= Non-Aqı	ueous Ph	ase Liq	quid								
									[
										BORING NO	.: W	W-SB-108

TEST BORING LOG Corporation WW-SB-109 **BORING NO.:** PROJECT/PROJECT LOCATION: National Grid - Williamsburg SHEET: 1 OF 2 CLIENT: National Grid JOB NO.: 11176638.00001 NORTHING: 688869.7424 **EASTING:** 641696.3812 **BORING CONTRACTOR:** Fenley & Nicol **GROUNDWATER:** 5' SAMPLER CORE TUBE **GROUND ELEVATION:** 9.81 **DATE STARTED:** 3/12/2012 DATE TIME LEVEL **TYPE** Split Spoon **TYPE** DATE FINISHED: 3/13/2012 DIA. DRILLER: Mike Meade 140, 300 WT Megan Dascoli 24" **GEOLOGIST: FALL** Tim Burmeier **REVIEWED BY:** SAMPLE REC% DEPTH VISUAL **MATERIAL** STRATA COLOR PID **REMARKS** "S" **BLOW** "N" IMPACTS **DESCRIPTION** FEET RQD% NO. COUNT Boring hand cleared to 5 ft Med Brown FILL: sand, silt, cobbles, concrete and brick 0.0 bgs 0.0 Concrete Dry 0.0 FILL: sand, silt, concrete and brick, trace metal 0.0 0.0 Dk Gray Wet FILL: sand, silt and gravel 6.1 1 1, 3, 2, 2 46 30% NAPL 52.8 Very fine to fine SAND (SP) saturation, petroleum and Med Gray SILT (ML), some very fine to medium sand 8.4 CT-like odor 2 1, 1, 2, 5 42 Moderate NAPL 4.8 odor, blebs, sheen COBBLES (GW) 0 -10 3 1, 1, 1, 1 Drilled through 0.2 cobbles to 13 ft 0 -, -, -, bgs 0.8 No Recovery 5 1, 1, 1, 1 0 SILT (ML), some very fine sand, trace coarse -15 Faint CT-like 0.2 odor 6 1, 1, 1, 1 54 CLAY (CL), trace fine sand, highly plastic 8.0 Moderate CT-1.1 Very fine to fine SAND (SP), some silt, trace like odor 7 7, 9, 2, 2 33 fine gravel 2.3 some cobbles from 18 to 19' 2.4 2, 3, 4, 4 63 -20 8 4.8 No odor 0.8 COBBLES (GW), some very fine to fine sand 9 37, 13, 10, 10 17 Lt Gray Faint CT-like 1.1 SILT (ML), some very fine to fine and coarse 10 10, 10, 12, 16 sand Med Brown 3.8 -25 COMMENTS: Boring advanced using a Cantera CT-450 drill rig. CT = Coal Tar NAPL = Non-Aqueous Phase Liquid **BORING NO.:** WW-SB-109

TEST BORING LOG Corporation WW-SB-109 **BORING NO.:** PROJECT/PROJECT LOCATION: National Grid - Williamsburg OF SHEET: 2 2 CLIENT: National Grid JOB NO.: 11176638.00001 **SAMPLE** REC% DEPTH VISUAL **MATERIAL** COLOR REMARKS **STRATA** PID "S" "N" **BLOW FEET** IMPACTS DESCRIPTION RQD% NO. COUNT NO. Med Gray COBBLES (GW) 12 12, 8, 4, 7 11 33 Faint CT-like SILT (ML), some very fine to fine and coarse 5.0 odor 1.2 Very fine SAND (SP), some silt 12 13, 11, 12, 11 8 Very fine to coarse SAND (SW), some silt Med Brown 1.5 to Gray Very fine to medium SAND (SW), trace silt and 13 22, 8, 7, 12 -30 medium gravel 10.8 Med Brown Very fine SAND (SP), trace silt and coarse 15.1 14 16, 15, 13, 17 67 gravel 8.8 6.3 15 62, 51, 21, 17 100 3.7 medium dense -35 5.6 3, 8, 11, 13 100 16 19 Moderate CT-21.5 like odor Light black 7.5 staining 17 26 16, 13, 13, 17 50 very dense 18.3 Faint CT-like 22.1 odor 18 51 23, 25, 26, 23 -40 16.7 medium dense 8.5 19 15 4, 4, 11, 16 100 22.5 Med Gray Moderate CT-18.1 Very fine to fine SAND (SP), trace medium to Brown like odor, sheen 100 20 27 5, 9, 18, 31 sand and silt, medium dense 23.5 -45 very dense Med Brown 16 21 51 20, 25, 26, 28 100 219 Strong CT-like odor, sheen, loose 16.1 light coating trace fine gravel 22 10 3, 4, 6, 10 100 Med Gray 122 to Brown CLAY (CL), stiff Med Brown Moderate CT-128 like odor Very fine to fine SAND (SP), trace silt, clay 23 33 3, 6, 27, 32 38 -50 pockets, dense 30.7 25.3 CLAY (CL), hard 24 59 17, 27, 32, 17 42 35.8 Very fine SAND (SP), trace silt, very dense Med Gray No odor 0.0 CLAY (CL), stiff to Brown 46 25 12 4, 4, 8, 11 Red some very fine sand 0.0 -55 End of boring at 55 ft bgs.

COMMENTS: Boring advanced using a Cantera CT-450 drill rig.

CT = Coal Tar

NAPL = Non-Aqueous Phase Liquid

BORING NO.: WW-SB-109

					5 Corp						BORING NO.: WW-SB-110		
	CT/PROJE	CT LOC	ATION	l :	National Grid	- William	sburg				SHEET: 1 OF 3		
CLIENT					National Grid						JOB NO.: 11176638.00001		
	G CONTRA				Fenley & Nico							STING: 6	641763.6288
1	IDWATER		.				SAMPLER	CC	ORE 1	TUBE	GROUND ELEVATION: 10.09	04.0	
DATE	TIME	LEVE	EL	TYPE	DIA.	- + ;	Split Spoon				DATE STARTED: 2/28/2 DATE FINISHED: 3/1/20		
					WT.		2" 140 lb				DRILLER: Mike N		
					FALL		24"				J. C. L. C.	Dascoli	
					TALL							urmeier	
					MD: 5	T^\perp	T	Т			TALVIEWED DT.		I
EPTH	STRATA	VISUAL	"S"	N"	MPLE BLOW	_ REC%	COLOR	,			MATERIAL	PID	REMARK
EET		IMPACTS	NO.	NO.	COUNT	RQD%	ó				DESCRIPTION		
_	×××××			1	1	1	Med Brov	wn I					Boring ha
							Ivieu bio	****		concret	e, brick, gravel and asphalt, some	0.0	cleared to
										ont		0.0	bys
							Dk Brow	/n				0.0]
												4.6	Moist Petroleum
												10.6]
									FILL: s	sand ar	nd silt, trace gravel, loose	100	Modera petroleum
1			1	5	1, 3, 2, 1	31	Black				•	123	black stai
1												296	Strong
-			2	7	3, 3, 4, 5	54						321	petroleum modera
-												248	coating Moist
-			3	24	3, 4, 20, 40	67	Med Brov	wn	SILT a	nd ver	y fine SAND (SM), trace fine		Petroleum
								-			um dense	35.5	Wet
4			4	46	28, 14, 32, 30	63			Silty S	AND (S	SM), dense	59.2	Black stair CT-like o
												89.8	
	<u> </u>		5	17	1, 6, 11, 7	46			Very fir dense		nedium Sandy SILT (ML), medium	60	Faint CT- odor
	<u> </u>				., 0,, .				uerise	•		349	
				_	0.047	400						108	Heavy NA
1			6	7	2, 3, 4, 7	100			trace g	gravel,	loose	35.7	coating
1						1	Med Gra	ау	CLAY	(CL), s	soft	55.5	50% C
			7	5	2, 2, 3, 5	71				. ,	ne sand and silt	59	Faint CT-
1						+	1		plastic,			12.5	- 0001
\dashv			8	74	24, 32, 42, 39	22				fine to i	medium sand, trace angular	97.1	+
+						+	-		gravel			70.8	+
+			9	34	56, 20, 14, 16	92							+
						+	4					10	-
_			10	27	8, 12, 15, 15	50	Dodd:-1				nedium SAND (SW), some silt,	32.4	1
5							Reddisl Brown		mediur	m dens	se	335	75% NAF

NAPL = Non-Aqueous Phase Liquid

BORING NO.: WW-SB-110

TEST BORING LOG Corporation WW-SB-110 **BORING NO.:** PROJECT/PROJECT LOCATION: National Grid - Williamsburg OF SHEET: 2 3 CLIENT: National Grid JOB NO.: 11176638.00001 **SAMPLE** REC% DEPTH VISUAL **MATERIAL** REMARKS **STRATA** COLOR PID "S" "N" **BLOW FEET** IMPACTS **DESCRIPTION** RQD% COUNT NO. NO. Med Brown saturation. SILT (ML), some very fine to medium sand, 640 strong CT-like odor 11 34 4, 13, 21, 22 96 trace fine to medium subangular gravel, medium dense 26.5 Moderate CT-35.8 Silty SAND (SM), very dense like odor 12 8 12 55 30 42 67 39.8 Med Brown No odor CLAY and SILT (CL/ML), some very fine to to Gray medium sand, trace very fine to medium 13 47 6, 25, 22, 31 -30 angular gravel, dense 6.7 No Recovery 14 49 6, 9, 40, 44 0 Med Gray 14.9 Very fine to fine Sandy SILT (ML), trace 15 48 9, 21, 27, 60 42 medium gravel, dense 12.1 -35 Coarse angular GRAVEL (GW), some very fine 3.3 5, 11, 40, to medium sand, silt and clay, very dense 16 51 42 100/3 3.9 Very fine to medium sandy SILT (ML), trace Faint CT-like 11.1 clay and fine to medium gravel, very dense odor 100/6, -, -, -17 100 0 12.5 No Recovery Med Brown Moderate CTto Grav Very fine to fine SAND (SP), some silt, very like odor -40 18 28, 47, 51, 62 dense medium dense 76.4 19 28 10, 12, 16, 28 58 57.9 Med Gray Faint CT-like very dense 48.3 odor 22, 33, 32, 37 20 65 58 Med Gray 68.4 to Brown Silty SAND (SM), very dense 33.7 21 100 26, 40, 60, 57 58 Sandy SILT (ML), very dense 63.2 27.7 Very fine to coarse SAND (SW), some silt, very 44, 110, 98, 22 208 75 dense Med Brown 15 1 46.2 23 119 15, 51, 68, 78 88 -50 Med Gray Faint CT-like SILT (ML), very dense 35.7 odor Med Gray 27 Very fine to medium SAND (SW), trace silt and to Brown 24 141 23, 37, 104, 96 coarse sand, very dense 156 12 2.7 25 122 6, 22, 100/2, -67 14.7 some clay -55 17.1 15, 35, 55, 68 Very fine Sandy SILT (ML), very dense 26

COMMENTS: Boring advanced using a Cantera CT-450 drill rig.

CT = Coal Tar

NAPL = Non-Aqueous Phase Liquid

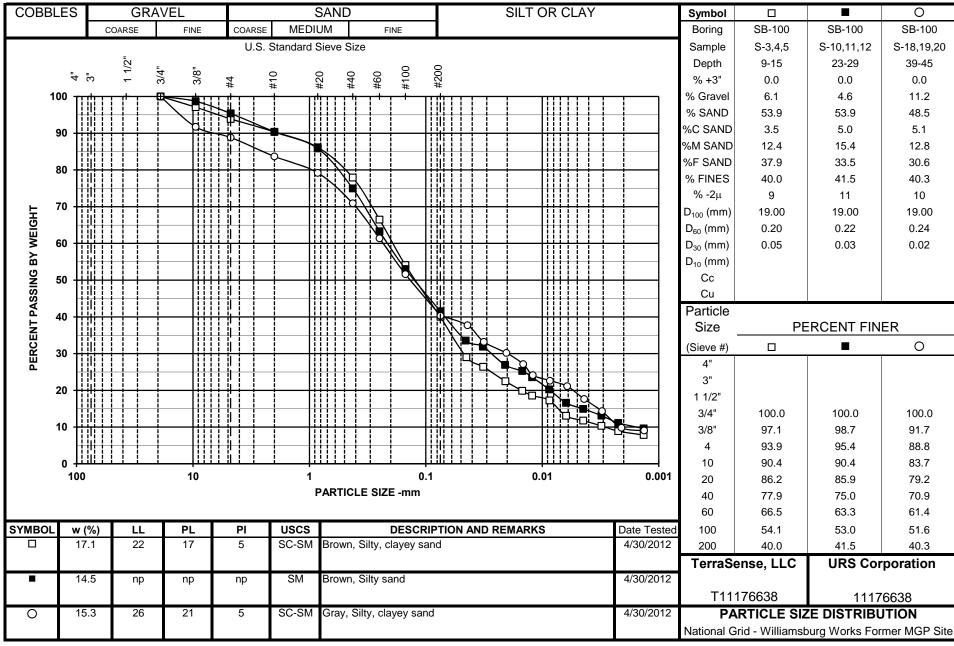
BORING NO.: WW-SB-110

TEST BORING LOG Corporation WW-SB-110 BORING NO.: National Grid - Williamsburg PROJECT/PROJECT LOCATION: SHEET: 3 OF 3 **CLIENT:** National Grid JOB NO.: 11176638.00001 SAMPLE REC% **DEPTH VISUAL MATERIAL** COLOR **REMARKS STRATA** "S" "N" **BLOW** PID IMPACTS DESCRIPTION **FEET** RQD% COUNT NO. NO. 12.2 trace clay Med Brown 19.4 27 75 5, 16, 59, 91 17 Very fine to medium SAND (SW), some silt, 9.4 very dense Med Gray Faint CT-like 23.4 -60 28 33, 28, 37, 38 38 odor Med Brown trace coarse sand 50, 54, -, -29 54 100 30.4 CLAY (CL), hard Med Gray 2.5 to Brown Very fine to fine SAND (SP), some silt, dense 30 35 8, 10, 25, 46 Lt Gray 0.0 CLAY (CL), hard End of boring at 64 ft bgs. -65 -70 -75 -80 -85 COMMENTS: Boring advanced using a Cantera CT-450 drill rig. CT = Coal Tar NAPL = Non-Aqueous Phase Liquid **BORING NO.:** WW-SB-110

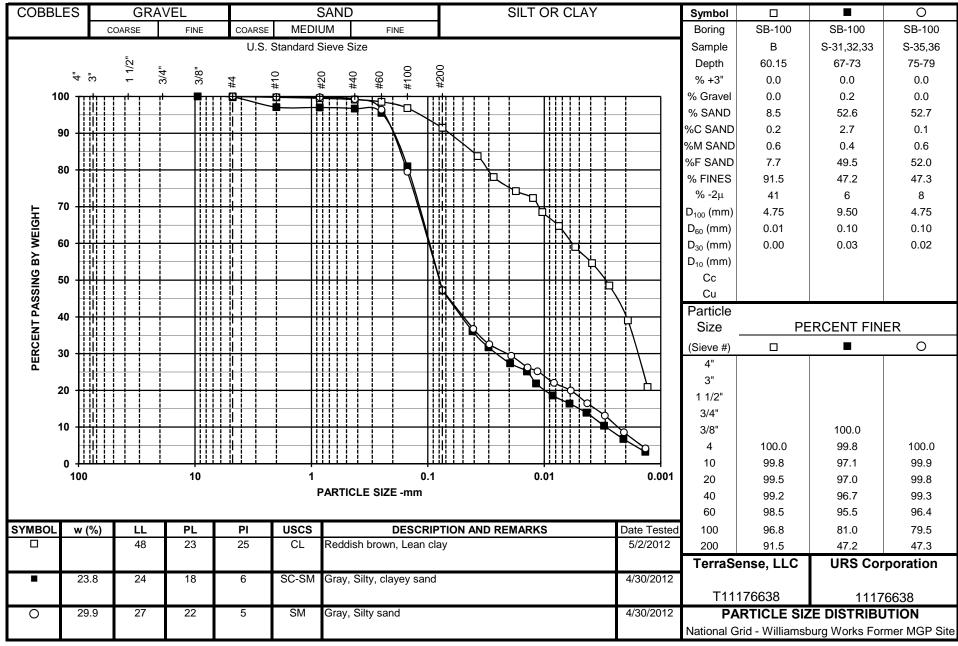
APPENDIX B GEOTECHNICAL LABORATORY TESTING RESULTS

URS Corporation #11176638 National Grid - Williamsburg Works Former MGP Site LABORATORY TESTING DATA SUMMARY

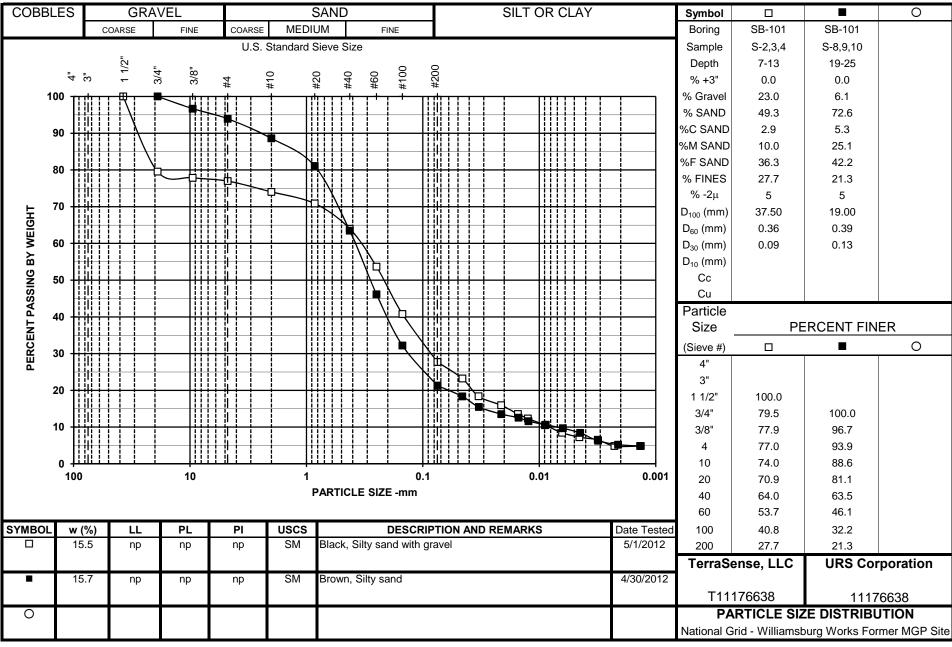
SAMP	LE IDENTIFICA	TION			I	NDEX TE	STS					E	ENGINEERI	NG TESTS			REMARKS
BORING	SAMPLE	DEPTH	USCS	LIQUID	PLASTIC	PLAS.	SIEVE	HYDRO.	ORGANIC	TEST	WATER	TOTAL	DRY	HYDRAULIC	PEAK	STRAIN	
NO.	NO.		SYMB.	LIMIT	LIMIT	INDEX	MINUS	% MINUS	CONTENT	TYPE	CONTENT	UNIT	UNIT	CONDUCTIVITY	COMP.	@ PEAK	
			(1)				NO. 200	2 μm	(burnoff)			WEIGHT	WEIGHT		STRESS	STRESS	
		(ft)		(-)	(-)	(-)	(%)	(%)	(%)		(%)	(pcf)	(pcf)	(cm/sec)	(psi)	(%)	
SB-100	S-3,4,5	9-15	SC-SM	22	17	5	40.0	9		W	17.1						
SB-100	S-10,11,12	23-29	SM	np	np	np	41.5	11		W	14.5						
SB-100	S-18,19,20	39-45	SC-SM	26	21	5	40.3	10		W	15.3						
SB-100		59-61								UW 126.6							
SB-100		59.35								W	30.1						
SB-100	Α	59.6								K	24.0	128.4	103.6	2.1E-8			P9395
SB-100		59.9								W	23.6						
SB-100	В	60.15	CL	48	23	25	91.5	41		UC	21.8	131.0	107.6		32.6	8.4	UC122b
SB-100		60.45								W	20.2						
SB-100	S-31,32,33	67-73	SC-SM	24	18	6	47.2	6		W	23.8						
SB-100	S-35,36	75-79	SM	27	22	5	47.3	8		W	29.9						
SB-101	S-2,3,4	7-13	SM	np	np	np	27.7	5		W	15.5						
SB-101	S-8,9,10	19-25	SM	np	np	np	21.3	5		W	15.7						
SB-101	S-17,18,21	37-47	SC	30	19	11	37.4	11		W	16.0						
SB-101	S-20	43-45	SC	30	18	12	49.2	12		W	12.0						
SB-101		59-61								UW		128.7					
SB-101	Α	59.4	CL	45	25	20	90.0	41		W	27.2						
SB-101		59.7								W	27.0						
																	_

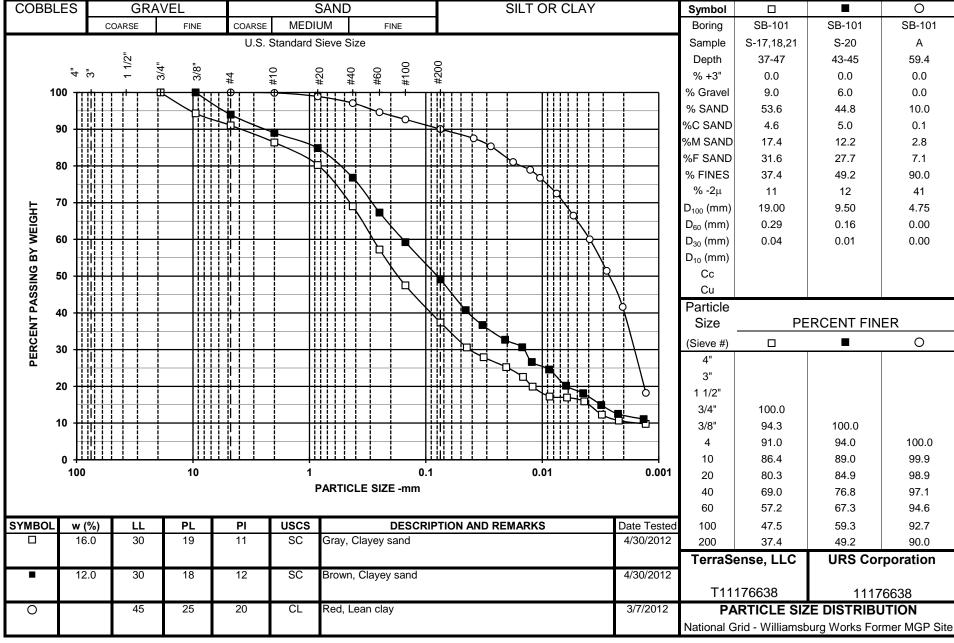

Prepared by: JR Reviewed by: GET Date: 5/17/2012 **TerraSense, LLC** 45H Commerce Way Totowa, NJ 07512 Project No.: T11176638 File: Indx1.xls Page 1 of 2

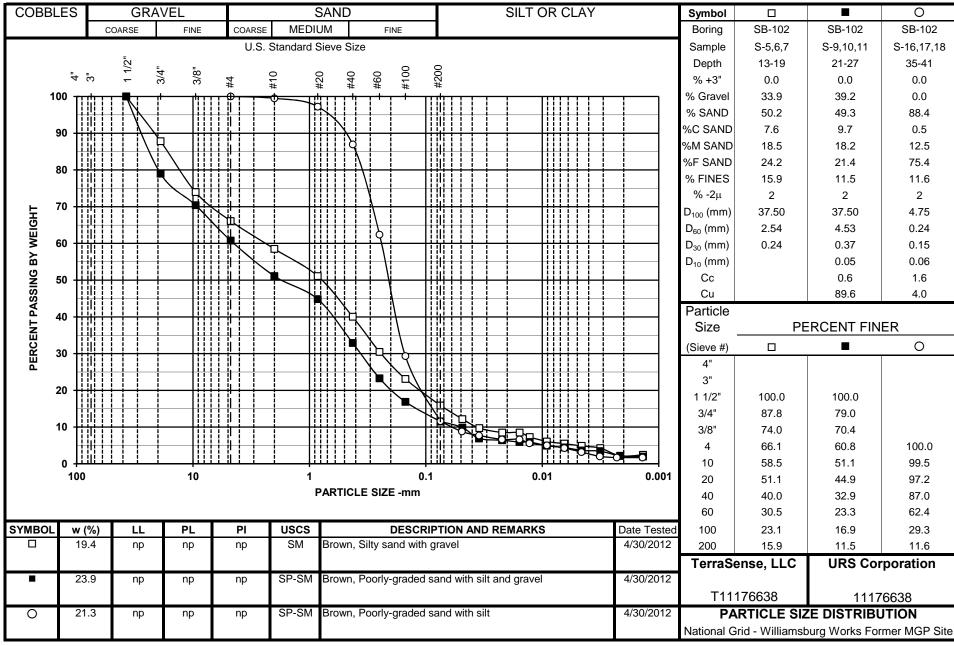
URS Corporation #11176638 National Grid - Williamsburg Works Former MGP Site LABORATORY TESTING DATA SUMMARY

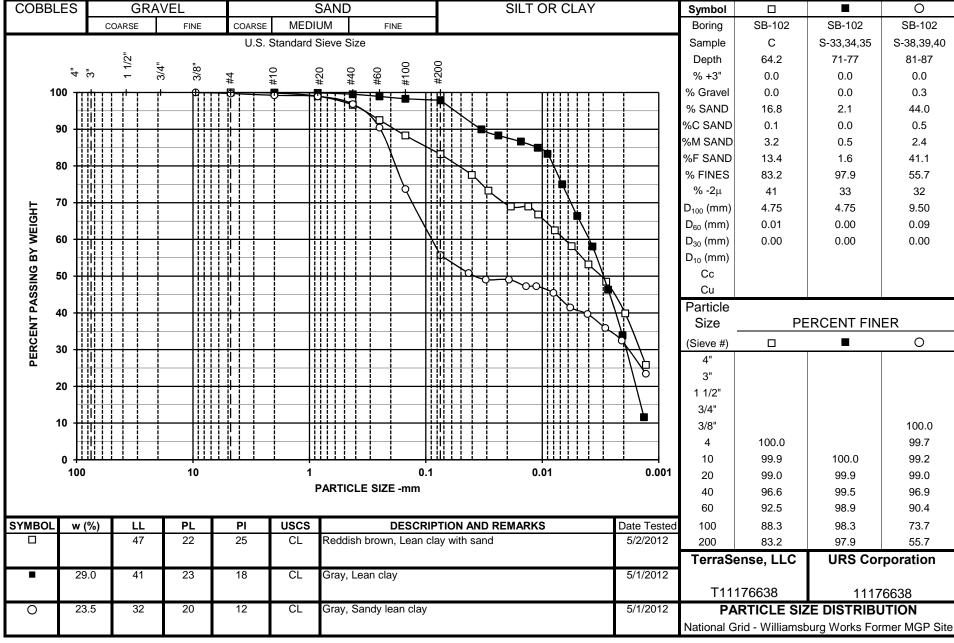

SAMP	LE IDENTIFICA	TION			I	NDEX TE	STS					-	ENGINEERI	NG TESTS			REMARKS
BORING	SAMPLE	DEPTH	USCS	LIQUID	PLASTIC	PLAS.	SIEVE	HYDRO.	ORGANIC	TEST	WATER	TOTAL	DRY	HYDRAULIC	PEAK	STRAIN	
NO.	NO.		SYMB.	LIMIT	LIMIT	INDEX	MINUS	% MINUS	CONTENT	TYPE	CONTENT	UNIT	UNIT	CONDUCTIVITY	COMP.	@ PEAK	
			(1)				NO. 200	2 μm	(burnoff)			WEIGHT	WEIGHT		STRESS	STRESS	
		(ft)		(-)	(-)	(-)	(%)	(%)	(%)		(%)	(pcf)	(pcf)	(cm/sec)	(psi)	(%)	
SB-102	S-5,6,7	13-19	SM	np	np	np	15.9	2		W	19.4						
SB-102	S-9,10,11	21-27	SP-SM	np	np	np	11.5	2		W	23.9						
SB-102	S-16,17,18	35-41	SP-SM	np	np	np	11.6	2		W	21.3						
SB-102		63-65								UW		111.3					
SB-102		63.4								W	20.4						
SB-102	В	63.65								K	31.5	122.6	93.2	5.8E-8			P9396
SB-102		63.95								W	31.5						
SB-102	С	64.2	CL	47	22	25	83.2	41		UC	26.7	126.2	99.6		10.3	15.0	UC123e
SB-102	S-33,34,35	71-77	CL	41	23	18	97.9	33		W	29.0						
SB-102	S-38,39,40	81-87	CL	32	20	12	55.7	32	4.4	W	23.5						
SB-103	S-5,6,7	13-19	SM	np	np	np	29.7	4		W	16.4						
SB-103	S-10,12,13	23-31	CL	33	17	16	64.4	11		W	17.0						
SB-103	S-20,21,22	43-49	SP-SM	np	np	np	10.3	2		W	17.9						
SB-103	S-26,27,28	55-61	SC	26	17	9	43.1	7		W	24.2						
SB-103	S-33,34,35	69-75	CL	26	15	11	59.7	15		W	24.7						
SB-103		75-77								UW		125.3					
SB-103	Α	75.15								K	26.2	125.9	99.8	2.3E-8			P9394
SB-103		75.4								W	25.8						
SB-103	В	75.65	CL	37	22	15	94.3	20		UC	23.2	129.5	105.2		23.0	15.0	UC122a

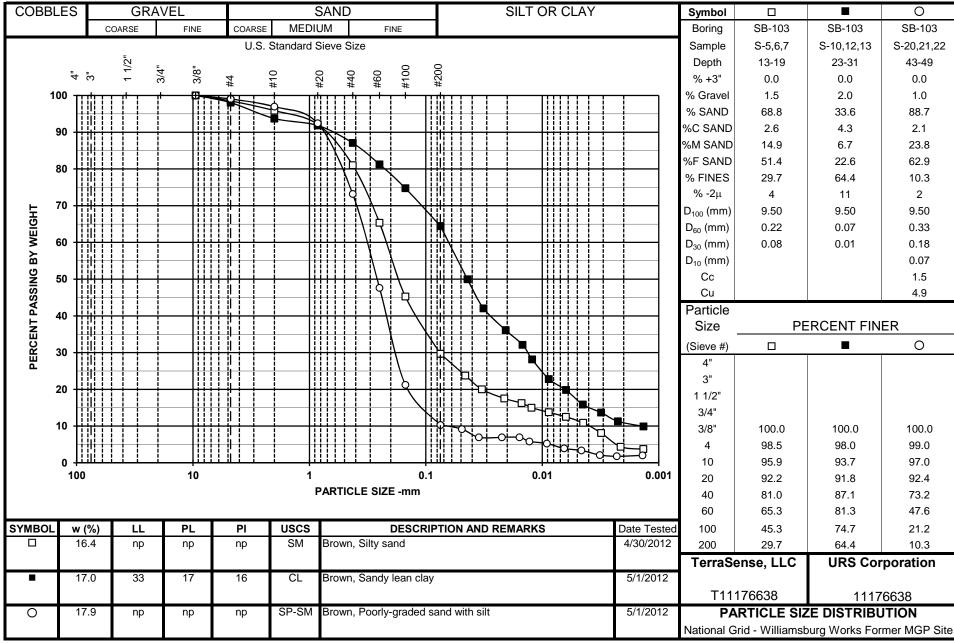
Note: (1) USCS symbol based on visual observation, Sieve results, and Atterberg limits reported.

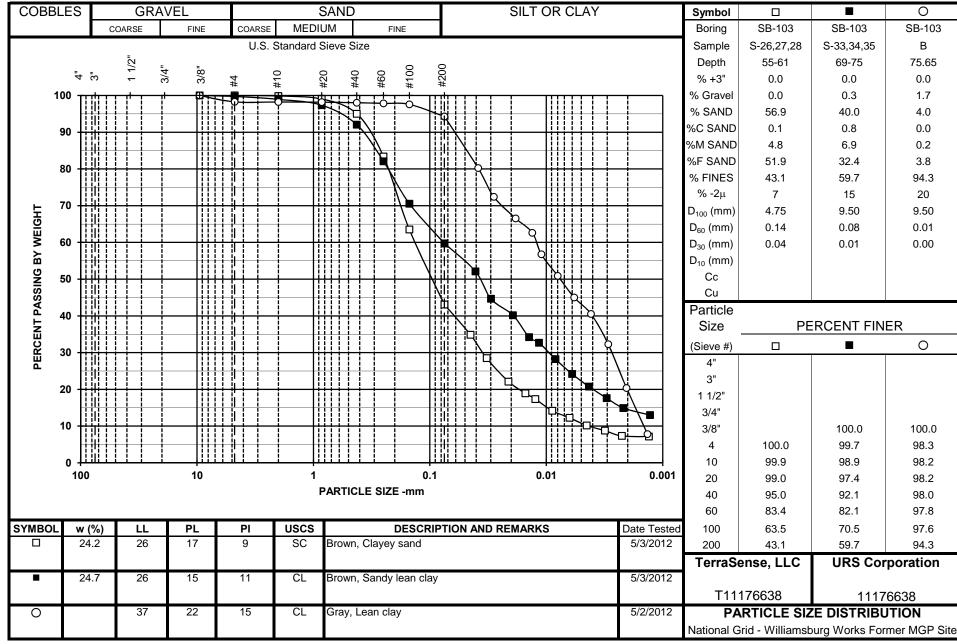

Prepared by: JR Reviewed by: GET Date: 5/17/2012 **TerraSense, LLC** 45H Commerce Way Totowa, NJ 07512 Project No.: T11176638 File: Indx1.xls Page 2 of 2

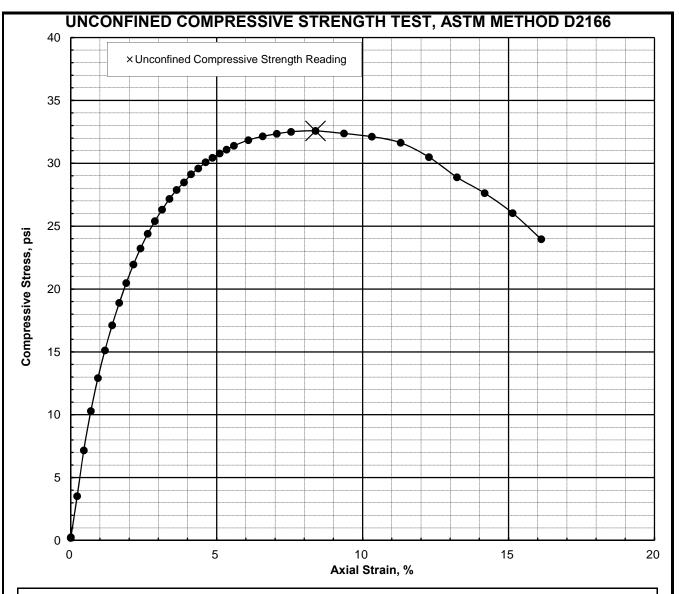

Analysis File: 3SV-MasterRev3 siev1a.xls 5/17/2012


Analysis File: 3SV-MasterRev3 siev1b.xls 5/17/2012


Analysis File: 3SV-MasterRev3 siev1c.xls 5/17/2012


Analysis File: 3SV-MasterRev3 siev1d.xls 5/17/2012


Analysis File: 3SV-MasterRev3 Siev1e.xls 5/17/2012


Analysis File: 3SV-MasterRev3 siev1f.xls 5/17/2012

Analysis File: 3SV-MasterRev3 siev1g.xls 5/17/2012

Analysis File: 3SV-MasterRev3 siev1h.xls 5/17/2012

			Specimen a	ınd Mateı	rial Property	Informat	ion								
		Sample Ty	pe: Intact												
Descrip	Description and/or Classification: CL, reddish brown lean clay; slickenside noted at failure surface														
	Water (1)	Wet Unit	Dry Unit (1)	Void ⁽²⁾	Saturation ⁽²⁾	Length	Diameter	L/D	LL	PI	Specific (2)				
	Content	Weight	Weight	Ratio							Gravity				
	(%)	(pcf)	(pcf)	(-)	(%)	(inch)	(inch)	(-)	(-)	(-)	(-)				
Initial	21.8	131.0	107.6	0.60	100.3	6.026	2.851	2.1	48	25	2.76				

	Fa	ilure Summary		
	UC Compressive	UC Shear	Strain to	Strain
	Strength, q _u	Strength, s _u	to Peak	Rate
	(psi)	(psi)	(%)	(%/min)
	32.6	16.3	8.4	0.72
Te	ested by: DT	Reviewe	ed by: CM	1J

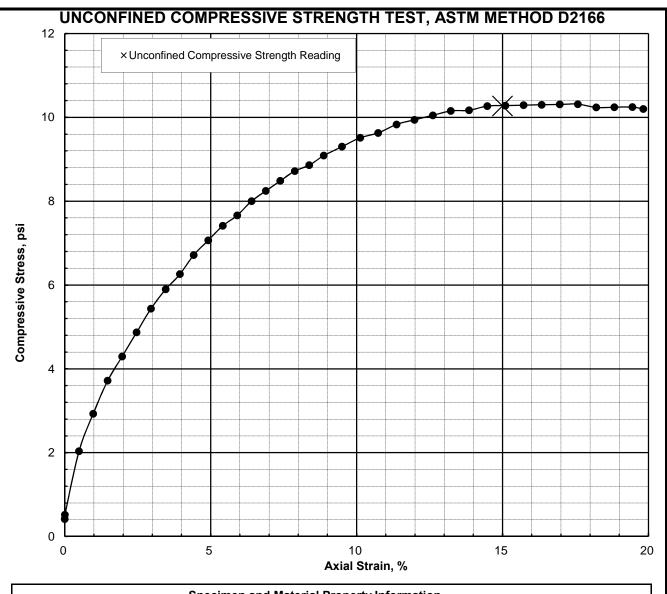
Review Date: 5/7/2012

FAILURE

SKETCH

Remarks and Notes:

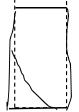
- (1) Water Content determined after shear from partial specimen.
- (2) Assumed specific gravity


Test Date: 5/1/2012

URS Corporation
Project # 11176638

TerraSense, LLC
Project # T11176638

National Grid Williamsburg Works Former MGP Site UNCONFINED COMPRESSION TEST


Boring: SB-100 Sample: Section: B Depth: 60.15 ft.

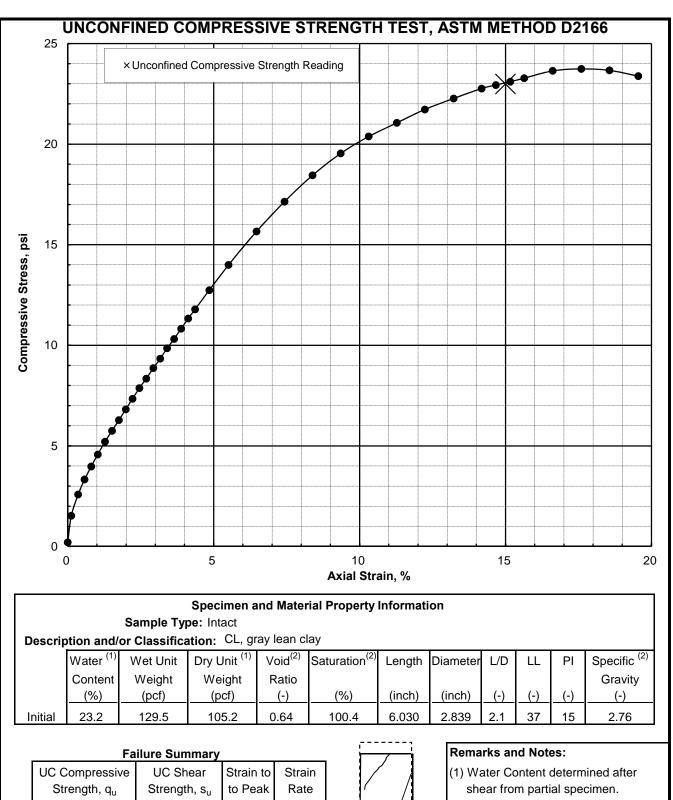
			Specimen a	ınd Mater	rial Property	Informati	on								
		Sample Ty	pe: Intact												
Descrip	Description and/or Classification: CL, reddish brown lean clay with sand														
	Water (1)	Wet Unit	Dry Unit (1)	Void ⁽²⁾	Saturation ⁽²⁾	Length	Diameter	L/D	LL	PI	Specific (2)				
	Content	Weight	Weight	Ratio							Gravity				
	(%)	(pcf)	(pcf)	(-)	(%)	(inch)	(inch)	(-)	(-)	(-)	(-)				
Initial	26.7	126.2	99.62	0.74	100.1	3.935	2.005	2.0	47	25	2.78				

Failure Summary UC Compressive UC Shear Strain to Strain Strength, qu Strength, s_u to Peak Rate (psi) (psi) (%) (%/min) 10.3 5.15 15.0 0.74

Tested by: DT Reviewed by: CMJ **FAILURE** Test Date: 5/2/2012 Review Date: 5/7/2012 **SKETCH**

Remarks and Notes:

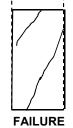
- (1) Water Content determined after shear from partial specimen.
- (2) Assumed specific gravity


URS Corporation **Project # 11176638**

TerraSense, LLC **Project # T11176638**

National Grid Williamsburg Works Former **MGP Site**

UNCONFINED COMPRESSION TEST


> Boring: SB-102 Sample: Section: C Depth: 64.2 ft.

Fa	ilure Summary		
UC Compressive	UC Shear	Strain to	Strain
Strength, q _u	Strength, s _u	to Peak	Rate
(psi)	(psi)	(%)	(%/min)
23.0	11.5	15.0	0.72

Tested by: DT Reviewed by: CMJ Test Date: 5/1/2012 Review Date: 5/7/2012

Project # T11176638

SKETCH

(2) Assumed specific gravity

URS Corporation National Grid Project # 11176638 Williamsburg Works Former TerraSense, LLC **MGP Site**

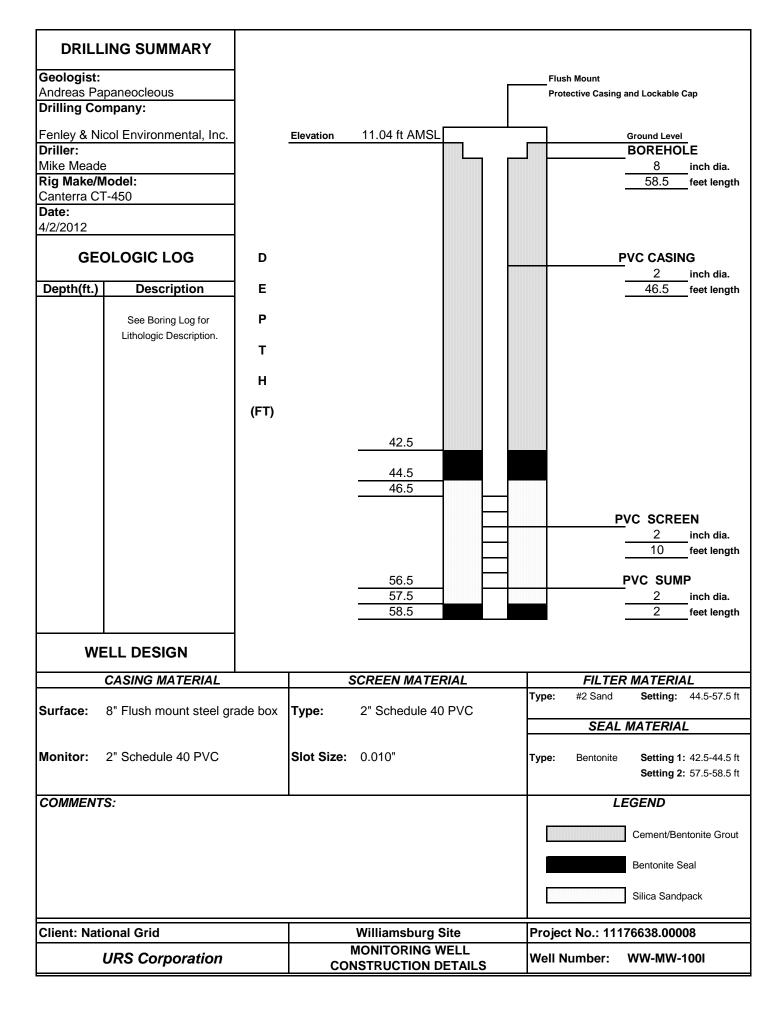
UNCONFINED COMPRESSION TEST

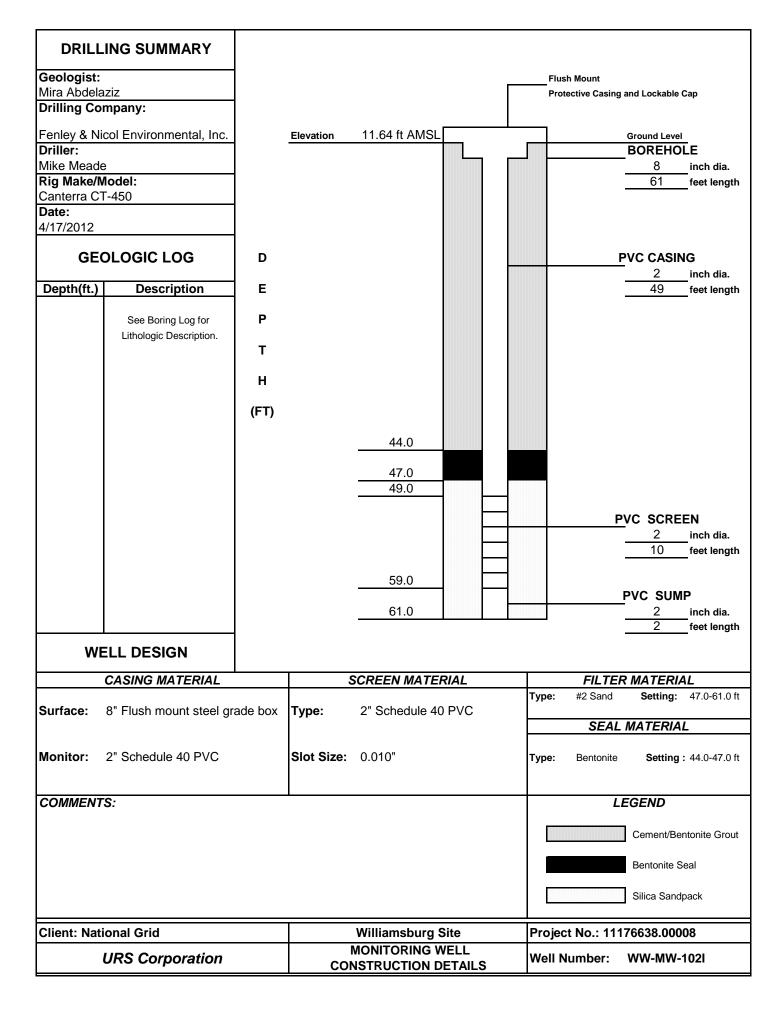
> Boring: SB-103 Sample: Section: B Depth: 75.65 ft.

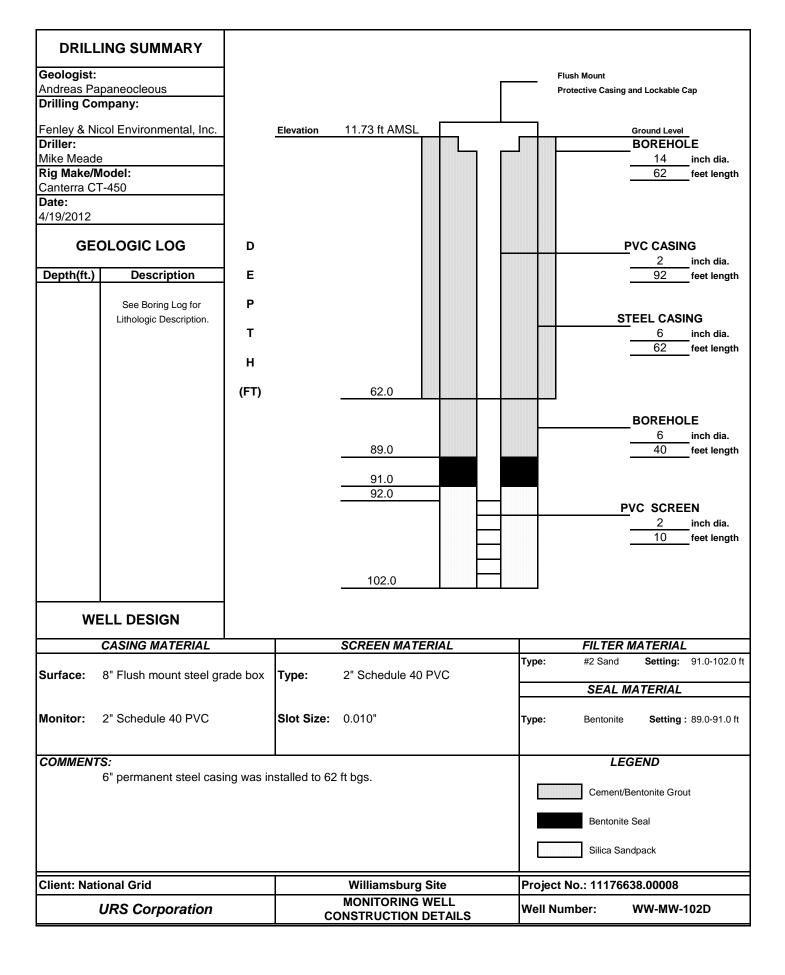
F	ERMEABILIT	Y TEST: FA	LLING HEA	D - CO	NSTAN	T VOLUM	/IE U-TL	IBE				
		AS [*]	TM D 5084	- Metho	d F							
Project No.: T11176638		BORING:	SB-100								Test No.:	P9395
Project Name: National Grid		SAMPLE:	Α			DEF	PTH (ft):	59.6				
Specimen - Apparatus set-up - Test Information		Cell No.	4		Appa	ratus No.	7		Stage No.:			
Preliminary Length/Area Calculations	, ,	ecimen Teste	d in :	Х	Triaxia	l Cell or			ction Mold			_
Lo = 3.991 in Lo= 10.138 cr				Х		ones or		4	with filter p			top + bottom
dLc = -0.020 in $Ao = 41.94$ Cr		ecimen orienta		X	Vertica				tal permea	7	termination	1 I
Lc= 4.011 in Vo = 425.13 cr		ring saturation		shed up	7	•			X	No		Yes
Lc= 10.188 cr	,	ring consolida		Х		d bottom	drainag	-		Тор		Bottom only
dVc = 3 Vo * (dLc/Lo) $dVc = -6.39$ cr	,	ection of perm		Х	Up dur	ing or		4	uring perm	neation		
Vc = 431.52 cr	,	rmeant: water	used	Х	Тар			Distilled				
$Sc = 0.241 \text{ cm}^{-1}$ Ac= 42.354 cr						eralized		1	calcium s			Permeability
Equations Used	Conso		Date		Time	1		tial		ibe Read	_ <u> </u>	Preliminary
Kt = - 0.0000760 * Sc/dT(min) * In (ho/							$\sigma_{\rm c}$	Ub	Head	Tail	Flow	Final at 20°C
RT = $(-0.02452*(ave. temp in C) + 1.495)$	Trial								(cm)	(cm)	in/out	cm/sec
K @ 20 °C = RT * Kt TubeC= 1.3158	No.	° C	= /0 / 4 O	hr	min	sec	psi	psi	(cc)	(cc)	gradient	Dev. from Ave.
TEST SUMMARY	initia		5/2/12 5/2/12	09 10	28 34	00	105.0	100.0	58.01 56.68	42.24 42.67	0.98	3.26E-08 3.00E-08
Final Specimen and Test Conditions $Lc = 10.188 \text{ cm} \qquad \epsilon_{avial} = -0.5\%$	fina	RT = 0.918	5/2/12 dT =				_' _	0.7 ksf	0.100	0.103	io 10 F	3.00E-08 45%
Lc = 10.188 cm $\varepsilon_{\text{axial}}$ = -0.5% Ac = 42.216 cm ²	1 initia		5/2/12	10	66.00 m 35	00	$\sigma'_{c} = 105.0$	100.0	58.13	42.20	io= 19.5 0.96	2.39E-08
$Vc = 42.216 \text{ cm}$ $Vc = 430.11 \text{ cm}^3$ $\epsilon_{\text{vol}} = -1.2\%$	fina		5/2/12	11	45	00	103.0	100.0	57.07	42.55	0.90	2.20E-08
$Sc = 0.241 \text{ cm}^{-1} \text{ Sc} = Lc / Ac$, final	2	RT = 0.915	3/2/12 dT =		70.00 m		σ' _c =	0.7 ksf	0.080	0.084	io= 19.7	6%
00 = 0.241 CIII 00 = L07 A0 , IIIAI	initia		5/2/12	11	46	00	105.0	100.0	58.02	42.24	1.03	2.28E-08
\mathbf{W} γ_{T} γ_{d}	S fina		5/2/12	13	06	00	100.0	100.0	56.88	42.59	1.00	2.09E-08
(%) (pcf) (pcf)	(%) 3	RT = 0.913	dT =		80.00 m		σ' _c =	0.7 ksf	0.086	0.084	io= 19.5	1%
. ,	97.5 initia		5/2/12	13	07	00	105.0	100.0	58.23	42.19	0.96	2.22E-08
	00.0 fina		5/2/12	14	13	00	1		57.29	42.50	1	2.03E-08
	4	RT = 0.909	dT =		66.00 m	nin	σ' _c =	0.7 ksf	0.071	0.074	io= 19.8	-2%
HYDRAULIC CONDUCTIVITY SUMMARY	initia	24.0	5/2/12	14	16	00	105.0	100.0	59.30	41.88	1.06	2.17E-08
Averages for trials: 2-5	fina	24.0	5/2/12	15	46	00			57.96	42.28	1	1.97E-08
ave K @ 20 °C: 2.07E-08 cm/sec	5	RT = 0.907	dT =		90.00 m	nin	σ' _c =	0.7 ksf	0.101	0.096	io= 21.5	-5%
(i_0) ave = 20.1	initia											
	fina	ı					1				1	
Tested By: DT Reviewed By: G. Thomas	6		dT =				σ' _c =					

PERMEABILITY TEST: FALLING HEAD - CONSTANT VOLUME U-TUBE													
			TM D 5084 -	- Metho	d F								
Project No.: T11176638		BORING:	SB-102								Test No.:	P9396	
Project Name: National Grid		SAMPLE:	В			DEF	PTH (ft):						
Specimen - Apparatus set-up - Test Information		Cell No.	1		Appai	ratus No.	4		Stage No.:				
Preliminary Length/Area Calculations	1) Spe	ecimen Teste	d in :	х	Triaxial	Cell or			ction Mold			_	
Lo = 4.002 in Lo= 10.165 cm				х	with sto			4	with filter p			top + bottom	
dLc= 0.024 in Ao = 41.43 cm^2		cimen orienta		х	Vertica				tal permea	ability de	terminatio	n	
Lc= 3.978 in Vo = 421.14 cm ³	,	ing saturation		shed up	-	•			X	No		Yes	
Lc= 10.104 cm	,	ing consolida		х		d bottom	drainag			Тор		Bottom only	
$dVc = 3 Vo * (dLc/Lo)$ $dVc = 7.58 cm^3$,	ction of perm		х	Up duri	ing or		4	uring perm	neation			
$Vc = 413.56 \text{ cm}^3$	6) Per	meant: water	used	х	Тар			Distilled					
$Sc = 0.247 \text{ cm}^{-1}$ Ac= 40.932 cm^{2}	or				Demine	eralized		0.005 N	calcium s	ulfate (C	CaSO4)	Permeability	
Equations Used	Consol	Temp.	Date		Time		Ini	tial		ibe Read	ding	Preliminary	
Kt = - 0.0000750 * Sc/dT(min) * In (ho/hf)	Stage-						σ_{c}	Ub	Head	Tail	Flow	Final at 20°C	
RT = (-0.02452*(ave. temp in C) + 1.495)	Trial								(cm)	(cm)	in/out	cm/sec	
K @ 20 °C = RT * Kt TubeC= 1.3181	No.	° C		hr	min	sec	psi	psi	(cc)	(cc)	gradient	Dev. from Ave.	
TEST SUMMARY	initial	23.6	5/2/12	09	25	00	105.0	100.0	59.80	45.51	1.01	6.50E-08	
Final Specimen and Test Conditions	final	23.6	5/2/12	10	12	00			58.15	46.03		5.93E-08	
$Lc = 10.104 \text{ cm}$ $\epsilon_{axial} = 0.6\%$	1	RT = 0.916	dT =	1	47.00 m		σ' _c =	0.7 ksf	0.123	0.122	io= 17.8	3%	
$Ac = 41.122 \text{ cm}^2$	initial	23.6	5/2/12	10	13	00	105.0	100.0	59.58	45.57	1.01	6.37E-08	
Vc= 415.48 cm ³ ϵ_{vol} = 1.3%	final	23.8	5/2/12	11	03	00			57.90	46.10		5.79E-08	
$Sc = 0.246 \text{ cm}^{-1} \text{ Sc} = Lc / Ac$, final	2	RT = 0.914	dT =		50.00 m	_	σ' _c =	0.7 ksf	0.125	0.124	io= 17.4	0%	
	initial	23.8	5/2/12	11	04	00	105.0	100.0	59.80	45.51	1.01	6.27E-08	
w γ_{τ} γ_{d} S	final	23.8	5/2/12	11	55	00			58.08	46.05		5.69E-08	
(%) (pcf) (pcf) (%)	3	RT = 0.911	dT =		51.00 m		σ' _c =	0.7 ksf	0.128	0.127	io= 17.8	-2%	
Initial 31.49 122.6 93.2 98.7	initial	23.8	5/2/12	11	56	00	105.0	100.0	59.73	45.52	1.01	6.30E-08	
PreTest 30.99 123.8 94.5 100.0	final	24.0	5/2/12	13	04	00			57.50	46.22		5.70E-08	
	4	RT = 0.909	dT =		68.00 m	nin	σ' _c =	0.7 ksf	0.166	0.164	io= 17.7	-1%	
HYDRAULIC CONDUCTIVITY SUMMARY	initial												
Averages for trials: 1-4	final										 		
ave K @ 20 °C: 5.78E-08 cm/sec	5		dT =	1		1	σ' _c =						
$(i_o)ave = 17.7$	initial												
	final									ļ	 	 	
Tested By: DT Reviewed By: G. Thomas	6		dT =				σ' _c =						

				PERM	EABILIT'	Y TEST: FA	LLING HEA	D - CO	NSTAN	T VOLU	/IE U-TL	JBE				
						AS	ΓM D 5084 ·	- Metho	d F							
Project No.: T11176638					BORING: SB-103								Test No.:	P9394		
Project Name: National Grid					SAMPLE: A DEF				PTH (ft): 75.15							
Specimen - Apparatus set-up - Test Information									ratus No.	1		Stage No.:				
Preliminary Length/Area Calculations					1) Specimen Tested in :			Х	Triaxial Cell or			Compaction Mold or				_
Lo = 3.021 in Lo= 7.674 cm								Х	-	ones or		Stones with filter paper or				top + bottom
dLc=	0.015 ir	n Ao =	40.30		2) Specimen orientation for: x Vertical or						Horizontal permeability determination					
Lc=	3.006 ir	n Vo =		cm ³	3) During saturation: Water flushed up sides of specim					•			X	No		Yes
		Lc=	7.636	cm	4) During consolidation:			х	Top and bottom drain			<u> </u>		Тор		Bottom only
$dVc = 3 Vo * (dLc/Lo)$ $dVc = 4.61 cm^3$				5) Direction of permeant :			Х	Up during or			Down during permeation					
		Vc =	304.65	cm ³	6) Per	meant: water	used	Х	Тар			Distilled				
Sc =	0.191 _C		39.898	cm ²	or				Demineralized			5 N calcium sulfate (CaSO			Permeability	
Equations Used					Consol	Temp.	Date Time			Ini	ial U-tube Reading		Preliminary			
Kt = -	0.00007		(min) * In (l	,	Stage-						σ_{c}	Ub	Head	Tail	Flow	Final at 20°C
	•	2*(ave. temp in	•	•	Trial								(cm)	(cm)	in/out	cm/sec
K @ 20 °C					No.	° C		hr	min	sec	psi	psi	(cc)	(cc)	gradient	Dev. from Ave.
TEST SUMMARY				initial	23.5	5/2/12	09	32	00	105.0	100.0	55.10	39.03	1.01	2.66E-08	
	-	and Test Cond			final	23.6	5/2/12	10	36	00			53.74	39.45	 	2.43E-08
_	7.636 c	- axiai	0.5%		1	RT = 0.918	dT =		64.00 m		$\sigma'_{c} =$	0.7 ksf	0.102	0.101	io= 26.5	5%
	40.103 c	_	4.007		initial	23.6	5/2/12	10	37	00	105.0	100.0	55.00	39.04	0.92	2.54E-08
	306.21 c				final	23.7	5/2/12	11	43	. 00		071.6	53.67	39.49		2.31E-08
Sc =	0.190 c	m^{-1} Sc = Lc	Ac , final		2	RT = 0.915	dT =		66.00 m		σ' _c =	0.7 ksf	0.100	0.108	io= 26.3	0%
				0	initial	23.7	5/2/12	11	44	00	105.0	100.0	55.20	39.01	1.02	2.50E-08
	W (0()	γ _τ	γ _d	S (0()	final	23.8	5/2/12	13	03	00	.	0.711	53.63	39.49	:- 00.7	2.27E-08
le itiel	(%) 26.19	(pcf) 125.9	(pcf) 99.8	(%) 97.5	3 initial	RT = 0.913 23.8	dT = 5/2/12	13	79.00 m	1in 00	$\sigma'_{c} = 105.0$	0.7 ksf	0.118 55.20	0.115 39.01	io= 26.7 1.02	-2% 2.52E-08
Initial PreTest	26.19	125.9	99.8 100.8	100.0	final	24.0	5/2/12	14	08	00	105.0	100.0	53.90	39.41	1.02	2.32E-08 2.28E-08
Prefest	20.23	121.2	100.6	100.0		24.0 RT = 0.909	5/2/12 dT =		64.00 m	- 0	σ' _c =	0.7 ksf	0.097	0.096	io= 26.7	-2%
LIVER ALLI IC CONDUCTIVITY CUMMARY					4 initial	KT = 0.909	ui =		64.00 11	1111 	oc=	U.7 KSI	0.097	0.096	10= 26.7	-2%
HYDRAULIC CONDUCTIVITY SUMMARY Averages for trials: 1-4					final						1				1	
ave K @ 20 °C: 2.32E-08 cm/sec					1111a1 5		dT =]	<u> </u>	σ' _c =				 	
(i _o)ave = 26.5					initial		ui =	l			O _C =					
	(1 ₀)ave –	20.0			final					 	1				1	
Tested By: DT Reviewed By: G. Thomas					1111a1 6		dT =	<u> </u>		<u> </u>	σ' _c =	l				
rested by. D1 Reviewed by. G. Hillias					ŭ		~ .				- U			ı	ı	


	Proj. No. e Opened pened By:	5/1/	76638 /2012 DT				Boring No. ample No. Depth		-100 -61		
Tul	Tube Seals Top Bottom				Good	Fair	Loose	Leaking Water	Leaking Soil		
Tube Scale (ft)	Depth Sample Jar Use No. (ft)			Description of Soil and Remarks							
0.2—	(0.42' Void	<u> </u>								
0.6—	59.35	discard w		W(8)	200						
1.0—	59.6		A	F.1. 5.3 F.1. 5.3		CL, Mottled puple and red silty CLAY trace fine sand					
1.4—	59.9 60.15	W UC, PI S/H	В	2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		CL, Mottle trace fine s	ottled puple and red silty CLAY ine sand				
1.8— 2.0— 2.2—	60.45	W		8			d puple an to gray CL <i>i</i>		CLAY rple mottles	6	
2.4—		0.07' Void				58-100	ooil i tubo	7520	am		
Measu	Cutting e	nd Voids	2.5 0.49 <u>2.869</u> 2.886	ft in.	Wgt. soil + tube <u>7530</u> gm Wgt tube <u>2319.6</u> gm Wgt. wet soil 5210.4 gm Total Unit Weight by						
Insid		Recovery	2.01 0.6%	ft	Cutting E		Tube		Ave. 126.6	lb/ft3	


Proj. No. 31737757-270 Boring No. SB-101 Date Opened 5/1/2012 Sample No. Opened By: Depth 59-61 DT Leaking Leaking Tube Seals Wax Mech. Good Fair Water Soil Loose Top **Bottom** Tube Depth Sample Description of Soil and Remarks Jar Scale Use No. (ft) (ft) 59 .08 void discard 0.2-59.4 top disturbed with sand pockets 0.4 PI, S/H Α CL, stiff, red brown CLAY 0.6 59.7 W 0.8-59.95 1.0 В CL, stiff, red brown CLAY 1.2-0.0 void 1.4 1.6-1.8-2.0-2.2-2.4-0.03' Void Measured Length of tube Wgt. soil + tube 4378.5 gm 1.3 ft End Voids 0.08 ft Wgt tube 1190.9 gm Wgt. wet soil 3187.6 gm Cutting edge (De) 2.844 in. I.D. Total Unit Weight by Tube (Di) 2.886 in. Recovery 1.22 ft Cutting Edge (De) Tube (Di) Ave. Inside Clearance Ratio: 1.5% 130.6 126.8 128.7 lb/ft3


Dat	Proj. No. e Opened		76638 /2012				Boring No.		-102		
	Opened By: DT				_	Depth					
Tu	Tube Seals Top		Wax		Good	Fair	Loose	Leaking Water	Leaking Soil		
	Bottom										
Tube Scale (ft)	Depth (ft)	Sample Use	Jar No.	Description of Soil and Remarks							
0.2—		0.94' Void	d								
0.4—											
0.6—											
0.8—											
1.0—	63			Q a							
1.2—			Α			SF	P-SM, brow	n fine SAN	ID, trace silt		
1.4—	63.4	w		6							
1.6—	63.65	Perm	В	9.7	Dries	CL,	red-brown	silty CLA	, trace sand		
2.0—	63.95	W		6							
2.2— — 2.4—	64.2	UC PI, S/H	С	mit-1 seeds 2		CL,	red-brown	silty CLA	/, trace sand		
		0.07' Void		Tie -							
Measu	ured Lengt		2.5	 -							
_		nd Voids	1.01				Wgt tube	2353.6			
I.D.	Cutting e		2.837				gt. wet soil	3351.2	gm		
i.D.		ube (Di)	2.881				Total Unit V				
		Recovery	1.49	ft	Cutting E		Tube		Ave.		
Insid	le Clearan	ce Ratio:	<u>1.6</u> %		11:	3.0	10	9.5	111.2 lb/1	t3	

Proj. No. 31737757-270 Boring No. SB-103 Date Opened 5/1/2012 Sample No. Opened By: Depth 75-77 DT Leaking Leaking Tube Seals Wax Mech. Good Fair Loose Water Soil Top **Bottom** Tube Depth Sample Description of Soil and Remarks Jar Scale Use No. (ft) (ft) 75 .0 void Perm 75.15 Α 0.2-CL, mottled red and gray CLAY 75.4 W 0.4 В 0.6 75.65 UC CL, gray silty CLAY PI, S/H 0.8-76 0.12 void 1.0 1.2-1.4 1.6 1.8-2.0-2.2-2.4-0.03' Void Wgt. soil + tube Measured Length of tube 3229.4 gm 1.02 ft End Voids 0.12 ft Wgt tube 912.2 gm Wgt. wet soil 2317.2 gm Cutting edge (De) dented in. I.D. Tube (Di) 2.882 in. Total Unit Weight by Recovery 0.9 ft Cutting Edge (De) Tube (Di) Ave. 125.3 lb/ft3 Inside Clearance Ratio: dented 125.3

APPENDIX C MONITORING WELL CONSTRUCTION LOGS

APPENDIX D TEST PIT LOGS/TEST PIT PHOTO LOGS

PROJECT: N	National Gri	d Williamsburg		Sheet 1 of 1
CLIENT: National Grid		JOB NUMBER:	11176638.00001	
CONTRACTOR: Fenley & Nicol		LOCATION:	213' west of Kent Ave fence,	
DATE STAR	TED:	3/20/2012		140' south of N. 12th St fence
DATE COMP	PLETED:	3/21/2012	OPERATOR:	Mike Ryan
TRENCH NU	JMBER:	WW-TP-100	GEOLOGIST:	Megan Dascoli / Mira Abdelaziz
DEPTH	VISUAL			
(FT)	IMPACTS		DESCRIPT	ION
		0'-5" - concrete		
1		5"-1' - coarse, angular gravel		
		1'-6.5' - dk brown FILL - sand	and silt; 30% bricks, pav	ing stones; 20% gravel
2				
3				
4		41 All mine running CE to NIM	naacible ducin line	
ا ہا		4' - 4" pipe running SE to NW	, possible drain line	
5		E' C E' game as shows block stained final ail and apparable adar		
		5'-6.5' - same as above, black stained, fuel oil and anaerobic odor		
6				
7		6' - water pooling		
, , , , , , , , , , , , , , , , , , ,			ossible concrete, visual in	spection hindered by pooling water
8		Test Pit ended at 7.8' bgs.	,	71 9
		root it onded at 1.0 bgo.		
9				
10				
11				
12				
COMMENTS	3:	PID readings on recovered m	aterial were 0 ppm.	
	Rubber tire backhoe used- Case 590K.			
Obstructio	ns Noted:	Possible concrete flooring at 6		
	Note:	0'-6.5' dug on 3/20/12 with Me	•	
	6.5'-7.8' jackhammered on 3/21/12 with Mira Abdelaziz. Stopped due to 18" of pooling water.			

PROJECT: National	Grid Williamsburg	Sheet 1 of 1			
CLIENT: National	l Grid	JOB NUMBER:	11176638.00001		
CONTRACTOR: Fenley & Nicol		LOCATION:	213' west of Kent Ave fence,		
DATE STARTED:	3/20/2012		68' south of N. 12th St fence		
DATE COMPLETED): 3/20/2012	OPERATOR:	Mike Ryan		
TRENCH NUMBER	: WW-TP-101	GEOLOGIST:	Megan Dascoli		
DEPTH VISUA	AL				
(FT) IMPAC	TS	DESC	CRIPTION		
	0'-5" - concrete				
1	5"- 1.3' - coarse, angular gra	ivel (road base)			
	1' - dk brown NAPL free prod	duct in middle of pit			
2	1.3'-9.3' - med brown FILL -	silt, sand with 10% b	ricks, 10% f-c gravel, trace wood beam,		
	concrete		1		
3					
4	3.5'-4' - med gray staining				
	4'-9.3' - dk gray staining, stro	ong CT-like odor (PI	D=218 ppm)		
5					
6		6'-8' - 1' x 1' boulder and 2' x 3' brick structure			
	6'-8' - 1' x 1' boulder and 2' x				
7					
8					
9			▼		
	Test Pit ended at 9.3' bgs.				
10					
11					
12					
COMMENTS:	PID readings from 4'-9.3' we		3 ppm.		
	Rubber tire backhoe used- C	Case 590K.			
Obstructions Note	ed: None				

DPO IECT:	National Gri	d Williamsburg		Sheet 1 of 1		
PROJECT: National Grid Williamsburg CLIENT: National Grid			IOD NUMBER.			
		JOB NUMBER:	11176638.00001			
CONTRACTOR: Fenley & Nicol		LOCATION:	207' west of Kent Ave fence,			
DATE STAF		3/19/2012	00504700	10' south of N. 12th St fence		
DATE COM		3/19/2012	OPERATOR:	Mike Ryan		
TRENCH N		WW-TP-102	GEOLOGIST:	Megan Dascoli		
DEPTH	VISUAL					
(FT)	IMPACTS		DESCI	RIPTION		
		0'-6" - concrete				
1		6"-1.5' - dk brown FILL - sand	l, silt, bricks			
2		1.5'-2.25' - coarse, angular gr	•			
		2.25'-8' - dk brown FILL- sand	d and silt, with 30% b	oricks, cobbles, paving stones, 20% gravel		
3						
4						
5						
		b' - CT-like odor, water seeping into test pit				
6		.5' - pipe coming into site from N 12th Street through the middle of test pit				
7						
				↓		
8		8' - PID= 322 ppm				
		Test pit ended at 8' bgs.				
9						
10						
11						
12						
COMMENT	S:	PID readings on 0'-5' bgs wer	e 0 ppm. At 8' bgs, F	PID=322 ppm.		
		Rubber tire backhoe used- Ca				
Obstruction	ons Noted:	Pipe coming into site at 5.5' b	gs from N 12th Stree	et.		

PROJECT:	National Gri	d Williamsburg		Sheet 1 of 1		
CLIENT:	National Gri	<u>-</u>	JOB NUMBER:	11176638.00001		
CONTRACTOR: Fenley & Nicol		LOCATION:	157' west of Kent Ave fence,			
DATE STAF	RTED:	3/19/2012		10' south of N. 12th St fence		
DATE COM	PLETED:		OPERATOR:	Mike Ryan		
TRENCH N	UMBER:	WW-TP-103	GEOLOGIST:	Megan Dascoli		
DEPTH	VISUAL					
(FT)	IMPACTS		DESCRI	PTION		
		0'-1' - grass and rubble				
1						
			-	ar coarse gravel with bricks and cobbles,		
2		stained black, moderate pe	etroleum/fuel oil-like od	lor		
		<u></u>				
3		2.5' - two metal walls, with rive		older Tank		
		3'-6' - brick structure on NW 6	•	NE OW stored at the control		
4			ind concrete wall runnii	ng NE-SW street side, parallel		
		with N 12th Street	with N 12th Street			
5						
6		6' - water pooling, flat concret	e hottom			
7		water pooling, nat concret	o bottom			
<u>'</u>		Test pit covered with plywood	I. will attempt to use ha	mmer bit to drill through concrete		
8		· · · · · · · · · · · · · · · · · ·	,	gg		
9						
10						
11						
12						
COMMENT	S:	PID readings on recovered m	• •			
		Rubber tire backhoe used- Ca				
Obstruction	ons Noted:	Water pipe at 3.5' bgs paralle	I to N 12th Street. Con-	crete floor throughout at 6' bgs.		
Note: 0'-6' dug on 3/19/12 with Megan Dascoli, not present past this date.						

PROJECT:	National Gri	d Williamsburg		Sheet 1 of 1	
CLIENT:	National Gri		JOB NUMBER:	11176638.00001	
	Fenle	ey & Nicol	LOCATION:	107' west of Kent Ave fence,	
DATE STAF	RTED:	3/15/2012		10' south of N. 12th St fence	
DATE COM	PLETED:	3/15/2012	OPERATOR:	Mike Ryan	
TRENCH N	UMBER:	WW-TP-104	GEOLOGIST:	Megan Dascoli	
DEPTH	VISUAL				
(FT)	IMPACTS		DESCRIPT		
		0'-4" - asphalt; 4"-7" - coarse,	angular gravel (road bas	se)	
1		7"-2' - med brown FILL- vf-c s	sand and silt, f-c gravel, c	obbles, boulders,	
		bricks, paving stones, trac	e metal; trace wood at 2'		
2		1'-3.5' - a 2' diameter pipe ent	-		
		2'-6.5' - med brown soft, mois	st, vf-m SAND with 30% s	ilt, 20% f-m gravel, 10% cobbles	
3					
4					
			\perp		
5		Fl			
		5' - same lithology, with medium gray staining and sheen on grains, heavy coating,			
6		moderate odor that's a mix	moderate odor that's a mix of CT-like and fuel oil-like (PID=0 ppm)		
_		6.5'-9' - It brown SILT, with 20	1% vf-m sand 10% cobbl	20	
7		7' - light to heavy coating of g			
8		with black stained wood fra		L, diffig of like oder	
-				etrong odor (PID-4 9 npm)	
9		o o meavy with Empacts	3'-9' - heavy NAPL impacts - staining, heavy coating, strong odor (PID=4.9 ppm)		
		Test Pit ended at 9' bgs, botto	om of test pit is caving in.		
10					
11					
12					
COMMENT	S:	Highest PID reading was 4.9	ppm at 8'-9', strong odors	s and visual impacts from 7'-9'.	
		Rubber tire backhoe used- Ca	ase 590K.		
Obstruction	ons Noted:	Two foot diameter pipe found	entering site from N 12th	n Street at 1'-3.5' bgs.	

PROJECT:	National Gri	d Williamsburg		Sheet 1 of 1	
CLIENT:	CLIENT: National Grid		JOB NUMBER:	11176638.00001	
CONTRACT	TOR: Fenle	ey & Nicol	LOCATION:	58' west of Kent Ave fence,	
DATE STAR	RTED:	3/15/2012		10' south of N. 12th St fence	
DATE COM	PLETED:		OPERATOR:	Mike Ryan	
TRENCH N	UMBER:	WW-TP-105	GEOLOGIST:	Megan Dascoli	
DEPTH	VISUAL				
(FT)	IMPACTS		DESCRIPT		
		0'-4" - asphalt; 4"-1' - coarse,	angular gravel (road bas	e)	
1					
		1'-2.5' - thick concrete flooring	9		
2					
3		2.5'-6.8'- med brown FILL- vf-	c sand with 30% silt, 20%	f-c gravel, 5% cobbles	
			1		
4					
5					
6		at C. El water poeling			
		· -	at 6.5' water pooling at 6.8'- flat bottom, possibly concrete, visual inspection hindered by pooling water		
7		Will attempt to use hammer b	•		
8		Will attempt to use naminer b	it to arm unough conorcie		
9					
10					
11					
12					
COMMENT	S:	PID readings on recovered m	aterial were 0 ppm.		
		Rubber tire backhoe used- Case 590K.			
Obstruction	Dbstructions Noted: Possible concrete flooring at 6.8' bgs.				
	Note: 2"-6.8	dug on 3/20/12 with Megan D	ascoli, not present past tl	nis date.	

i					
PROJECT:	National Gri	d Williamsburg		Sheet 1 of 1	
CLIENT: National Grid			JOB NUMBER:	11176638.00001	
CONTRACTOR: Fenley & Nicol		LOCATION:	10' west of Kent Ave fence,		
DATE STAF	RTED:	3/20/2012		10' south of N. 12th St fence	
DATE COM	IPLETED:	3/20/2012	OPERATOR:	Mike Ryan	
TRENCH N	UMBER:	WW-TP-106	GEOLOGIST:	Megan Dascoli	
DEPTH	VISUAL				
(FT)	IMPACTS		DESCI	RIPTION	
		0'-6" - concrete/asphalt layer			
1		6"-1.3' coarse, angular gravel			
		1.3'-8.4' - on north side of test	•		
2		on south side - med brown	r FILL - vf-c sand with	h bricks, concrete, paving stones and gravel	
3					
4					
5					
6					
_		↓			
7		7'-8 4' - same lithology with d	lark aray etaining etr	rong fuel oil odor (PID=22.9 ppm)	
		7 -0.4 - Same illilology, with a	iaik gray stairiirig, sti	ong ruer on odor (FID=22.9 ppm)	
8					
		Toot Dit anded at 9.41			
9		Test Pit ended at 8.4'.			
10					
10					
11					
12					
12					
COMMENTS: PID readings from 0'-7' bgs were 0 ppm. From 7'-8.4' bgs PID=22.9ppm.				8.4' bas PID=22.9ppm.	
Rubber tire backhoe used- Case 590K.			5		
Obstructions Noted: On north side of test pit, a concrete wall from 16"-8.4' bgs, bottom not found.			8.4' bas, bottom not found.		
P					

PROJECT: National Grid Williamsburg Sheet 1 of 1					
CLIENT:	National Gri	d	JOB NUMBER:	11176638.00001	
CONTRACTOR: Fenley & Nicol			LOCATION:	10' west of Kent Ave fence,	
DATE STAF	RTED:	3/16/2012		68' south of N. 12th St fence	
DATE COM	PLETED:	3/16/2012	OPERATOR:	Mike Ryan	
TRENCH N	UMBER:	WW-TP-107	GEOLOGIST:	Megan Dascoli	
DEPTH	VISUAL				
(FT)	IMPACTS		DESCRIPTI		
		0'-3" - asphalt; 3"-9" - coarse,	• •	•	
1		9"-1.5' - med brown FILL- san	d, silt, bricks, gravel, cond	crete cobbles, rock cobbles	
2				e foundations found with a 16"	
		opening between them tha	•		
3		1.5'-6.5' - between concrete -	FILL- silt, sand and grave	el, trace bricks	
4					
5					
6		↓			
		Water pooling at 6.5' bgs	Water pooling at 6.5' bgs		
7		Cleared to 6.5' bgs between the concrete foundations. Bottom of concrete not found.			
8					
9					
10					
11					
12					
COMMENT	S:	PID readings on recovered m	• •		
		Rubber tire backhoe used- Ca			
Obstruction	ons Noted:	Two concrete foundations wit	h a 16" space between the	em from 1.5' to below 6.5' bgs.	

PROJECT:	National Gri	d Williamsburg		Sheet 1 of 1	
	LIENT: National Grid		JOB NUMBER:	11176638.00001	
CONTRACT	CONTRACTOR: Fenley & Nicol		LOCATION:	10' west of Kent Ave fence,	
DATE STAF	RTED:	3/15/2012		140' south of N. 12th St fence	
DATE COM	PLETED:	3/15/2012	OPERATOR:	Mike Ryan	
TRENCH N	UMBER:	WW-TP-108	GEOLOGIST:	Megan Dascoli	
DEPTH	VISUAL				
(FT)	IMPACTS		DESCRIPTION		
		0' -3" - asphalt; 3"-6" - coarse		•	
1		6"-1' - med brown FILL - vf-vo			
			ones, cinder blocks, with 2	20% vf-vc sand and 10% silt, 10% f-c	
2		gravel			
		O.E. on cost side ///ant Acce	aida) a faundation built of	bricks and morter found intent on	
3		·	•	bricks and mortar found intact on und, made of sheet metal and rivets	
		containing bricks, concrete		und, made of sheet metal and nivets	
4		Containing bricks, concrete	e and other rubble made		
5					
3					
6					
7		6.5' - water pooling, NAPL odor on water			
		• •	3.5 Water pooling, 17 to 2 days on water		
8		◆			
		Test pit ended at 8', under water, some bricks and fill material are coming up.			
9				- ,	
10					
11					
12					
COMMENT	S:	PID readings on recovered m	• •		
		Rubber tire backhoe used- Ca			
Obstruction	ons Noted:	Brick foundation on east side,		st side,	
		bottom of either not found at 8	B' bgs.		

PRO IECT:	National Grid	d Williamsburg		Sheet 1 of 1		
PROJECT: National Grid Williamsburg CLIENT: National Grid			JOB NUMBER:	11176638.00001		
		LOCATION:	10' west of Kent Ave fence,			
DATE STAF		3/16/2012	LOCATION.	203' south of N. 12th St fence		
DATE COM		3/19/2012	OPERATOR:	Mike Ryan		
TRENCH N		WW-TP-109	GEOLOGIST:	Megan Dascoli		
DEPTH		WW-11 -103	GEOLOGIST.	Wegan Dascon		
	VISUAL IMPACTS		DECCRIPTI	ION		
(FT)	IMPACIS	0'-3" - asphalt; 3"-9" coarse, a	DESCRIPTI			
		9"-4' - med brown FILL- vf-vc				
1		9 -4 - Illed blowill ILL- vi-vc		offices and copples		
2						
,						
3		3.5' - 1' diameter pipe	\downarrow			
4		3.9' - trace metal and wood	•			
-		4'-4.4' - concrete floor				
5			1.4'-8' - FILL mostly silt, 10% sand, 10% f-c gravel, 10% boulders, trace wood, loose			
		in a rill moony one, 1070	F.4 -6 - FILE Mostly Sill, 10% Sand, 10% 1-c graver, 10% boulders, trace wood, loose			
6						
7		7'-8.3' - It gray color, strong gasoline/petroleum odor (PID=115ppm)				
		33	(-11 /		
8						
		↓				
9		Test Pit cleared to 8'3".				
		TOOL I'LL GIOGIOU TO OO .				
10						
11						
12						
COMMENT	S:	PID readings for 0'-7' bgs wer	re 0 ppm. PID=115 from 7	''-8.3' bas.		
	-	Rubber tire backhoe used- Ca	• •			
Obstruction	ons Noted:	4" concrete flooring at ~4'bgs		vest side.		
		1' diameter pipe found at 3.5'				
		. a.aotor pipo rourid di oro	~3~.			
L						

PROJECT:	National Gri	d Williamsburg		Sheet 1 of 1	
CLIENT: National Grid			JOB NUMBER:	11176638.00001	
CONTRACTOR: Fenley & Nicol		LOCATION:	58' west of Kent Ave fence,		
DATE STAF	RTED:	3/16/2012		203' south of N. 12th St fence	
DATE COM	PLETED:	3/16/2012	OPERATOR:	Mike Ryan	
TRENCH N	UMBER:	WW-TP-110	GEOLOGIST:	Megan Dascoli	
DEPTH	VISUAL				
(FT)	IMPACTS		DESCRIPT	ION	
		0'-4.5" - asphalt, 4.5"-11.5" - o	coarse, angular gravel (ro	ad base)	
1		11.5"-6.5' - dk brown FILL- mo	ostly bricks, cobbles and	gravel, 30% sand and silt	
		1.5' - on north side of test pit,	possible side of Holder T	ank No. 2, metal rivets in sheet metal	
2					
3					
4		▼			
		4' - brick foundation found on	the N 11th Street side, th	ne south side of test pit. There is a 10"	
5		gap between the brick four	ndation and the Holder Ta	ank side. Used post-hole diggers to clear	
		to 6.5' bgs, could be advar	to 6.5' bgs, could be advanced further.		
6					
		6.5' - water pooling			
7					
8					
9					
10					
11					
12					
COMMENT	S:	PID readings on recovered m	aterial were 0 ppm.		
		Rubber tire backhoe used- Ca	ase 590K.		
Obstruction	ons Noted:	From 1.5'-6.5' bgs, brick found	dation & Holder Tank No.	2 metal side with 10" gap between them.	

PROJECT: National G	rid Williamsburg		Sheet 1 of 1		
CLIENT: National Grid		JOB NUMBER:	11176638.00001		
CONTRACTOR: Fenley & Nicol		LOCATION:	107' west of Kent Ave fence,		
DATE STARTED:	3/16/2012		203' south of N. 12th St fence		
DATE COMPLETED:	3/16/2012	OPERATOR:	Mike Ryan		
TRENCH NUMBER:	WW-TP-111	GEOLOGIST:	Megan Dascoli		
DEPTH VISUAL					
(FT) IMPACTS		DESCRI	PTION		
	0'-8" - asphalt				
1	8"-1.3' - coarse, angular grav	el (road base)			
	1.3'-4' - med brown FILL - sar	nd with 20% bricks and	cobbles, 20% silt		
2					
3					
4	▼				
	4'-7' - med brown SILT with 1	1'-7' - med brown SILT with 10% vf-m sand, 20% gravel and cobbles, 20% boulders, 20% clay			
5					
6					
_	↓				
7	7'-10' - dk gray SILT 10% sa	7/ 40/ diversity CILT 400/ pand 200/ exercisis havidate 200/ plant strong CT like adar about			
8		7'-10' - dk gray SILT, 10% sand, 30% gravel to boulders, 20% clay, strong CT-like odor, sheen,			
•	and staining (PID=132 ppm)				
9					
10	. ♦				
1.5	Test Pit ended at 10' bgs.				
11	Tost i it olidod dt 10 bys.				
 					
12					
<u> </u>					
COMMENTS:	PID readings on material fron	n 0'-7' were 0 ppm. Fro	m 7'-10', strong CT-like odor and staining.		
COMMENTS: PID readings on material from 0'-7' were 0 ppm. From 7'-10', strong CT-like odor and staining. Rubber tire backhoe used- Case 590K.			, ,		
Obstructions Noted:	None				
	Obstructions Noted. Note				

PROJECT: Nation	nal Grid	l Williamsburg	Sheet 1 of 1				
CLIENT: National Grid			JOB NUMBER:	11176638.00001			
CONTRACTOR: Fenley & Nicol		y & Nicol	LOCATION:	157' west of Kent Ave fence,			
DATE STARTED:	,	3/19/2012		203' south of N. 12th St fence			
DATE COMPLETE		3/19/2012	OPERATOR:	Mike Ryan			
TRENCH NUMBER	R:	WW-TP-112	GEOLOGIST:	Megan Dascoli			
DEPTH VISU	UAL						
(FT) IMPA			DESCRIPTION				
		0'-6" - asphalt					
1	(6"-1' - coarse, angular gravel (road base)					
		1'-8' - FILL-bricks with 40% sand and silt with concrete cobbles, paving stones					
2							
3							
		3'->8' - brick wall on south side					
4							
			▼				
5		4.5' - water pooling, water has sheen on it					
		4.5'-8' - mix of petroleum-like, CT-like, anaerobic odors; w/ black petroleum blebs on water					
6							
7							
8			▼				
		Test Pit ended at 8' bgs.					
9							
10							
11							
12							
COMMENTS:		PID readings on recovered material were 0 ppm.					
		Rubber tire backhoe used- Case 590K.					
Obstructions Noted: B		Brick wall on south side from 3' bgs- beyond 8' bgs.					

PROJECT:	National Gri	d Williamsburg		Sheet 1 of 1		
CLIENT: National Grid			JOB NUMBER:	11176638.00001		
CONTRACTOR: Fenley & Nicol		ey & Nicol	LOCATION:	207' west of Kent Ave fence,		
DATE STAF	RTED:	3/19/2012		203' south of N. 12th St fence		
DATE COM	IPLETED:	3/19/2012	OPERATOR:	Mike Ryan		
TRENCH N	UMBER:	WW-TP-113	GEOLOGIST:	Megan Dascoli		
DEPTH	VISUAL					
(FT)	IMPACTS	DESCRIPTION				
		0'-5" - concrete				
1		5"-1' - coarse, angular gravel (road base)				
		1'-9' - med brown FILL - silt, vf-vc sand, 30% sub rounded f-c gravel, 20% cobbles, bricks,				
2		concrete, paving stones				
3		OL				
		~3' - med gray staining, petroluem odor (PID=46.1 ppm)				
4						
5						
3						
6						
7				*		
		7'-9' - med gray staining, sheen on grains, strong CT-like and petroleum-like odor,				
8		PID=125 ppm, wet, water seeping into pit from 6'-7' bgs.				
		3 4 7 5 5				
9						
		Test Pit ended at 9' bgs.				
10						
11						
12						
		Staining and odors from 3'-9' bgs.				
		Rubber tire backhoe used- Case 590K.				
Obstruction	ons Noted:	None				

Client Name: National Grid

Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-100

Project No. 11176638.00001

Photo No.

Date: 3/20/12

Description:

Looking northeast, brick wall/ foundation found at 18" bgs on the south side and concrete foundation found on the west side...

Photo No.

Date: 3/20/12

Description:

Looking southwest, test pit cleared to 4' bgs. Brick wall on far end, concrete wall on the right.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-100

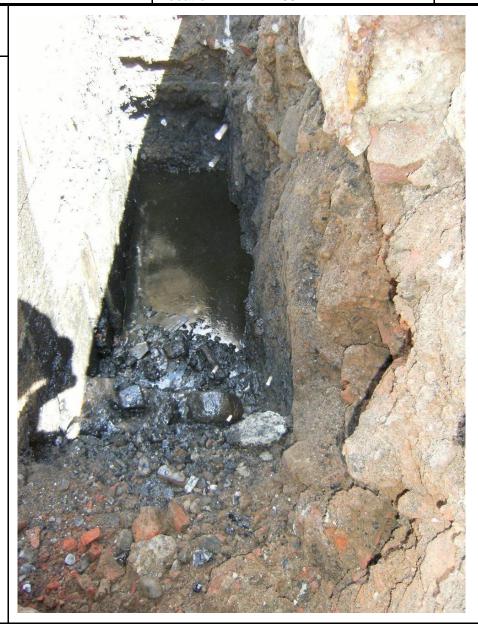

Project No. 11176638.00001

Photo No. 3

Date: 3/20/12

Description:

Looking northeast, location cleared to 6.5' bgs. Contamination found from 5'-6.5' bgs. Possible concrete bottom found at 6.5' bgs.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-101

Project No. 11176638.00001

Photo No.

Date: 3/20/12

Description:

Looking northwest at WW-TP-101, cleared to 9.3' bgs.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-101

Project No. 11176638.00001

Photo No.

Date: 3/20/12

Description:

Looking southeast, WW-TP-101 cleared to 9.3'.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-101

Project No. 11176638.00001

Photo No.

Date: 3/20/12

Description:

Looking north at stockpile of material recovered from test put. Stained material found from 3.5' to 9.3' bgs.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-102

Project No. 11176638.00001

Photo No.

Date: 3/19/12

Description:

Looking northwest at overview of WW-TP-102 location.

Photo No.

Date: 3/19/12

Description:

Looking southeast at 2' diameter pipe coming onto site from N 12th Street at 5.5' bgs.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-102

Project No. 11176638.00001

Photo No.

Date: 3/19/12

Description:

Looking southeast at pipe traversing test pit. Test pit cleared to 8' bgs.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-103

Project No. 11176638.00001

Photo No.

Date: 3/19/12

Description:

Looking north at stockpile and WW-TP-103 dug about 2' bgs.

Photo No.

Date: 3/19/12

Description:

Looking southwest at metal wall on south side of test pit, possibly part of the Holder Tank that starts about 2.5' bgs. Pooling water at about 3' bgs.

Client Name: National Grid

Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-103

Project No. 11176638.00001

Photo No.

Date: 3/19/12

Description:

Looking northwest.

Metal wall visible on the left side of photo, on south side of trench.

Location cleared to 6' bgs, where there is an apparent concrete floor.

Photo No.

Date: 3/19/12

Description:

Looking northwest at water pipe running parallel to N 12th Street, on north side of trench.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-103

Project No. 11176638.00001

Photo No. 5

Date: 3/19/12

Description:

Looking southeast at trench with water pipe on the left and metal wall on the right of photo.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-104

Project No. 11176638.00001

Photo No.

Date: 3/15/12

Description:

Test Pit WW-TP-104 with asphalt cover removed, exposing coarse gravel, road base.

Looking S.

Photo No.

Date: 3/15/12

Description:

Top of two feet diameter pipe uncovered. Possible "clean-out" about 0.5' bgs. Main pipe about 1' bgs.

Looking SE.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-104

Project No. 11176638.00001

Photo No.

Date: 3/15/12

Description:

Two feet diameter pipe approximately one foot from grade.

Looking E.

Photo No.

Date: 3/15/12

Description:

Test pit dug to 9' bgs. Petroleum and NAPL staining from 7'-9'.

Looking NNW.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-104

Project No. 11176638.00001

Photo No.

Date: 3/15/12

Description:

Petroleum and NAPL contaminated soil from 7'-9'. Test Pit ended at 9'.

Looking NE.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-105

Project No. 11176638.00001

Photo No.

Date: 3/20/12

Description:

Looking southwest, 18" concrete/brick flooring about 1' bgs.

Photo No.

Date: 3/20/12

Description:

Looking northwest, concrete wall on the south side of trench. Cleared to 6' 10" bgs, possible concrete slab.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-105

Project No. 11176638.00001

Photo No.

Date: 3/20/12

Description:

Looking southeast, concrete wall on south side.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-106

Project No. 11176638.00001

Photo No.

Date: 3/20/12

Description:

Looking northeast at WW-TP-106 location.

Photo No.

Date: 3/20/12

Description:

Looking southeast at test pit cleared to 8.4' bgs. Concrete wall on right side, parallel to N. 12th Street, bottom not found.

Client Name: National Grid

Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-106

Project No. 11176638.00001

Photo No.

Date: 3/20/12

Description:

Looking east southeast at a concrete wall parallel to Kent Avenue. Wall extends to a depth of 4' 10" bgs only.

Photo No.

Date: 3/20/12

Description:

Looking southeast, test pit cleared to 8.4' bgs.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-107

Project No. 11176638.00001

Photo No.

Date: 3/16/12

Description:

Test pit WW-TP-107, excavated to 18": two parallel concrete foundations found with a 12" gap between them. Test pit is parallel to Kent Ave

Looking SE.

Photo No.

Date: 3/16/12

Description:

Concrete found 18" bgs.
Looking SE.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-107

Project No. 11176638.00001

Photo No. 3

Date: 3/16/12

Description:

Concrete foundation on NW side of test pit, dug 5' down from start, bottom not found. This is approximately 6.5' bgs, water just starting to pool.

Photo No.

Date: 3/16/12

Description:

Concrete foundation on SE side of test pit (Kent Avenue side), dug 5' down from start, bottom not found. This is approximately 6.5' bgs, water just starting to pool.

Client Name: National Grid

Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-108

Project No. 11176638.00001

Photo No.

Date: 3/15/12

Description:

Test Pit WW-TP-108 with asphalt cover removed, exposing coarse gravel, road base, and bricks.

Looking SW.

Photo No.

Date: 3/15/12

Description:

Holder No 2 wall (double metal sheets) containing bricks, concrete cobbles, paving stones, and few sand and silt.

Looking NW.

Client Name: National Grid

Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-108

Project No. 11176638.00001

Photo No.

Date: 3/15/12

Description:

Brick wall/foundation on the Kent Avenue side of the test pit.

Looking ENE.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-108

Project No. 11176638.00001

Photo No.

Date: 3/15/12

Description:

WW-TP-108 excavated to about 5' below grade with fill, Holder Tank No. 2 on left and brick wall on right.

Looking NNW.

Photo No.

Date: 3/15/12

Description:

Water came in at about 6.5' bgs. Excavation came up with fill until 8' bgs when test pit excavation was finished.

Looking W.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-108

Project No. 11176638.00001

Photo No.

Date: 3/15/12

Description:

WW-TP-108 backfilled.

Looking SE.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-109

Project No. 11176638.00001

Photo No.

Date: 3/16/12

Description:

Looking SE toward Kent Avenue. Overview of test pit dug to 4' bgs.

Photo No.

Date: 3/16/12

Description:

Looking SE toward Kent Avenue. Concrete in foreground and concrete at bottom of boring at 4' bgs.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-109

Project No. 11176638.00001

Photo No.

Date: 3/16/12

Description:

Looking NW, concrete at bottom at 4' bgs.

Photo No.

Date: 3/16/12

Description:

Looking SE toward Kent Avenue. Pipe seen on street side, see photo 5.

Client Name: National Grid

Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-109

Project No. 11176638.00001

Photo No.

Date: 3/16/12

Description:

Looking East at east side of test pit. Pipe visible adjacent to Kent Avenue.

Photo No.

Date: 3/19/12

Description:

Looking northeast, test pit cleared to 8' bgs.

Client Name: National Grid

Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-109

Project No. 11176638.00001

Photo No.

Date: 3/19/12

Description:

Looking down into text pit, pipe at 42" bgs, seen on right.

right.
4" Concrete flooring seen at 4' bgs.

Stained and contaminated fill at 4'-8' bgs.

Photo No.

Date: 3/19/12

Description:

Looking SE at test pit. Concrete structures on southeast end of test pit. Pipe and concrete floor seen at 3.5' and 4' bgs.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-109

Project No. 11176638.00001

Photo No.

Date: 3/19/12

Description:

Looking SW at stockpile of removed material, stained and contaminated from 4'-8' bgs.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-110

Project No. 11176638.00001

Photo No.

Date: 3/16/12

Description:

WW-TP-110 overview.

Looking SSE.

Photo No.

Date: 3/16/12

Description:

Brick foundation at 4.5' bgs. Holder Tank No. 2 on right side.

Looking SE.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-110

Project No. 11176638.00001

Photo No.

Date: 3/16/12

Description:

Brick foundation at 4.5' bgs. Holder Tank No. 2 on right side.

Looking SE.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-110

Project No. 11176638.00001

Photo No.

Date: 3/16/12

Description:

Used post-hole diggers to advance two feet below brick foundation (at 4.5' bgs). Could not advance diggers further because of obstruction. Bottom of brick foundation not found.

Looking NW.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-110

Project No. 11176638.00001

Photo No.

Date: 3/16/12

Description:

Looking down at pooling water at about 6.5' bgs.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-111

Project No. 11176638.00001

Photo No.

Date: 3/16/12

Description:

WW-TP-111 contains a very dense silt layer about 4.5' bgs. Adjacent to N 11 th Street.

Looking NW.

Photo No.

Date:

Description:

WW-TP-111 contamination starts 7' bgs. Contamination has strong NAPL odor, sheen and staining.

Looking SW.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-111

Project No. 11176638.00001

Photo No.

Date: 3/16/12

Description:

WW-TP-111 excavated to 10' bgs.

Lookig SW.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-112

Project No. 11176638.00001

Photo No.

Date: 3/19/12

Description:

Looking west at WW-TP-112.

Photo No.

Date: 3/19/12

Description:

Looking WNW at WW-TP-112 and stockpile of removed material.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-112

Project No. 11176638.00001

Photo No.

Date: 3/19/12

Description:

Looking SW at brick wall on south side of test pit. Water pooling at 4.5' bgs.

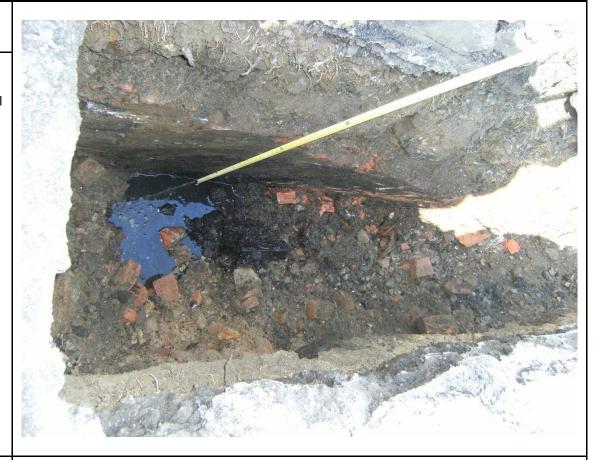


Photo No.

Date: 3/19/12

Description:

Looking to the northwest at side of test pit where wood debris and bricks have accumulated.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-112

Project No. 11176638.00001

Photo No.

Date: 3/19/12

Description:

Looking southwest at brick wall and water accumulated at the bottom of WW-TP-112. Pit cleared to 8' bgs.

Photo No.

Date: 3/19/12

Description:

Wood debris and brick fill in WW-TP-112, looking west.

Client Name: National Grid Site Location: 50 Kent Ave, B'klyn, NY

Location: WW-TP-113

Project No. 11176638.00001

Photo No.

Date: 3/19/12

Description:

Looking northwest at test pit cleared to 3' bgs.

Photo No.

Date: 3/19/12

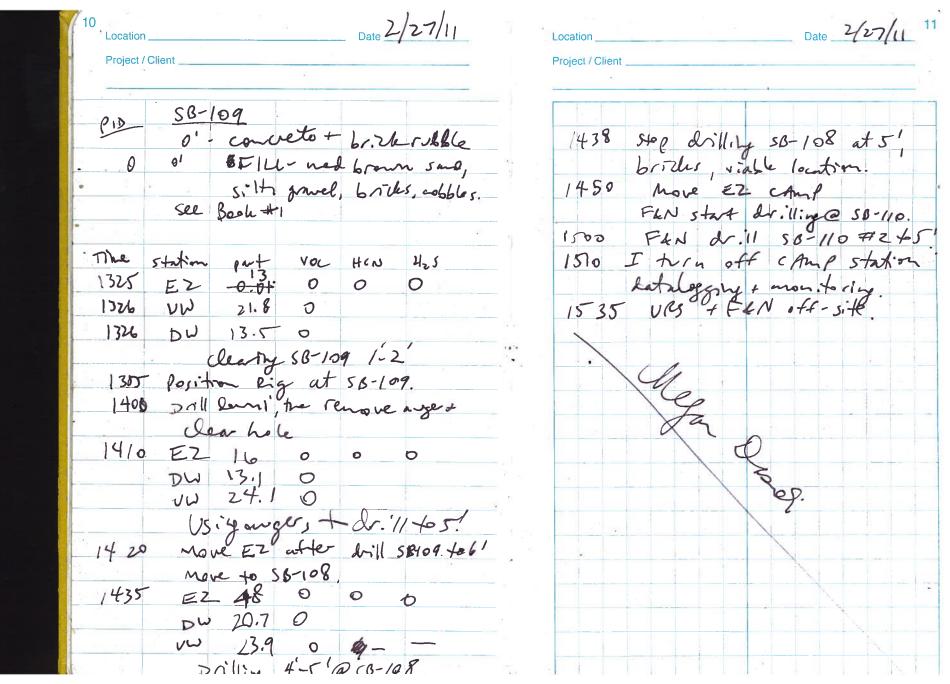
Description:

Looking northwest at test pit cleared to 9' bgs. Contamination of staining and odors start at 3' bgs and continue past 9' bgs.

APPENDIX E CAMP FIELD NOTES

CONTENTS		
PAGE	REFERENCE	DATE
	2	
-i		
	Minus and	
		- 3

Location 50 Kent Are Forday Date 2/24/12 Project/Client Brooklyn, N.Gr.d weather: overast periodic Rain, 47° mod strong would from west. (taken from Book#1) 200 / mitalize 2 outs Kan 4; 8 am Arrive on-site. 1010 Start Upril (UW) CAMP DR4 mg/m3 = 22.8 P10 ppn = 0 10,T Stat Downwind (DW) comp lid hes in error messagl. 1022 Take PID out of UW + put in Dustation. DW DR4 = 13.1 PD = 0.0 1025 Stat Exclusion Zone (FZ) ful muitory. This station doesn't datalog - readings will be recorded by hand in this note 5 ook. EZ DUSTTOOK = 16 mg/m3 mu Hirae HCN=0 VOC=0 H25=0


Project/Client Brooklyn, Ny
weather: sunny clear, 35°-45°,

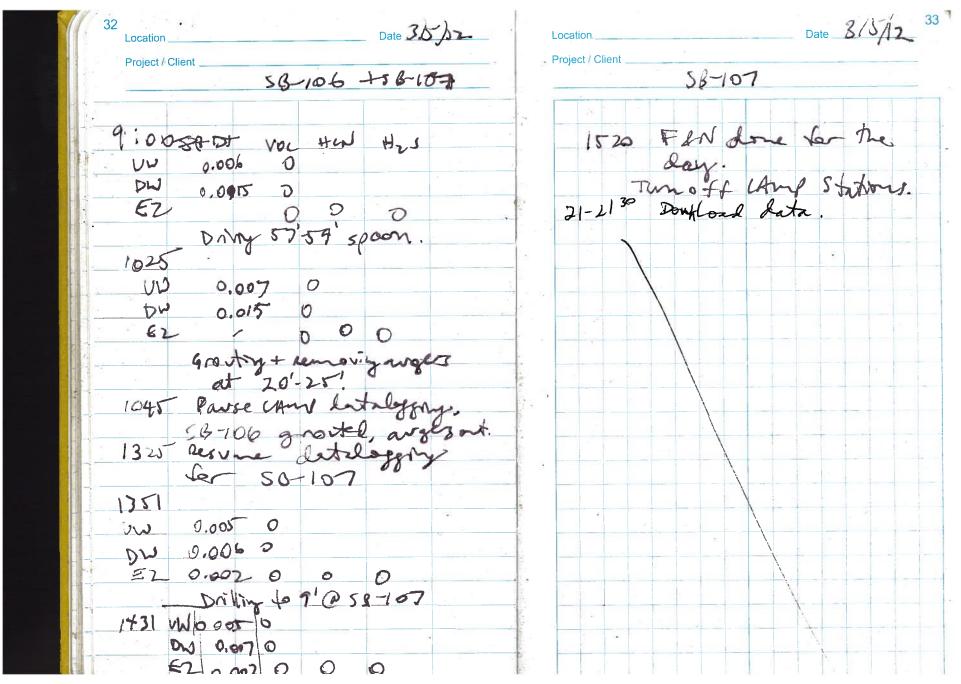
1: jut will from SE. Location ______ Date 2/27/12 7 The state pat. NOC HOW HIS 907 DW 14.4 0.3 No work-set up only. 530-60 Calibrate CAMP. zero/initalize Data Rams. 909 EZ 22 0 0-1 0 910 UW 21.7 0 Calibrate PIDS ul Isobuty leve lot # 0422FAII No work-set up only. exp late 6/15
put # 680 11012 915 stat jackhammery it 58-106 429 EZ 31 0 0-1 0 DU 17.6 0-0.3 # 02545 -99.5 #03382 =100.D 0 C.08 WV #08803 = 100.0 ar knifig @ 58-106.1-2' mtilae # VOC:100.0 EZ 20 0 0-1 0 DW 14.5 pump message, Restation 721 I arrive at six calibrate Mr H Pal # W 23.4 0 cleriy 50-106 45 H25=24 LEL=49 02=20.9 with mit gas Lt # BAM-412P) Kestut DW PID #02587 FLN arove. 1005 Cleved 58-106 405! 1010 Now more to 50-110 move. CAMPS. Start UW And Latalogy. 10 22UW 23.1 0 start DW who datalogyy. Start EZ CAMP monitors. 0 SRY# 08754 010#03582 907 UW EZ 15 0 9-1 0 TRY # 7408 PIN#OZEVE DIDIBLO3 >1245 1 1-1. 6. 0 (R-110 0.1

Location ______ Date 2/27/12 9

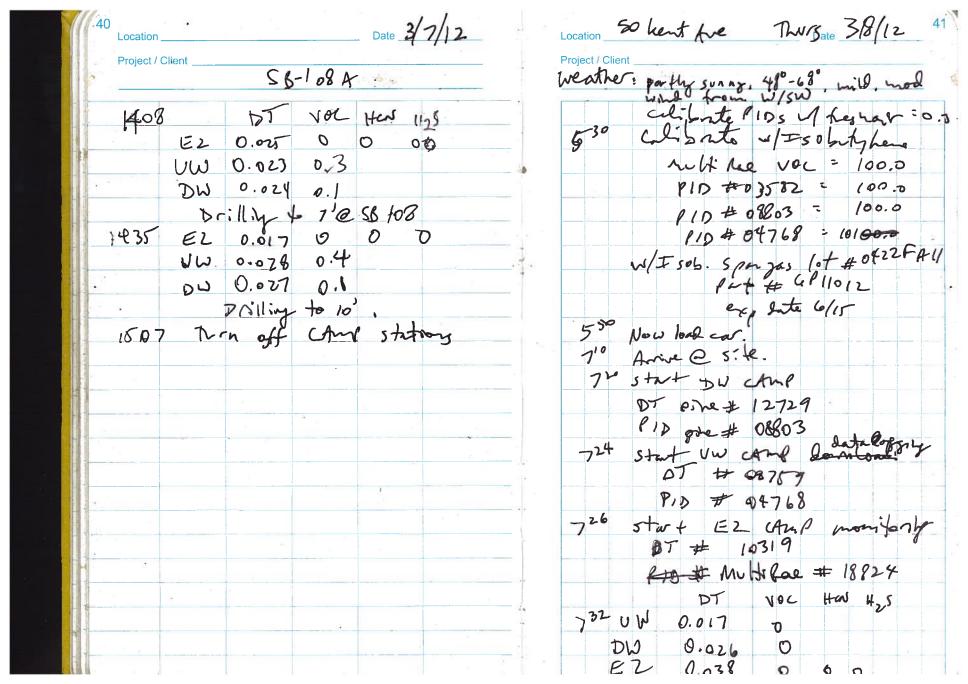
Project / Client _____

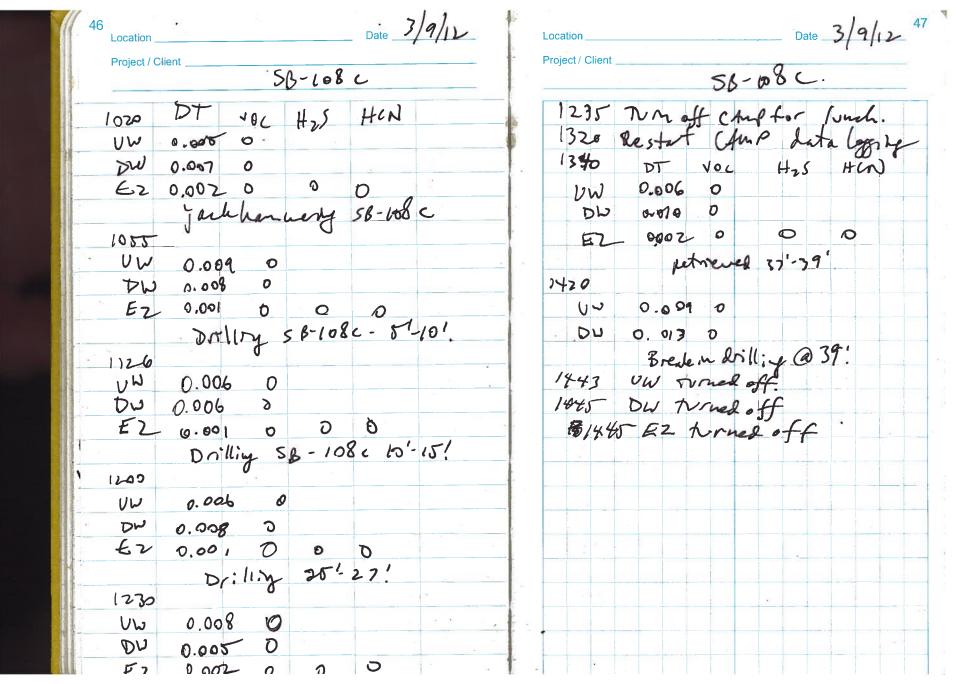
put. VOC 22 0 1050 EZ DW 12.3 UW 14.7 Cleary 1-2' by had & 58.106 #1 EZ 27 0 1122 DW 7.2 0 UW B.L Clearly 56-106 #2 by hard E2 12.1 0 0-1 0 1147 DW 8.5 VW 12-3 air knity 58-106 # 2, @2-3 Break for lunch. 1200 Dw PID primp failed. I restart it as FRN sets Up to continue vote. DW PID pumpfails. 1245 I replace: + with PD # 083 person @ 50-106 #2 300 more EZ station. 1310 FLN stat Cleary SB-109. 1312

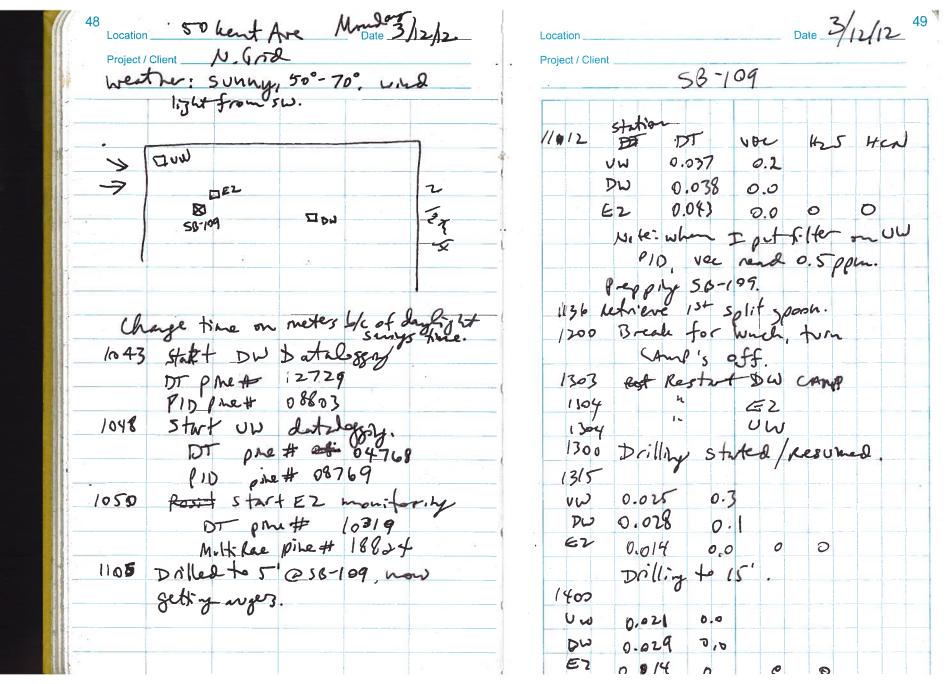
Location _____ Date 2/26/12 15


56-110

EZ DT= 0.251 VOC=0 HCN=0 ILIL Darry splitspa 19'-21'. DW ST_ 0017 100=0 XL II check DW Station - Dust Norte 1137 has tymed aff. 1147 reglace bateries@ DW meters 1147 FEN takes split spoon. DW DT=0.010 10c=0-0 EZ DT-0.052 VOC-0 HCN=0 1150 lega kenoving splitspoon. gike to DT = 0. 206 1295 pm cAnds off. I OW comp already trued off. 1800 start DU + EZ CAnd mon: tony. No JW mon. toring
1394 EZ DT- 0.257 VOC= P 1+cn = 0 Hes = 0 Spile to 0.572, lop down to 0.085 Sull liesel frue, 13.5 DW- DT = 0.013 Vac = 0.0


Date 2/29/12 21 weather avercust, Railing, 370 430 1300 Rushing Leaving 1112 EZ DT=0,021 VOC=0 HW=0 1345 word ends. Fen thes to tryed 425=0 Split spoon hammer cable DW DT = 0.063 NOU: 1.0 preppy tedill, smell dreselfmention DW DT=0.021 VOL: D 14% They can't to it - dove Splitspoon. Canal is suspended for EZ DT = VOC: HW: HJ: 1137 Du DI=0.035 PID=0.0 The day because of heavy rans. Park begg any part whater down PIDS BZ DT 20.021 VOC= 00 are leny of verely HCN:00 H2000 affected by high humidity Kenning split spor 51-53 1500 Flor done for the day 127 DW DT 0.033 PIOF 0.5 echievy spands -57 Carry steadily. E 2 PID -0,00 DT = 0.025 VOLED U HENE OS HEOR 12-41 DW = 0.033 PIDZUS EZ = 0.027 PID:0.0 DON'S +057 256 Stop DU+ = 2 ramp to - worth


Date 3/2/12 27 Location 50 hunt fre Date 3/2/12 Project / Client __ 56-106 weather: overcast, cold, 350 729 DW DT = 0.019 VOC= 0.0 50 Calibrate plos. UW DT = 0.013 VOL = 0.0 EZ VOC=0.0 HW=0.0 Hzs=0 # 03582 - 100 ppm # 08803 = 100 ppn # 04768 = 100 ppn Bulgrand, no intrisive work yet. 9745 Stat dr. 1/1 0-5 902 Retreve 5-7 sayste. Fish a ral personal. 815 UW OT = 0.012 PID=00 par- Isas vtylene gas 1.0+ # 04228A11
part # 6111612 exp: 6/15 DW DT =0.023 810=0.0 EZ VOL: 0.0 HW: 0.0 45:0 615 Pack pcar. 700 Arrive at site. Dri Vily sphit span 9-11' 835 No exceedances 835 Drivity split spoon 13'-15' 720 Set up + start UW comp datagging P10 # 04768 850 DW 0.024 0 DT # 08769 733 set up + start DW CAMP datalyy UW 0.032 0 810# 08803 EZ 1 N/A D HEN=0 4,5=0 DT# 12729 Dilliz to 17' @50-106 nultilatio # 18824 DT# - service 6will nothin ve today. 726 UW Dost soule wham - high protide ate DT: 0.414 P10:0 smell seed him eias


Date 3/5/12 31 Location 50 kent Are Mondate 3/5/12 where : 33° 39° sunny, mal-stage 3/4/12 58-106 803 Bal VOL OI Celibrate 110s. 0.006 0.0 Fresh air walled. 0.009 pre# 03582 = 100 ppm 0 Retrievage splitspoon 47-49' # 0 8803 : 100 ppm 936 #04768: 101 ppm w/ spangas tookylene 6.006 0.0 80.0 Lot # 0422FA11 part# GP11012 exp date 6/15 letrevity spoon 57-55. Also hultrae # 18824 Isob. 5pm = 99.9ppn prevailing 3/5/12 Start UW cAMP datalog 80 671 VH2 2 50 107 PID# 04768 58-106 KI 724 stat on Church delalg DT # 12729 PID# 08803 730 start EZ CAMP monitory Multipee PID# 18624

50 kent Are Wed. 3/7/12 37 Date 3/6/12 Project / Client weathers sunny, 39°-55°, wind 58-107 1053 DT YOU HOW UW 0,016 0 0.017 0 72 Supesty performed on PIDS 0.099 0 Drilling to to! 747 Stat DW CAND dutalogery VW 0.012 0 1137 PID# 08803 DW Q.017 0 DT # 12729 62 0.006 0 0 Start UW CAMP dataloggry. collectly extra sphit speron. 215-120 Drech for World OT # 08769 1340 VW 0.012 PIDVES Off DW 0.013 Plows off Fen mixing grat. NO EZ &CAMP maniforing at this time EZ 0.005 0.2 0 0 2 Shin 1340 Restat PID@ DW VOL:0.0 UN+ON Lawbattery - reglace PDbitters. اللات 1403 Replace PIO bookies in Dw. vul PID remus off, ho reglacement batteries. 38 707 1425 0.0.8 0.015 0.0 prevailing 0.005 0.1 0 calledy 57'-57' split spean THE TOTAL OF DAY DAY

Project / Client

Pro	ect.	C	ient

50-109

DT VOC 425 HCW 0.037 UW 0.0 DW 0.0T7 0 0 0.028

Daving 55'-55' Split 3000h 1/27

W 0.040 0.0 0.044 0.0

EZ 2.035 0 0 Flush out arges @ 53!

Hat julkan noing 8 56-104 (upushed of unstation).

1155 Borne ended, brack for wich Stop CAMP.

1306 Start UW, Ez came latelyging stat ON CAMP 1307

1320 0.044 0.0 UU

0.048 0.0 DW

EZ 160.0

Lemoving sods, bulety transoun

1350 DT His Her VO-UW 0.032 0.0 EZ 0.036 0.0 O DW 0.046 0.0 Groty SB-109. 1350 DW DT Dam. Flow mixy grout, grout dust cousty warm: 1358 Alam over @ DW DT. 1427 Non aff ofwer stations.

Project / Client

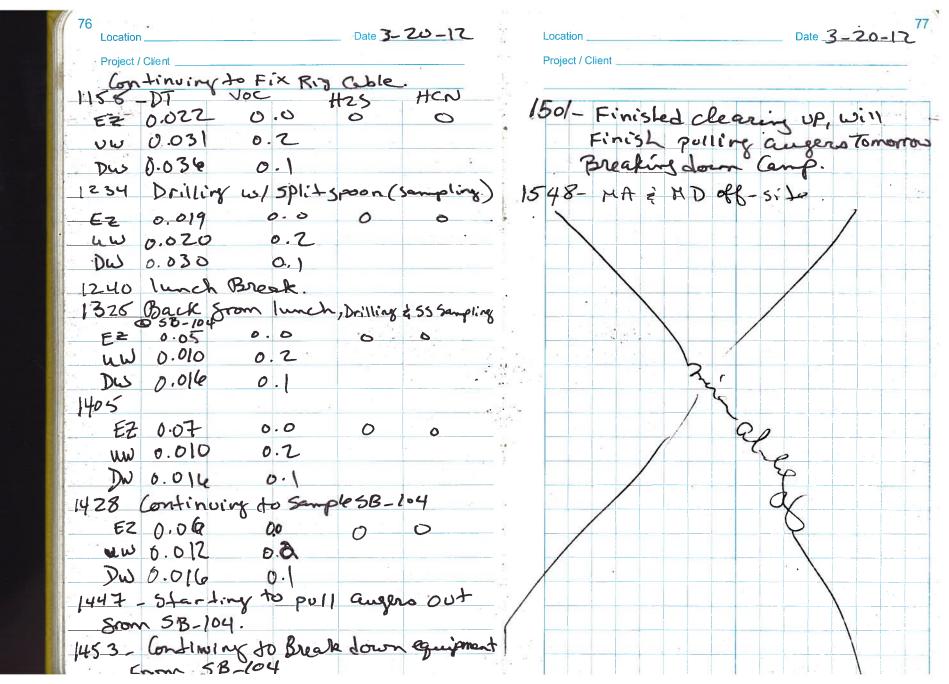
50-105

8:47 In: Hal: OT DU 0.021 0.2 0019 8:48 EZ O 0 8:50 0.010 0 UW 9:21 0.019 UW 0 DW 0.060 0.041 0 0 Drilly to (o' 10:05 VW 0.011 0 0.036 0.037 0 Rixing teath on with head. 1047 VU 0.005 0 BZ 0.096 0 0 0.038 0.2 Drilling to 23', had Inilley trescl exchange 1120 UW 0.009 00 DLD 0.011 0.2 0.002 8 0 Break Un fil 1230.

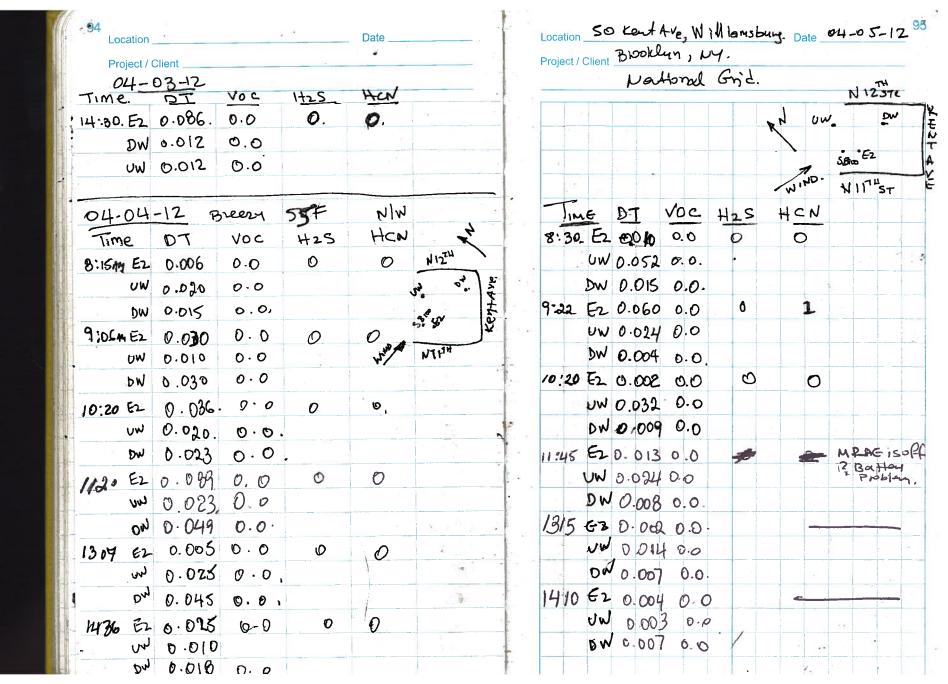
weather: svnng, 58°-70°, wind 53º Laliborte PIDS + MR. see p. 51 for détails. 843 Stat Ez maniforny MR# 18824 DT #10319 846 stat Ow monitory P10# 08873 DT# 12729 stat &w monitory 850 PID# 04768 97 # 08789 Le with AN DIW X 56-105 DEZ 50-100 Dow

	* ₂		3/1.1	59
Location		Date _	1/4/12	-

Project / Client

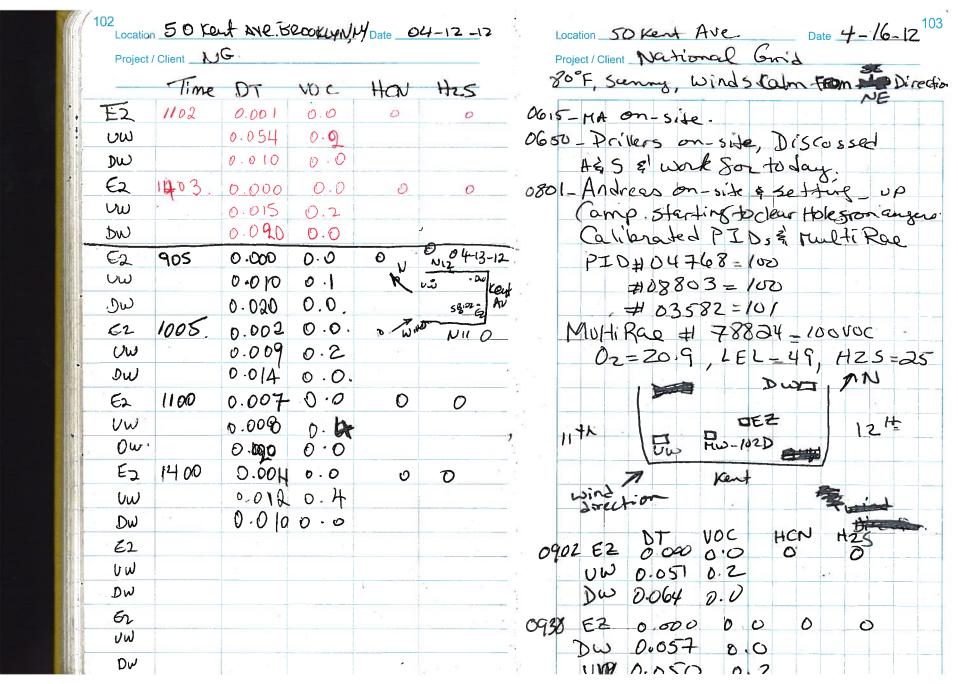

56-105

10-10-0-1				
1430	DT	VOC	the S	CN H 1
VW.	0.009	0		
DW		- 0.3		
62	0.0(6	0	0 0	
	DAIL	y to	101	
1500		vru of		3
, , 0, .	Stat	ibns.		
	/150			
1				
		*		

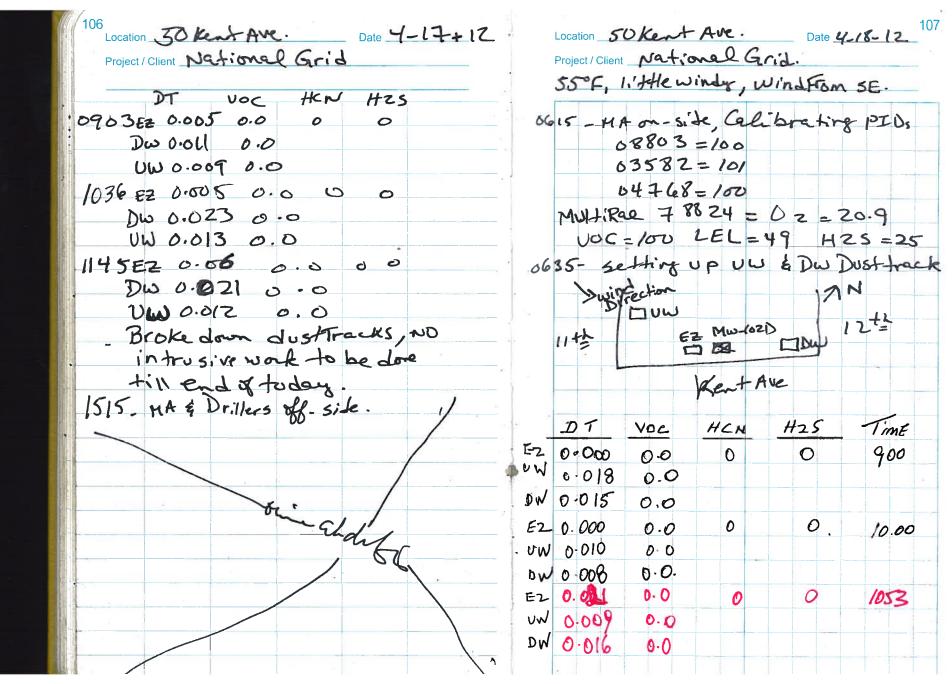

Location Date 3/15/12 63

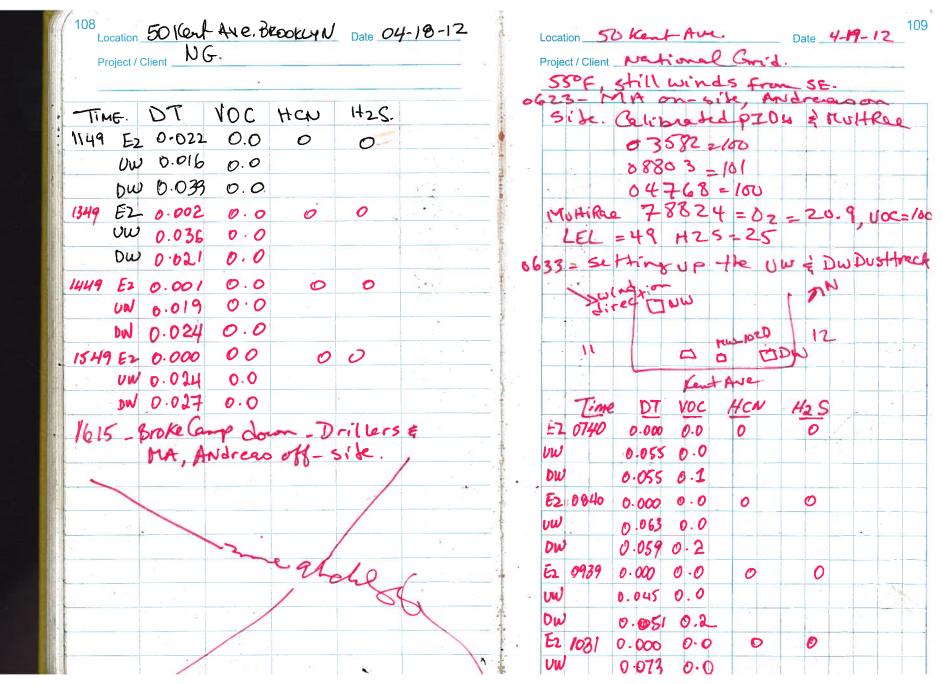
Project / Client _____

NIZTAT Douz Dip.ier TP-110 [] 15-108 1 DUNZ previ kent Are 78-107 1 prev. und 2 1428 DT VOC DW2 0,034 0.0 VUZ 0.016 0.0 At 6.5 at TP-108. 1520 PF VÓC DW2 0.056 0.0 VW2 0.039 0.0 Sweethy TP-109 Filly+ 1530 TP-108 gordal. 1534 Turn off DW CAMP 1536 Traff un Amp



86 Location		# E	:: :::::::::::::::::::::::::::::::::::	Date	£*	Location 50 Kent Are-Brooklyn My Date 03-27-12
Project /	Client					Project/Client National Grid.
				HCN		N 124 Jan
TIME	DT	VOC	H25	HCN		9E2
9:10AM EZ		0-10	0	0		UW SB IN Kent
VW		0.0		/		
DW		0.0				William N IITH
10:10	00.0	0.0				TIME DT VOC H2S HCN
	0005	. 0.0		N.		7:53 E2 8.008
UW	0.015	0.0.				UW 0.086 0.0.
DW	0010					DW 0.021 0.0-
11:07						9:02 E2 0.018.00
E2	0.015	00				UW 0.005 0.0
UW	0.022	. 0.				DW 0.009 .00
DW	0.016	0		W O		10:50. E2 0.013 0.0
12;52	6					1 UW 0.005 0.0
EZ	0.001	0.				DN 0-019 00.
	0.026	٥.				1157 Ez 0.001 0.0.
DW	0.014	0.		9		DW 0.006.00
		f			7.18.4	DW 0.009 0.0.
1500				197		13.15
The same of the sa	0.000	0.				UW 0.019 0.0
Vu) 0.022	0		*		DW 0.023 0.0
Di	N. D. O. O	0-		2		E2-0.004.00
	7					1435 UW 0000 9 0.0
						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
						E3 0.005 0




Project	SO Ken	. р	oiect /	Date Of-09-12 Monday									
WIND N)	W. T. 38	3°F. BR	EE24. P41	RTLY SU	wy.	-	TS	2°F Su	ring c	e i hay	N/W. a		
							N						
				N. 12			On	' i	w Ka				
			U	w Du	k A			5814		(n			
				NW100 - 52		Wite	900		J	`			
			7	Acres and the second				III THST					
			MIND	N.1) 2#8	Te	-		ne D			4125	HCM	
ine	DT	NOC	H25	Han		i Dominia	3:15	m, Ez -0			0	0	
800 Ez	0.031	0.0	0	0		7		uw o					
UN	0.010	0.0			3.5		110	DW O.					
Du	6.010	0.0					711.	E2-6			C	0	-
9-18 EZ		0.0	0	0			- 14	un E					
VL	0.007	0.0				-				0.0.			
Dh	0.007	Ø · Ø	,			1	0:37	E2 6			0	0	
11054 Ez	011	0.0	0	0				uw c					
V	0.030	0.0						DW 0			99		
Du	510.01	6.6	9				135	0 E2 10.		0.0	0	0	
1200 E2	g.003	6.0	0	0				m 9		0.0			
UN	0.012	O . O						DW 0.	019	0.0			
1400 DV	19.020	0.0	~				1518	E2-6	0.009	00	0	0	- 4-
E7	80008	0·O	0	6.			2.	vw g					
W	0.009	0.0.							.014	0.0			
Dv	0.010	0.0			27			匦					1
1445 67	-0.008	0 - D	0	10				uw					
ÚV	0.004	0.0			real plants			Ow			100		
nV	F00.00	0.0				-				2	(10)		

00 Location				Date _4	110/12	Declarat	Client	Natho	nal G	MDate of	
	Client	cam	P - S	B-10	21		41° F	MIND	N/W.	CLEWDY.	NIZ
- 1, 2-										N	W D
	The	DT	VOL	HCN	4-25	-					.€.2 ?\$K
=2 11	1) ne	00.0d	0	0	0				1-1-1	7	€Z
DW		0.019				-				Unin	NII
LYV	1-11-49				10		TIME	-	10c	HCN	H25
						E	825	-	00	O	0
1150	Break	forh	nch	Rizor	Cf	UW		0.028	0.0.	100	
				0		DW		0 =022	0.Q		
E2	1300	0007	0.0	0	0	52	430.	50001	00	0	0
DiV	1,500	0.020	0.0			υW		0-020	0.0	1	
UW -		0.026	0.3			DW		0018	00		
	must d			4	*	E2	1043	0.003	0.0	0.	0
BE	TEG THE	the ami	RY ON	site e	1530	νw		0.015	0.0		
who	replaces	DIC	w) coul	pmat.		DW		0.014	0.0	:9	
						E2-	1300.	0,001	00	0	0
	-5	.0.	5000	U	3	UW		0.010	0.0		
					. 8	DW		0.010	0.0		100
			2			Ez	4:30	0.022	00	æ.	04-12-
					1 %	·w		0.016	0.0	1	VII 0
						DM		0.015	0.0	فين	SELE DIL
,					1	172	930.	0.007	0.0	0 4	102
nax ₅						UW		0.012	0.0		MI Ping
						DW		0.014	0,0		

Location 50 Kent Ave. nlll Date 4-17-12 105 Project/Client National Girid. Project / Client National Grid. 75°F, little wind from BE, sunny, Gusts Driller Continues to install Cassing. 1018 DT VOC HCN 0622 MA on six, Celibrating PZDs & MULTIRUS #25 EZ 0.00 0.00 0-0 0.0 PID 04768 = 100 DW 0.062 0.0 03582=100 08803=101 UW 0.057 0.2 MultiRee 78824 = 0z-20.9 setting Cussing LEL- 49, voc_100, HZS=25 Er 0.000 0.0 DW 0-059 6.0. UW 0-061 0.9 1155 Continuity to set Cassing. EZ 01000 6-0 0 Dmy 0.058 0.0 UW 0.059 0.2 0640 - Set-up Du Dusttrack. 1238 Continuing to let cassing. 0645 - Sel-up UW Dust track. EZ 0.000 0.0 DW 0.059 0.0 0743- Set-upEZ Dust track, Drillers UW 0.061 0.2 clearing MW-102 I location, which 1245 lunch. 15 ~ 5' Feet NU & HW-102D. 0802-DT VOC HON HZS EZ 0.000 0.00 0 0 1330 Broke down (emp, No more intrusive work, Driller to Delon all augus. 1345 Backfrom lunch, 5tarting to DW, 6.0(8 8.00 UW 0.023 0.00 Set-Upfor delaming 1835- EZ 0.005 0.00 0.50

APPENDIX F IDW CHARACTERIZATION LAB RESULTS

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-17392-1 Client Project/Site: Williamsburg

For:

URS Corporation 77 Goodell Street Buffalo, New York 14203

Attn: Mr. Colin Wasteneys

Melisso Deyo

Authorized for release by: 3/29/2012 9:03:08 AM

Melissa Deyo Project Manager I

melissa.deyo@testamericainc.com

.....LINKS

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	7
Surrogate Summary	12
QC Sample Results	14
QC Association Summary	24
Lab Chronicle	28
Certification Summary	29
Method Summary	31
Sample Summary	32
Subcontract Data	33
Chain of Custody	47
Receipt Checklists	48

12

11

Definitions/Glossary

Client: URS Corporation Project/Site: Williamsburg

TestAmerica Job ID: 480-17392-1

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
X	Surrogate is outside control limits

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

J

%R

Qualifier	Qualifier Description	
X	Surrogate is outside control limits	
Metals		
Qualifier	Qualifier Description	

В	Compound was found in the blank and sample.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
\	Listed under the "D" column to designate that the result is reported on a dry weight basis

CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample

EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit

ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)

110	rect detected at the reporting innit (or MBE or EBE in chewit)

FQL	Fractical Quantitation Limit
QC	Quality Control

QU	addity Control
RL	Reporting Limit

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Percent Recovery

9

_

6

11

111

12

47

15

Case Narrative

Client: URS Corporation
Project/Site: Williamsburg

TestAmerica Job ID: 480-17392-1

Job ID: 480-17392-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-17392-1

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method 8260B: The following sample was diluted due to the abundance of non-target analytes: NGW1DW 031512S (480-17392-1). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

GC/MS Semi VOA

Method 8270C: The following sample was diluted due to the nature of the sample matrix: NGW1DW 031512S (480-17392-1). Elevated reporting limits (RLs) are provided.

Method 8270C: The following sample was diluted due to the abundance of target analytes: NGW1DW 031512S (480-17392-1 DL). As such, the surrogates were reduced to a level in which the recovery calculation no longer provides useful information. Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

GC VOA

Method 8015B: The following sample was diluted due to the abundance of target analytes: NGW1DW 031512S (480-17392-1). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

GC Semi VOA

Method 8015B: The following sample was diluted due to the abundance of target analytes: NGW1DW 031512S (480-17392-1). As such, surrogate recoveries are not representative and elevated reporting limits (RLs) are provided.

Method 8082: One surrogate recovery for the following sample was outside control limits: NGW1DW 031512W (480-17392-2). Evidence of matrix interference was present; therefore, re-extraction and re-analysis was not performed.

No other analytical or quality issues were noted.

Metals

Method 6010B: The method blank for preparation batch 56277 contained Zinc above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of the associated sample was not performed.

No other analytical or quality issues were noted.

General Chemistry

Method SM 2540C: Due to the matrix, the initial volume used for the following sample deviated from the standard procedure: NGW1DW 031512W (480-17392-2). The reporting limits (RLs) have been adjusted proportionately.

Method 9020: Breakthrough exceeded 10% for the following sample:NGW1DW 031512W (480-17392-2). Re-analysis was performed with concurring results. The data has been reported.

No other analytical or quality issues were noted.

Organic Prep

Method 3510C: During pH adjustment, the following sample required 5 mL of Sulfuric acid and 7 mL of Sodium hydroxide (base) to reach

TestAmerica Buffalo 3/29/2012

Page 4 of 48

6

7

ŏ

10

4.0

13

Case Narrative

Client: URS Corporation TestAmerica Job ID: 480-17392-1 Project/Site: Williamsburg

Job ID: 480-17392-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

the desired pH ranges: NGW1DW 031512W (480-17392-2).

No other analytical or quality issues were noted.

6

4

5

0

8

9

11

12

14

15

Client: URS Corporation Project/Site: Williamsburg

Client Sample ID: NGW1DW 031512S

Lab Sample ID: 480-17392-1

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Free Liquid	passed				mL/100g	1	_	9095A	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	5500		590	28	ug/Kg	5	₩	8260B	Total/NA
Ethylbenzene	6900		590	170	ug/Kg	5	₽	8260B	Total/NA
Isopropylbenzene	710		590	88	ug/Kg	5	₩	8260B	Total/NA
Styrene	11000		590	140	ug/Kg	5	₩	8260B	Total/NA
Toluene	12000		590	160	ug/Kg	5	₩	8260B	Total/NA
Xylenes, Total	19000		1200	99	ug/Kg	5	₩	8260B	Total/NA
2-Methylnaphthalene	29000		1000	12	ug/Kg	5	₩	8270C	Total/NA
Acenaphthene	4200		1000	12	ug/Kg	5	₩	8270C	Total/NA
Acenaphthylene	10000		1000	8.3	ug/Kg	5	₩	8270C	Total/NA
Anthracene	5800		1000	26	ug/Kg	5	₽	8270C	Total/NA
Benzo(a)anthracene	3800		1000	18	ug/Kg	5	₩	8270C	Total/NA
Benzo(a)pyrene	2400		1000	24	ug/Kg	5	₩	8270C	Total/NA
Benzo(b)fluoranthene	1900		1000	20	ug/Kg	5	₽	8270C	Total/NA
Benzo(g,h,i)perylene	900	J	1000	12	ug/Kg	5	₩	8270C	Total/NA
Benzo(k)fluoranthene	800	J	1000	11	ug/Kg	5	₩	8270C	Total/NA
Biphenyl	2800		1000	63	ug/Kg	5	₩	8270C	Total/NA
Carbazole	340	J	1000	12	ug/Kg	5	₽	8270C	Total/NA
Chrysene	3600		1000	10	ug/Kg	5	₽	8270C	Total/NA
Dibenz(a,h)anthracene	300	J	1000	12	ug/Kg	5	₽	8270C	Total/NA
Dibenzofuran	1100		1000	11	ug/Kg	5	₽	8270C	Total/NA
Fluoranthene	6800		1000	15	ug/Kg	5	₩	8270C	Total/NA
Fluorene	6800		1000	23	ug/Kg	5	₽	8270C	Total/NA
Indeno(1,2,3-cd)pyrene	730	J	1000	28	ug/Kg	5	₩	8270C	Total/NA
Phenanthrene	22000		1000	21	ug/Kg	5	₽	8270C	Total/NA
Pyrene	8900		1000	6.6	ug/Kg	5	- -	8270C	Total/NA
Naphthalene - DL	52000		10000	170	ug/Kg	50	₩	8270C	Total/NA
GRO (C6-C10)	290		14	1.7	mg/Kg	10	₩	8015B	Total/NA
Diesel Range Organics [C10-C28]	640		200	60	mg/Kg	10		8015B	Total/NA
Arsenic	3.7		2.6	0.52	mg/Kg	1	₽	6010B	Total/NA
Barium	51.9		0.66	0.14	mg/Kg	1	₩	6010B	Total/NA
Beryllium	0.55		0.26	0.037	mg/Kg	1		6010B	Total/NA
Cadmium	0.093	J	0.26	0.039	mg/Kg	1	₩	6010B	Total/NA
Chromium	23.2		0.66	0.26	mg/Kg	1	₽	6010B	Total/NA
Copper	22.0		1.3	0.28	mg/Kg		- <u>-</u>	6010B	Total/NA
Lead	20.2		1.3	0.31	mg/Kg	1	₽	6010B	Total/NA
Nickel	15.7		6.6	0.30	mg/Kg	1	₩	6010B	Total/NA
Vanadium	44.7		0.66	0.14	mg/Kg			6010B	Total/NA
Zinc	38.8	В	2.6	0.20	mg/Kg	1	₽	6010B	Total/NA
Mercury	0.035	_	0.024	0.0098		1		7471A	Total/NA

Client Sample ID: NGW1DW 031512W

Flashpoint

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0083	J	0.010	0.0056	mg/L	1	_	6010B	Total/NA
Chromium	0.031		0.0040	0.0010	mg/L	1		6010B	Total/NA
Lead	0.0095		0.0050	0.0030	mg/L	1		6010B	Total/NA
Total Organic Halides (TOX)	96.7		20.0	6.5	ug/L	1		9020	Total/NA
Total Dissolved Solids	590		100	40.0	mg/L	1		SM 2540C	Total/NA
Analyte	Result (Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type

50.0

50.0 Degrees F

>176.0

3/29/2012

Total/NA

Lab Sample ID: 480-17392-2

Client: URS Corporation Project/Site: Williamsburg

Date Collected: 03/15/12 16:20

Date Received: 03/17/12 09:00

Xylenes, Total

Client Sample ID: NGW1DW 031512S

TestAmerica Job ID: 480-17392-1

Lab Sample ID: 480-17392-1

Matrix: Solid
Percent Solids: 82.2

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND —	590	160	ug/Kg	₩	03/22/12 13:09	03/22/12 15:22	
1,1,2,2-Tetrachloroethane	ND	590	95	ug/Kg	₽	03/22/12 13:09	03/22/12 15:22	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	590	290	ug/Kg	₽	03/22/12 13:09	03/22/12 15:22	
1,1,2-Trichloroethane	ND	590	120	ug/Kg	₽	03/22/12 13:09	03/22/12 15:22	
1,1-Dichloroethane	ND	590	180	ug/Kg	₩	03/22/12 13:09	03/22/12 15:22	
1,1-Dichloroethene	ND	590	200	ug/Kg	₩	03/22/12 13:09	03/22/12 15:22	
1,2,4-Trichlorobenzene	ND	590	220	ug/Kg	\$	03/22/12 13:09	03/22/12 15:22	
1,2-Dibromo-3-Chloropropane	ND	590	290	ug/Kg	₽	03/22/12 13:09	03/22/12 15:22	
1,2-Dibromoethane	ND	590	22	ug/Kg	₽	03/22/12 13:09	03/22/12 15:22	
1,2-Dichlorobenzene	ND	590	150	ug/Kg	₽	03/22/12 13:09	03/22/12 15:22	
1,2-Dichloroethane	ND	590	240	ug/Kg	₽	03/22/12 13:09	03/22/12 15:22	
1,2-Dichloropropane	ND	590	95	ug/Kg	₩	03/22/12 13:09	03/22/12 15:22	
1,3-Dichlorobenzene	ND	590	160	ug/Kg		03/22/12 13:09	03/22/12 15:22	
1,4-Dichlorobenzene	ND	590		ug/Kg	₽	03/22/12 13:09	03/22/12 15:22	
2-Butanone (MEK)	ND	2900	1700	ug/Kg	₽	03/22/12 13:09	03/22/12 15:22	
2-Hexanone	ND	2900	1200	ug/Kg		03/22/12 13:09	03/22/12 15:22	
4-Methyl-2-pentanone (MIBK)	ND	2900	190	ug/Kg	₩	03/22/12 13:09	03/22/12 15:22	
Acetone	ND	2900	2400	ug/Kg	₽	03/22/12 13:09	03/22/12 15:22	
Acrylonitrile	ND	2900	1500	ug/Kg		03/22/12 13:09	03/22/12 15:22	
Benzene	5500	590	28	ug/Kg ug/Kg	₽	03/22/12 13:09	03/22/12 15:22	
Bromodichloromethane	ND	590	120	ug/Kg ug/Kg	₽	03/22/12 13:09	03/22/12 15:22	
Bromoform	ND	590	290	ug/Kg ug/Kg		03/22/12 13:09	03/22/12 15:22	
Bromomethane	ND ND	590				03/22/12 13:09	03/22/12 15:22	
	ND ND	590 590	130	ug/Kg	₩	03/22/12 13:09	03/22/12 15:22	
Carbon disulfide			270	ug/Kg	 \$			
Carbon tetrachloride	ND	590	150	ug/Kg		03/22/12 13:09	03/22/12 15:22	
Chlorobenzene	ND	590	78	ug/Kg	‡	03/22/12 13:09	03/22/12 15:22	
Chloroethane	ND	590	120	ug/Kg		03/22/12 13:09	03/22/12 15:22	
Chloroform	ND	590	400	ug/Kg		03/22/12 13:09	03/22/12 15:22	
Chloromethane	ND	590	140	ug/Kg		03/22/12 13:09	03/22/12 15:22	
cis-1,2-Dichloroethene	ND	590	160	ug/Kg	<u>-</u>	03/22/12 13:09	03/22/12 15:22	
cis-1,3-Dichloropropene	ND	590	140	ug/Kg	ψ.	03/22/12 13:09	03/22/12 15:22	
Cyclohexane	ND	590	130	ug/Kg		03/22/12 13:09	03/22/12 15:22	
Dibromochloromethane	ND	590	280	ug/Kg		03/22/12 13:09	03/22/12 15:22	
Dichlorodifluoromethane	ND	590	260	ug/Kg		03/22/12 13:09	03/22/12 15:22	
Ethylbenzene	6900	590	170	ug/Kg	₽	03/22/12 13:09	03/22/12 15:22	
Isopropylbenzene	710	590	88	ug/Kg		03/22/12 13:09	03/22/12 15:22	
Methyl acetate	ND	590	280	ug/Kg	₽	03/22/12 13:09	03/22/12 15:22	
Methyl tert-butyl ether	ND	590	220	ug/Kg	₩	03/22/12 13:09	03/22/12 15:22	
Methylcyclohexane	ND	590	270	ug/Kg	₽	03/22/12 13:09	03/22/12 15:22	
Methylene Chloride	ND	590	120	ug/Kg	₽	03/22/12 13:09	03/22/12 15:22	
Styrene	11000	590	140	ug/Kg	₽	03/22/12 13:09	03/22/12 15:22	
Tetrachloroethene	ND	590	79	ug/Kg	₩	03/22/12 13:09	03/22/12 15:22	
Toluene	12000	590	160	ug/Kg	\$	03/22/12 13:09	03/22/12 15:22	
trans-1,2-Dichloroethene	ND	590	140	ug/Kg	₽	03/22/12 13:09	03/22/12 15:22	
trans-1,3-Dichloropropene	ND	590	28	ug/Kg	₩	03/22/12 13:09	03/22/12 15:22	
Trichloroethene	ND	590	160	ug/Kg		03/22/12 13:09	03/22/12 15:22	
Trichlorofluoromethane	ND	590	280	ug/Kg	₽	03/22/12 13:09	03/22/12 15:22	
Vinyl chloride	ND	590	200	ug/Kg	₽	03/22/12 13:09	03/22/12 15:22	

4

6

_

9

11

12

14

15

03/22/12 15:22

1200

99 ug/Kg

03/22/12 13:09

Client: URS Corporation Project/Site: Williamsburg

TestAmerica Job ID: 480-17392-1

Client Sample ID: NGW1DW 031512S Lab Sample ID: 480-17392-1

Date Collected: 03/15/12 16:20

Matrix: Solid
Date Received: 03/17/12 09:00

Percent Solids: 82.2

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		53 - 146	03/22/12 13:09	03/22/12 15:22	5
4-Bromofluorobenzene (Surr)	98		49 - 148	03/22/12 13:09	03/22/12 15:22	5
Toluene-d8 (Surr)	110		50 - 149	03/22/12 13:09	03/22/12 15:22	5

110	50 - 149				03/22/12 13:09	03/22/12 15:22	
rganic Compound	s (GC/MS)						
•	•	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND ND	1000	220	ug/Kg	\	03/19/12 08:58	03/19/12 18:56	
ND	1000	67	ug/Kg	₩	03/19/12 08:58	03/19/12 18:56	Ę
ND	1000	53	ug/Kg	₩	03/19/12 08:58	03/19/12 18:56	Ę
ND	1000	270	ug/Kg	\$	03/19/12 08:58	03/19/12 18:56	
ND	2000	360	ug/Kg	₩	03/19/12 08:58	03/19/12 18:56	5
ND	1000	160	ug/Kg	₩	03/19/12 08:58	03/19/12 18:56	
ND	1000	250	ug/Kg	₩	03/19/12 08:58	03/19/12 18:56	
ND	1000	68	ug/Kg	₩	03/19/12 08:58	03/19/12 18:56	
ND	1000	52	ug/Kg	₩	03/19/12 08:58	03/19/12 18:56	į
29000	1000	12	ug/Kg	Φ	03/19/12 08:58	03/19/12 18:56	
ND	1000	31	ug/Kg	₩	03/19/12 08:58	03/19/12 18:56	į
ND	2000	330	ug/Kg	₩	03/19/12 08:58	03/19/12 18:56	
ND	1000	46	ug/Kg	ф.	03/19/12 08:58	03/19/12 18:56	
ND	1000	890	ug/Kg	₽	03/19/12 08:58	03/19/12 18:56	
ND	2000	230		₩	03/19/12 08:58	03/19/12 18:56	į
ND	2000	350		-	03/19/12 08:58	03/19/12 18:56	
				₽			į
				₽			
				.			:
				₽			
				₩			
							·
							·
							;
							;
				· ·			,
							;
ND	1000			‡	03/19/12 08:58		
ND	1000			*	03/19/12 08:58	03/19/12 18:56	
340 J	1000				03/19/12 08:58	03/19/12 18:56	
3600	1000			₽	03/19/12 08:58	03/19/12 18:56	
			. 0.2 .	**	00/40/40 00:50	00/40/40 40:50	į
300 J	1000		ug/Kg ug/Kg	₽	03/19/12 08:58	03/19/12 18:56	`
	Result Question Result Question ND	Result Qualifier RL ND	Result Qualifier RL	ND	Result Qualifier RL	ND 1000 350 1007 1000 200 1007 1000 200 1000	Result Qualifier RL MDL Unit D Prepared Analyzed

Client: URS Corporation Project/Site: Williamsburg

GRO (C6-C10)

a,a,a-Trifluorotoluene

Diesel Range Organics [C10-C28]

Method: 8015B - Diesel Range Organics (DRO) (GC)

Surrogate

Surrogate

o-Terphenyl

Date Collected: 03/15/12 16:20

Date Received: 03/17/12 09:00

Client Sample ID: NGW1DW 031512S

TestAmerica Job ID: 480-17392-1

Lab Sample ID: 480-17392-1

Matrix: Solid

Percent Solids: 82.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dimethyl phthalate	ND		1000	26	ug/Kg	<u> </u>	03/19/12 08:58	03/19/12 18:56	
Di-n-butyl phthalate	ND		1000	350	ug/Kg	₽	03/19/12 08:58	03/19/12 18:56	5
Di-n-octyl phthalate	ND		1000	24	ug/Kg	\$	03/19/12 08:58	03/19/12 18:56	5
Fluoranthene	6800		1000	15	ug/Kg	₽	03/19/12 08:58	03/19/12 18:56	5
Fluorene	6800		1000	23	ug/Kg	₽	03/19/12 08:58	03/19/12 18:56	5
Hexachlorobenzene	ND		1000	50	ug/Kg	\$	03/19/12 08:58	03/19/12 18:56	5
Hexachlorobutadiene	ND		1000	52	ug/Kg	₽	03/19/12 08:58	03/19/12 18:56	5
Hexachlorocyclopentadiene	ND		1000	310	ug/Kg	₩	03/19/12 08:58	03/19/12 18:56	5
Hexachloroethane	ND		1000	79	ug/Kg	\$	03/19/12 08:58	03/19/12 18:56	5
Indeno(1,2,3-cd)pyrene	730	J	1000	28	ug/Kg	₩	03/19/12 08:58	03/19/12 18:56	5
Isophorone	ND		1000	51	ug/Kg	₩	03/19/12 08:58	03/19/12 18:56	5
Nitrobenzene	ND		1000	45	ug/Kg	φ.	03/19/12 08:58	03/19/12 18:56	5
N-Nitrosodi-n-propylamine	ND		1000	80	ug/Kg	₽	03/19/12 08:58	03/19/12 18:56	5
N-Nitrosodiphenylamine	ND		1000	55	ug/Kg	₩	03/19/12 08:58	03/19/12 18:56	5
Pentachlorophenol	ND		2000	350	ug/Kg	\$	03/19/12 08:58	03/19/12 18:56	5
Phenanthrene	22000		1000	21	ug/Kg	₩	03/19/12 08:58	03/19/12 18:56	5
Phenol	ND		1000	110	ug/Kg	₩	03/19/12 08:58	03/19/12 18:56	5
Pyrene	8900		1000	6.6	ug/Kg	₽	03/19/12 08:58	03/19/12 18:56	5
Pyridine	ND		2000	570	ug/Kg	₽	03/19/12 08:58	03/19/12 18:56	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	92		39 - 146				03/19/12 08:58	03/19/12 18:56	
2-Fluorobiphenyl	90		37 - 120				03/19/12 08:58	03/19/12 18:56	
2-Fluorophenol	68		18 - 120				03/19/12 08:58	03/19/12 18:56	5
Nitrobenzene-d5	86		34 - 132				03/19/12 08:58	03/19/12 18:56	
Phenol-d5	78		11 - 120				03/19/12 08:58	03/19/12 18:56	5
p-Terphenyl-d14	94		65 - 153				03/19/12 08:58	03/19/12 18:56	5
Method: 8270C - Semivolatile (Organic Compou	nds (GC/M	S) - DL						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	52000		10000	170	ug/Kg	*	03/19/12 08:58	03/21/12 17:52	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	0	X	39 - 146				03/19/12 08:58	03/21/12 17:52	50
2-Fluorobiphenyl	76		37 - 120				03/19/12 08:58	03/21/12 17:52	50
2-Fluorophenol	38		18 - 120				03/19/12 08:58	03/21/12 17:52	50
Nitrobenzene-d5	44		34 - 132				03/19/12 08:58	03/21/12 17:52	50
D	58		11 - 120				03/19/12 08:58	03/21/12 17:52	50
Phenoi-d5							00//0//0 00 50	00/04/40 47 50	50
	85		65 - 153				03/19/12 08:58	03/21/12 17:52	5
Phenol-d5 p-Terphenyl-d14 : Method: 8015B - Gasoline Ran		C)	65 - 153				03/19/12 08:58	03/21/12 17:52	5

TestAmerica Buffalo 3/29/2012

03/19/12 14:14

Analyzed

03/19/12 14:14

Analyzed

03/20/12 14:09

Analyzed

03/20/12 14:09

Dil Fac

Dil Fac

Dil Fac

10

03/19/12 09:35

Prepared

03/19/12 09:35

Prepared

03/19/12 18:13

Prepared

03/19/12 18:13

14

RL

200

Limits

Limits

48 - 119

46 - 156

290

%Recovery Qualifier

Result Qualifier

97

640

%Recovery Qualifier

235 X

1.7 mg/Kg

MDL Unit

60 mg/Kg

Client: URS Corporation

Project/Site: Williamsburg

Client Sample ID: NGW1DW 031512S

Date Collected: 03/15/12 16:20 Date Received: 03/17/12 09:00

Lab Sample ID: 480-17392-1

Matrix: Solid

Percent Solids: 82.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		250	49	ug/Kg	\$	03/19/12 12:03	03/20/12 19:15	1
PCB-1221	ND		250	49	ug/Kg	₽	03/19/12 12:03	03/20/12 19:15	1
PCB-1232	ND		250	49	ug/Kg	₽	03/19/12 12:03	03/20/12 19:15	1
PCB-1242	ND		250	55	ug/Kg	₽	03/19/12 12:03	03/20/12 19:15	1
PCB-1248	ND		250	49	ug/Kg	₽	03/19/12 12:03	03/20/12 19:15	1
PCB-1254	ND		250	53	ug/Kg	₽	03/19/12 12:03	03/20/12 19:15	1
PCB-1260	ND		250	120	ug/Kg	\$	03/19/12 12:03	03/20/12 19:15	1
PCB-1262	ND		250	53	ug/Kg	₽	03/19/12 12:03	03/20/12 19:15	1
PCB-1268	ND		250	53	ug/Kg	₽	03/19/12 12:03	03/20/12 19:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl			36 - 182				03/19/12 12:03	03/20/12 19:15	1
Tetrachloro-m-xylene	95		24 - 172				03/19/12 12:03	03/20/12 19:15	1

Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		19.7	0.71	mg/Kg	\	03/22/12 10:50	03/22/12 18:04	1
Arsenic	3.7		2.6	0.52	mg/Kg	₩	03/22/12 10:50	03/22/12 18:04	1
Barium	51.9		0.66	0.14	mg/Kg	₽	03/22/12 10:50	03/22/12 18:04	1
Beryllium	0.55		0.26	0.037	mg/Kg	₽	03/22/12 10:50	03/22/12 18:04	1
Cadmium	0.093	J	0.26	0.039	mg/Kg	₽	03/22/12 10:50	03/22/12 18:04	1
Chromium	23.2		0.66	0.26	mg/Kg	₽	03/22/12 10:50	03/22/12 18:04	1
Copper	22.0		1.3	0.28	mg/Kg	₽	03/22/12 10:50	03/22/12 18:04	1
Lead	20.2		1.3	0.31	mg/Kg	₽	03/22/12 10:50	03/22/12 18:04	1
Nickel	15.7		6.6	0.30	mg/Kg	₩	03/22/12 10:50	03/22/12 18:04	1
Selenium	ND		5.2	0.75	mg/Kg	₽	03/22/12 10:50	03/22/12 18:04	1
Silver	ND		0.66	0.26	mg/Kg	₽	03/22/12 10:50	03/22/12 18:04	1
Thallium	ND		7.9	0.39	mg/Kg	₩	03/22/12 10:50	03/22/12 18:04	1
Vanadium	44.7		0.66	0.14	mg/Kg	₽	03/22/12 10:50	03/22/12 18:04	1
Zinc	38.8	В	2.6	0.20	mg/Kg	₩	03/22/12 10:50	03/22/12 18:04	1

Method: 7471A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.035		0.024	0.0098	mg/Kg	\	03/19/12 08:45	03/19/12 13:04	1
General Chemistry									
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Free Liquid	passed				mL/100g			03/27/12 12:51	1

RL

0.111

Unit

D

Prepared

Result Qualifier

ND

Client Sample ID: NGW1DW 031512W

Date Collected: 03/15/12 16:40 Date Received: 03/17/12 09:00

Analyte

Percent Total Sulfur

Lab Sample ID: 480-17392-2

Analyzed

03/27/12 14:20

Matrix: Water

Dil Fac

Method: 8082 - Polychlorinate	d Biphenyls (PCBs) by G	as Chromatogra	ohy					
Analyte	Result Qualifier	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	0.53	0.19	ug/L		03/20/12 08:02	03/20/12 18:54	1
PCB-1221	ND	0.53	0.19	ug/L		03/20/12 08:02	03/20/12 18:54	1
PCB-1232	ND	0.53	0.19	ug/L		03/20/12 08:02	03/20/12 18:54	1
PCB-1242	ND	0.53	0.19	ug/L		03/20/12 08:02	03/20/12 18:54	1
PCB-1248	ND	0.53	0.19	ug/L		03/20/12 08:02	03/20/12 18:54	1

Client: URS Corporation Project/Site: Williamsburg

TestAmerica Job ID: 480-17392-1

Lab Sample ID: 480-17392-2

D Sample ID. 400-17332-2

Matrix: Water

Client Sample ID: NGW1DW 031512W

Date Collected: 03/15/12 16:40 Date Received: 03/17/12 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1254	ND		0.53	0.27	ug/L		03/20/12 08:02	03/20/12 18:54	1
PCB-1260	ND		0.53	0.27	ug/L		03/20/12 08:02	03/20/12 18:54	1
PCB-1262	ND		0.53	0.27	ug/L		03/20/12 08:02	03/20/12 18:54	1
PCB-1268	ND		0.53	0.27	ug/L		03/20/12 08:02	03/20/12 18:54	1
Polychlorinated biphenyls, Total	ND		0.53	0.27	ug/L		03/20/12 08:02	03/20/12 18:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	15	X	19 - 112				03/20/12 08:02	03/20/12 18:54	1
Tetrachloro-m-xylene	70		23 - 127				03/20/12 08:02	03/20/12 18:54	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0083	J	0.010	0.0056	mg/L		03/21/12 08:40	03/21/12 22:16	1
Cadmium	ND		0.0010	0.00050	mg/L		03/21/12 08:40	03/21/12 22:16	1
Chromium	0.031		0.0040	0.0010	mg/L		03/21/12 08:40	03/21/12 22:16	1
Lead -	0.0095		0.0050	0.0030	mg/L		03/21/12 08:40	03/21/12 22:16	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Halides (TOX)	96.7		20.0	6.5	ug/L			03/21/12 05:14	1
Total Dissolved Solids	590		100	40.0	mg/L			03/19/12 22:56	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac

2

3

5

7

9

10

12

14

15

Client: URS Corporation

Project/Site: Williamsburg

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

				Percent Surro	gate Recovery (Acceptance
		12DCE	BFB	TOL	
Lab Sample ID	Client Sample ID	(53-146)	(49-148)	(50-149)	
480-17392-1	NGW1DW 031512S	105	98	110	
LCS 480-56351/3-A	Lab Control Sample	106	104	114	
MB 480-56351/4-A	Method Blank	108	99	110	
Surrogate Legend					

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

				Percent Sui	rrogate Reco	very (Accept	ance Limits
		TBP	FBP	2FP	NBZ	PHL	TPH
Lab Sample ID	Client Sample ID	(39-146)	(37-120)	(18-120)	(34-132)	(11-120)	(65-153)
480-17392-1	NGW1DW 031512S	92	90	68	86	78	94
480-17392-1 - DL	NGW1DW 031512S	0 X	76	38	44	58	85
LCS 480-55759/2-A	Lab Control Sample	114	103	86	97	92	119
LCSD 480-55759/3-A	Lab Control Sample Dup	115	100	87	99	94	119
MB 480-55759/1-A	Method Blank	97	79	60	69	63	116

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = p-Terphenyl-d14

Method: 8015B - Gasoline Range Organics - (GC)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		TFT2							
Lab Sample ID	Client Sample ID	(46-156)							
480-17392-1	NGW1DW 031512S	97							
LCS 480-55768/2-A	Lab Control Sample	111							
MB 480-55768/1-A	Method Blank	88							
Surrogate Legend									

Method: 8015B - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

		OTPH1
Lab Sample ID	Client Sample ID	(48-119)
480-17392-1	NGW1DW 031512S	235 X
LCS 480-55867/2-A	Lab Control Sample	103
LCSD 480-55867/3-A	Lab Control Sample Dup	107
MB 480-55867/1-A	Method Blank	89

Surrogate Summary

Client: URS Corporation Project/Site: Williamsburg

TestAmerica Job ID: 480-17392-1

Surrogate Legend

OTPH = o-Terphenyl

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

_				Percent Surrogate Recovery (Acceptance Limits)
		DCB2	TCX2	
Lab Sample ID	Client Sample ID	(36-182)	(24-172)	
480-17392-1	NGW1DW 031512S	117	95	
Surrogate Legend				
DCB = DCB Decachle	orobiphenyl			
TCX = Tetrachloro-m	-xylene			

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Water Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		DCB1	TCX1	
Lab Sample ID	Client Sample ID	(19-112)	(23-127)	
480-17392-2	NGW1DW 031512W	15 X	70	
LCS 480-55904/2-A	Lab Control Sample	67	83	
LCSD 480-55904/3-A	Lab Control Sample Dup	71	93	
MB 480-55904/1-A	Method Blank	80	73	

Surrogate Legend

DCB = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

7

8

10

12

13

15

Client: URS Corporation Project/Site: Williamsburg

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-56351/4-A

Matrix: Solid

Xylenes, Total

Analysis Batch: 56296

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 56351

Analysis Batch: 56296	МВ	MB						Prep Batch	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		97	27	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
1,1,2,2-Tetrachloroethane	ND		97	16	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		97	49	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
1,1,2-Trichloroethane	ND		97	20	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
1,1-Dichloroethane	ND		97	30	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
1,1-Dichloroethene	ND		97	34	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
1,2,4-Trichlorobenzene	ND		97	37	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
1,2-Dibromo-3-Chloropropane	ND		97	49	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
1,2-Dibromoethane	ND		97	3.7	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
1,2-Dichlorobenzene	ND		97	25	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
1,2-Dichloroethane	ND		97	40	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
1,2-Dichloropropane	ND		97	16	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
1,3-Dichlorobenzene	ND		97	26	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
1,4-Dichlorobenzene	ND		97		ug/Kg		03/22/12 13:09	03/22/12 14:43	1
2-Butanone (MEK)	ND		490	290	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
2-Hexanone	ND		490		ug/Kg		03/22/12 13:09	03/22/12 14:43	1
4-Methyl-2-pentanone (MIBK)	ND		490	31			03/22/12 13:09	03/22/12 14:43	1
Acetone	ND		490		ug/Kg		03/22/12 13:09	03/22/12 14:43	1
Acrylonitrile	ND		490		ug/Kg		03/22/12 13:09	03/22/12 14:43	1
Benzene	ND		97		ug/Kg		03/22/12 13:09	03/22/12 14:43	
Bromodichloromethane	ND		97		ug/Kg		03/22/12 13:09	03/22/12 14:43	
Bromoform	ND		97		ug/Kg		03/22/12 13:09	03/22/12 14:43	
Bromomethane	ND		97		ug/Kg		03/22/12 13:09	03/22/12 14:43	1
Carbon disulfide	ND		97		ug/Kg		03/22/12 13:09	03/22/12 14:43	
Carbon tetrachloride	ND		97		ug/Kg		03/22/12 13:09	03/22/12 14:43	
Chlorobenzene	ND ND		97		ug/Kg ug/Kg		03/22/12 13:09	03/22/12 14:43	1
Chloroethane	ND		97		ug/Kg		03/22/12 13:09	03/22/12 14:43	1
Chloroform			97				03/22/12 13:09	03/22/12 14:43	
Chloromethane	ND ND		97 97		ug/Kg			03/22/12 14:43	1
					ug/Kg		03/22/12 13:09		
cis-1,2-Dichloroethene	ND		97		ug/Kg		03/22/12 13:09	03/22/12 14:43	1
cis-1,3-Dichloropropene	ND		97		ug/Kg		03/22/12 13:09	03/22/12 14:43	1
Cyclohexane	ND		97		ug/Kg		03/22/12 13:09	03/22/12 14:43	1
Dibromochloromethane	ND		97		ug/Kg		03/22/12 13:09	03/22/12 14:43	1
Dichlorodifluoromethane	ND		97		ug/Kg		03/22/12 13:09	03/22/12 14:43	1
Ethylbenzene	ND		97		ug/Kg		03/22/12 13:09	03/22/12 14:43	1
Isopropylbenzene	ND		97		ug/Kg		03/22/12 13:09	03/22/12 14:43	
Methyl acetate	ND		97		ug/Kg		03/22/12 13:09	03/22/12 14:43	1
Methyl tert-butyl ether	ND		97		ug/Kg		03/22/12 13:09	03/22/12 14:43	1
Methylcyclohexane	ND		97		ug/Kg		03/22/12 13:09	03/22/12 14:43	1
Methylene Chloride	ND		97		ug/Kg		03/22/12 13:09	03/22/12 14:43	1
Styrene	ND		97	23	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
Tetrachloroethene	ND		97		ug/Kg		03/22/12 13:09	03/22/12 14:43	1
Toluene	ND		97	26	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
trans-1,2-Dichloroethene	ND		97	23	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
trans-1,3-Dichloropropene	ND		97	4.7	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
Trichloroethene	ND		97	27	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
Trichlorofluoromethane	ND		97	46	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
Vinyl chloride	ND		97	33	ug/Kg		03/22/12 13:09	03/22/12 14:43	1
v								00/00/40 44 40	

03/22/12 14:43

190

16 ug/Kg

03/22/12 13:09

ND

Limits

53 - 146

49 - 148

50 - 149

TestAmerica Job ID: 480-17392-1

Client: URS Corporation Project/Site: Williamsburg

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

%Recovery Qualifier

108

99

110

Lab Sample ID: MB 480-56351/4-A

Lab Sample ID: LCS 480-56351/3-A

Matrix: Solid

Surrogate

Toluene-d8 (Surr)

Matrix: Solid

Analysis Batch: 56296

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Analysis Batch: 56296

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 56351

Prepared Dil Fac Analyzed 03/22/12 13:09 03/22/12 14:43 03/22/12 13:09 03/22/12 14:43 1 03/22/12 13:09 03/22/12 14:43

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 56351

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	2490	3060		ug/Kg		123		-
1,1-Dichloroethene	2490	2960		ug/Kg		119	54 - 144	
1,2-Dichlorobenzene	2490	3020		ug/Kg		121		
1,2-Dichloroethane	2490	2900		ug/Kg		116		
Benzene	2490	3060		ug/Kg		123	75 _ 131	
Chlorobenzene	2490	3090		ug/Kg		124	80 - 127	
cis-1,2-Dichloroethene	2490	2920		ug/Kg		117		
Ethylbenzene	2490	3210		ug/Kg		129		
Methyl tert-butyl ether	2490	2900		ug/Kg		116		
Tetrachloroethene	2490	3060		ug/Kg		123		
Toluene	2490	3100		ug/Kg		124	76 - 133	
trans-1,2-Dichloroethene	2490	3120		ug/Kg		125		
Trichloroethene	2490	3040		ug/Kg		122	77 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	106		53 - 146
4-Bromofluorobenzene (Surr)	104		49 - 148
Toluene-d8 (Surr)	114		50 - 149

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-55759/1-A

Matrix: Solid

Analysis Batch: 55811

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 55759

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		170	37	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
2,4,6-Trichlorophenol	ND		170	11	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
2,4-Dichlorophenol	ND		170	8.8	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
2,4-Dimethylphenol	ND		170	45	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
2,4-Dinitrophenol	ND		330	59	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
2,4-Dinitrotoluene	ND		170	26	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
2,6-Dinitrotoluene	ND		170	41	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
2-Chloronaphthalene	ND		170	11	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
2-Chlorophenol	ND		170	8.6	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
2-Methylnaphthalene	ND		170	2.0	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
2-Methylphenol	ND		170	5.2	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
2-Nitroaniline	ND		330	54	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
2-Nitrophenol	ND		170	7.7	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
3,3'-Dichlorobenzidine	ND		170	150	ug/Kg		03/19/12 08:58	03/19/12 15:12	1

RL

MDL Unit

D

Prepared

TestAmerica Job ID: 480-17392-1

Client: URS Corporation Project/Site: Williamsburg

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB Result Qualifier

Lab Sample ID: MB 480-55759/1-A

Matrix: Solid

Analyte

Analysis Batch: 55811

N-Nitrosodi-n-propylamine

N-Nitrosodiphenylamine

Pentachlorophenol

Phenanthrene

Phenol

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

Prep Batch: 55759

Dil Fac

Analyte	Result	Quaimer	KL	MDL	Unit	U	Prepared	Analyzed	DII Fac
3-Nitroaniline	ND		330	39	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
4,6-Dinitro-2-methylphenol	ND		330	58	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
4-Bromophenyl phenyl ether	ND		170	53	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
4-Chloro-3-methylphenol	ND		170	6.9	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
4-Chloroaniline	ND		170	49	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
4-Chlorophenyl phenyl ether	ND		170	3.6	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
4-Methylphenol	ND		330	9.4	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
4-Nitroaniline	ND		330	19	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
4-Nitrophenol	ND		330	41	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Acenaphthene	ND		170	2.0	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Acenaphthylene	ND		170	1.4	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Acetophenone	ND		170	8.6	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Anthracene	ND		170	4.3	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Atrazine	ND		170	7.5	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Benzaldehyde	ND		170	18	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Benzo(a)anthracene	ND		170	2.9	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Benzo(a)pyrene	ND		170	4.0	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Benzo(b)fluoranthene	ND		170	3.3	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Benzo(g,h,i)perylene	ND		170	2.0	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Benzo(k)fluoranthene	ND		170	1.8	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Biphenyl	ND		170	10	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
bis (2-chloroisopropyl) ether	ND		170	18	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Bis(2-chloroethoxy)methane	ND		170	9.1	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Bis(2-chloroethyl)ether	ND		170	15	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Bis(2-ethylhexyl) phthalate	ND		170	54	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Butyl benzyl phthalate	ND		170	45	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Caprolactam	ND		170		ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Carbazole	ND		170		ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Chrysene	ND		170		ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Dibenz(a,h)anthracene	ND		170	2.0	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Dibenzofuran	ND		170	1.7			03/19/12 08:58	03/19/12 15:12	1
Diethyl phthalate	ND		170	5.1	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Dimethyl phthalate	ND		170	4.4			03/19/12 08:58	03/19/12 15:12	1
Di-n-butyl phthalate	ND		170	58	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Di-n-octyl phthalate	ND		170		ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Fluoranthene	ND		170		ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Fluorene	ND		170		ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Hexachlorobenzene	ND		170		ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Hexachlorobutadiene	ND		170		ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Hexachlorocyclopentadiene	ND		170		ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Hexachloroethane	ND		170		ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Indeno(1,2,3-cd)pyrene	ND		170		ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Isophorone	ND		170		ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Naphthalene	ND		170		ug/Kg		03/19/12 08:58	03/19/12 15:12	· 1
Nitrobenzene	ND		170		ug/Kg		03/19/12 08:58	03/19/12 15:12	1

TestAmerica Buffalo 3/29/2012

03/19/12 15:12

03/19/12 15:12

03/19/12 15:12

03/19/12 15:12

03/19/12 15:12

03/19/12 08:58

03/19/12 08:58

03/19/12 08:58

03/19/12 08:58

03/19/12 08:58

170

170

330

170

170

13 ug/Kg

9.2 ug/Kg

58 ug/Kg

3.5 ug/Kg

18 ug/Kg

ND

ND

ND

ND

ND

Client: URS Corporation Project/Site: Williamsburg

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-55759/1-A

Matrix: Solid

Analysis Batch: 55811

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 55759

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyrene	ND		170	1.1	ug/Kg		03/19/12 08:58	03/19/12 15:12	1
Pyridine	ND		330	95	ug/Kg		03/19/12 08:58	03/19/12 15:12	1

MB MB

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	97		39 - 146	03/19/12 08:58	03/19/12 15:12	1
2-Fluorobiphenyl	79		37 - 120	03/19/12 08:58	03/19/12 15:12	1
2-Fluorophenol	60		18 - 120	03/19/12 08:58	03/19/12 15:12	1
Nitrobenzene-d5	69		34 - 132	03/19/12 08:58	03/19/12 15:12	1
Phenol-d5	63		11 - 120	03/19/12 08:58	03/19/12 15:12	1
p-Terphenyl-d14	116		65 - 153	03/19/12 08:58	03/19/12 15:12	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 55759

Matrix: Solid

Analysis Batch: 55811

Lab Sample ID: LCS 480-55759/2-A

Lab Sample ID: LCSD 480-55759/3-A

Matrix: Solid

Analysis Batch: 55811

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-Dinitrotoluene	3300	3750		ug/Kg		114	55 - 125	
2-Chlorophenol	3300	2920		ug/Kg		88	38 - 120	
4-Chloro-3-methylphenol	3300	3360		ug/Kg		102	49 - 125	
4-Nitrophenol	3300	3850		ug/Kg		117	43 - 137	
Acenaphthene	3300	3470		ug/Kg		105	53 - 120	
Bis(2-ethylhexyl) phthalate	3300	3730		ug/Kg		113	61 - 133	
Fluorene	3300	3690		ug/Kg		112	63 - 126	
Hexachloroethane	3300	2740		ug/Kg		83	41 - 120	
N-Nitrosodi-n-propylamine	3300	3470		ug/Kg		105	46 - 120	
Pentachlorophenol	3300	3480		ug/Kg		105	33 - 136	
Phenol	3300	3040		ug/Kg		92	36 - 120	
Pyrene	3300	3610		ug/Kg		109	51 ₋ 133	

LCS LCS

%Recovery	Qualifier	Limits
114		39 - 146
103		37 - 120
86		18 - 120
97		34 - 132
92		11 - 120
119		65 - 153
	114 103 86 97 92	103 86 97 92

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 55759

						1.00	Dutoii.	00.00
Spike	LCSD	LCSD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
3280	3670		ug/Kg		112	55 - 125	2	20
3280	2880		ug/Kg		88	38 - 120	1	25
3280	3450		ug/Kg		105	49 - 125	3	27
3280	3780		ug/Kg		115	43 - 137	2	25
3280	3410		ug/Kg		104	53 - 120	2	35
3280	3800		ug/Kg		116	61 - 133	2	15
3280	3620		ug/Kg		110	63 _ 126	2	15
	Added 3280 3280 3280 3280 3280 3280 3280 3280	Added Result 3280 3670 3280 2880 3280 3450 3280 3780 3280 3410 3280 3800	Added Result Qualifier 3280 3670 3280 2880 3280 3450 3280 3780 3280 3410 3280 3800	Added Result Qualifier Unit 3280 3670 ug/Kg 3280 2880 ug/Kg 3280 3450 ug/Kg 3280 3780 ug/Kg 3280 3410 ug/Kg 3280 3800 ug/Kg	Added Result Qualifier Unit D 3280 3670 ug/Kg ug/Kg 3280 2880 ug/Kg ug/Kg 3280 3450 ug/Kg ug/Kg 3280 3780 ug/Kg ug/Kg 3280 3410 ug/Kg ug/Kg	Added Result Qualifier Unit D %Rec 3280 3670 ug/Kg 112 3280 2880 ug/Kg 88 3280 3450 ug/Kg 105 3280 3780 ug/Kg 115 3280 3410 ug/Kg 104 3280 3800 ug/Kg 116	Spike LCSD LCSD %Rec. Added Result Qualifier Unit D %Rec Limits 3280 3670 ug/Kg 112 55 - 125 3280 2880 ug/Kg 88 38 - 120 3280 3450 ug/Kg 105 49 - 125 3280 3780 ug/Kg 115 43 - 137 3280 3410 ug/Kg 104 53 - 120 3280 3800 ug/Kg 116 61 - 133	Added Result Qualifier Unit D %Rec Limits RPD 3280 3670 ug/Kg 112 55 - 125 2 3280 2880 ug/Kg 88 38 - 120 1 3280 3450 ug/Kg 105 49 - 125 3 3280 3780 ug/Kg 115 43 - 137 2 3280 3410 ug/Kg 104 53 - 120 2 3280 3800 ug/Kg 116 61 - 133 2

Client: URS Corporation Project/Site: Williamsburg

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-55759/3-A		Client Sample ID: Lab Control Sample D									
Matrix: Solid						Prep Ty	pe: Tot	al/NA			
Analysis Batch: 55811							Prep	Batch:	55759		
	Spike	LCSD	LCSD				%Rec.		RPD		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit		
Hexachloroethane	3280	2800		ug/Kg		85	41 - 120	2	46		
N-Nitrosodi-n-propylamine	3280	3400		ug/Kg		103	46 - 120	2	31		
Pentachlorophenol	3280	3520		ug/Kg		107	33 - 136	1	35		
Phenol	3280	3080		ug/Kg		94	36 - 120	1	35		
Pyrene	3280	3640		ug/Kg		111	51 - 133	1	35		

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	115		39 - 146
2-Fluorobiphenyl	100		37 - 120
2-Fluorophenol	87		18 - 120
Nitrobenzene-d5	99		34 - 132
Phenol-d5	94		11 - 120
p-Terphenyl-d14	119		65 - 153

Method: 8015B - Gasoline Range Organics - (GC)

Lab Sample ID: MB 480-55768/1-A Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA **Analysis Batch: 55769** Prep Batch: 55768

	MR ME	, MB								
Analyte	Result Qu	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
GRO (C6-C10)	ND ND	1.3	0.15	mg/Kg		03/19/12 09:35	03/19/12 10:41	1		
	MB ME	3								

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac a,a,a-Trifluorotoluene 88 46 - 156 03/19/12 09:35 03/19/12 10:41

Lab Sample ID: LCS 480-55768/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 55769 Prep Batch: 55768

l		Spike	LCS	LCS				%Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	GRO (C6-C10)	9.78	8.48		mg/Kg	_	87	66 - 143	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
a,a,a-Trifluorotoluene	111		46 - 156

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 480-55867/1-A Matrix: Solid							Client Sa	Prep Type: T	otal/NA
Analysis Batch: 55894		МВ						Prep Batch	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		16	4.9	mg/Kg		03/19/12 18:13	03/20/12 08:45	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	89		48 - 119				03/19/12 18:13	03/20/12 08:45	1

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 55904

03/20/12 17:51

03/20/12 17:51

Client: URS Corporation Project/Site: Williamsburg

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 480-55867/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 55894 Prep Batch: 55867

Spike LCS LCS Added Result Qualifier Unit Limits Analyte D %Rec 49.5 48 - 135 51.9 mg/Kg 105 Diesel Range Organics

[C10-C28]

LCS LCS Surrogate %Recovery Qualifier Limits 48 - 119 o-Terphenyl 103

Lab Sample ID: LCSD 480-55867/3-A

Matrix: Solid

Analysis Batch: 55894 Prep Batch: 55867 LCSD LCSD Spike %Rec. RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 49.6 53.1 mg/Kg 107 48 - 135 35 Diesel Range Organics

[C10-C28]

LCSD LCSD %Recovery Qualifier Surrogate Limits o-Terphenyl 107 48 - 119

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-55904/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 56043

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50	0.18	ug/L		03/20/12 08:02	03/20/12 17:51	1
PCB-1221	ND		0.50	0.18	ug/L		03/20/12 08:02	03/20/12 17:51	1
PCB-1232	ND		0.50	0.18	ug/L		03/20/12 08:02	03/20/12 17:51	1
PCB-1242	ND		0.50	0.18	ug/L		03/20/12 08:02	03/20/12 17:51	1
PCB-1248	ND		0.50	0.18	ug/L		03/20/12 08:02	03/20/12 17:51	1
PCB-1254	ND		0.50	0.25	ug/L		03/20/12 08:02	03/20/12 17:51	1
PCB-1260	ND		0.50	0.25	ug/L		03/20/12 08:02	03/20/12 17:51	1
PCB-1262	ND		0.50	0.25	ug/L		03/20/12 08:02	03/20/12 17:51	1

MB MB

ND

ND

Qualifier Surrogate %Recovery I imits Prepared Analyzed Dil Fac 19 - 112 DCB Decachlorobiphenyl 80 03/20/12 08:02 03/20/12 17:51 Tetrachloro-m-xylene 73 23 - 127 03/20/12 08:02 03/20/12 17:51

0.50

0.50

Lab Sample ID: LCS 480-55904/2-A

Matrix: Water

PCB-1268

Analysis Batch: 56043

Polychlorinated biphenyls, Total

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 55904

03/20/12 08:02

03/20/12 08:02

0.25 ug/L

0.25 ug/L

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D Limits %Rec PCB-1016 5.00 61 - 116 4.66 ug/L 93 PCB-1260 5.00 4.87 ug/L 45 - 110

> TestAmerica Buffalo 3/29/2012

Client: URS Corporation Project/Site: Williamsburg

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCS 480-55904/2-A

Matrix: Water

Analysis Batch: 56043

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 55904

LCS LCS

Surrogate	%Recovery Qua	lifier Limits
DCB Decachlorobiphenyl	67	19 - 112
Tetrachloro-m-xylene	83	23 - 127

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 55904

Lab Sample ID: LCSD 480-55904/3-A **Matrix: Water**

Analysis Batch: 56043

	Spike	LCSD	LCSD			%Rec.		RPD	
Analyte	Added	Result	Qualifier l	Unit D	%Rec	Limits	RPD	Limit	
PCB-1016	5.00	4.76		ug/L	95	61 - 116	2	50	
PCB-1260	5.00	5.13	ι	ug/L	103	45 - 110	5	50	

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	71		19 - 112
Tetrachloro-m-xylene	93		23 - 127

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 480-56033/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 56287 мв мв Prep Type: Total/NA

Prep Batch: 56033

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Arsenic ND 0.010 0.0056 mg/L 03/21/12 08:40 03/21/12 20:54 Cadmium ND 0.0010 0.00050 mg/L 03/21/12 08:40 03/21/12 20:54 Chromium ND 0.0040 0.0010 mg/L 03/21/12 08:40 03/21/12 20:54 ND 0.0050 0.0030 mg/L 03/21/12 08:40 03/21/12 20:54

Lab Sample ID: LCS 480-56033/2-A

Matrix: Water

Lead

Analysis Batch: 56287

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 56033

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.200	0.207		mg/L		103	80 - 120	
Cadmium	0.200	0.199		mg/L		100	80 - 120	
Chromium	0.200	0.196		mg/L		98	80 - 120	
Lead	0.200	0.195		mg/L		98	80 - 120	

Lab Sample ID: MB 480-56277/1-A

Matrix: Solid

Analysis Batch: 56475

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 56277

-	MB	MB						-	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		14.0	0.50	mg/Kg		03/22/12 10:50	03/22/12 14:56	1
Arsenic	ND		1.9	0.37	mg/Kg		03/22/12 10:50	03/22/12 14:56	1
Barium	ND		0.47	0.10	mg/Kg		03/22/12 10:50	03/22/12 14:56	1
Beryllium	ND		0.19	0.026	mg/Kg		03/22/12 10:50	03/22/12 14:56	1
Cadmium	ND		0.19	0.028	mg/Kg		03/22/12 10:50	03/22/12 14:56	1
Chromium	ND		0.47	0.19	mg/Kg		03/22/12 10:50	03/22/12 14:56	1
Copper	ND		0.93	0.20	mg/Kg		03/22/12 10:50	03/22/12 14:56	1

Client: URS Corporation Project/Site: Williamsburg

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: MB 480-56277/1-A

Lab Sample ID: LCSSRM 480-56277/2-A

Matrix: Solid

Analysis Batch: 56475

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 56277

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.93	0.22	mg/Kg		03/22/12 10:50	03/22/12 14:56	1
Nickel	ND		4.7	0.21	mg/Kg		03/22/12 10:50	03/22/12 14:56	1
Selenium	ND		3.7	0.53	mg/Kg		03/22/12 10:50	03/22/12 14:56	1
Silver	ND		0.47	0.19	mg/Kg		03/22/12 10:50	03/22/12 14:56	1
Thallium	ND		5.6	0.28	mg/Kg		03/22/12 10:50	03/22/12 14:56	1
Vanadium	ND		0.47	0.10	mg/Kg		03/22/12 10:50	03/22/12 14:56	1
Zinc	0.209	J	1.9	0.14	mg/Kg		03/22/12 10:50	03/22/12 14:56	1
<u> </u>									

Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 56475

Prep Type: Total/NA

Prep Batch: 56277 %Rec. Limits

Spike LCSSRM LCSSRM Added Result Qualifier Unit %Rec Analyte 106 93.33 88 25 - 275 Antimony mg/Kg Arsenic 109 110.3 101 70 - 134 mg/Kg Barium 206 204.3 mg/Kg 99 73 - 127 Beryllium 88.1 89.48 102 74 - 126 mg/Kg Cadmium 73 - 127 80.1 79.90 100 mg/Kg Chromium 117 111.8 mg/Kg 96 70 - 130 75 - 125 Copper 117 120.3 103 mg/Kg Lead 76.1 77.03 mg/Kg 101 69 - 131 Nickel 72.86 102 71 - 129 71.1 mg/Kg 67 - 134 Selenium 127 129.0 mg/Kg 102 Silver 40.9 41.67 mg/Kg 102 66 - 134 Thallium 266 104 70 - 130 276.0 mg/Kg Vanadium 86.0 82.25 mg/Kg 63 - 137 96

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 480-55733/1-A Client Sample ID: Method Blank

260.3

mg/Kg

mg/Kg

280

Matrix: Solid

Zinc

Analysis Batch: 55804

Prep Type: Total/NA

71 - 129

93

Prep Batch: 55733

Analyte	Result (Qualifier RI	. MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.02	0.0081	mg/Kg		03/19/12 08:45	03/19/12 12:25	1

Lab Sample ID: LCSSRM 480-55733/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 55804 Spike LCSSRM LCSSRM %Rec.

Prep Batch: 55733 Added Result Qualifier Analyte Unit D %Rec Limits Mercury 3.78 3.40 90 51 - 149

Lab Sample ID: 480-17392-1 MS Client Sample ID: NGW1DW 031512S

Matrix: Solid

Analysis Batch: 55804

MB MB

Prep Type: Total/NA Prep Batch: 55733

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Mercury ₩ 0.035 0.400 0.439 101 75 - 125 mg/Kg

TestAmerica Buffalo

Prep Type: Total/NA

RPD

3/29/2012

RPD

Limit

Client Sample ID: NGW1DW 031512S

DU DU

passed

Result Qualifier

Unit

mL/100g

D

Sample Sample

passed

Result Qualifier

Lab Sample ID: 480-17392-1 DU

Matrix: Solid

Analyte

Free Liquid

Analysis Batch: 56934

QC Sample Results

Client: URS Corporation TestAmerica Job ID: 480-17392-1
Project/Site: Williamsburg

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-55883/1

Matrix: Water

Client Sample ID: Method Blank
Prep Type: Total/NA

Analysis Batch: 55883

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND		10.0	4.0	ma/L			03/19/12 22:41	1

Lab Sample ID: LCS 480-55883/2

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 55883

Spike LCS LCS %Rec. Analyte Added Result Qualifier Limits Unit D %Rec **Total Dissolved Solids** 503 507.0 mg/L 101 85 - 115 1

7

0

10

4.0

13

15

GC/MS VOA					
Analysis Batch: 56296					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-17392-1	NGW1DW 031512S	Total/NA	Solid	8260B	5635
LCS 480-56351/3-A	Lab Control Sample	Total/NA	Solid	8260B	5635
MB 480-56351/4-A	Method Blank	Total/NA	Solid	8260B	5635
Prep Batch: 56351					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-17392-1	NGW1DW 031512S	Total/NA	Solid	5030B	
LCS 480-56351/3-A	Lab Control Sample	Total/NA	Solid	5030B	
MB 480-56351/4-A	Method Blank	Total/NA	Solid	5030B	
GC/MS Semi VOA					
Prep Batch: 55759					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-17392-1	NGW1DW 031512S	Total/NA	Solid	3550B	
480-17392-1 - DL	NGW1DW 031512S	Total/NA	Solid	3550B	
LCS 480-55759/2-A	Lab Control Sample	Total/NA	Solid	3550B	
LCSD 480-55759/3-A	Lab Control Sample Dup	Total/NA	Solid	3550B	
MB 480-55759/1-A	Method Blank	Total/NA	Solid	3550B	
Analysis Batch: 55811 -					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-17392-1	NGW1DW 031512S	Total/NA	Solid	8270C	5575
LCS 480-55759/2-A	Lab Control Sample	Total/NA	Solid	8270C	5575
LCSD 480-55759/3-A	Lab Control Sample Dup	Total/NA	Solid	8270C	5575
MB 480-55759/1-A -	Method Blank	Total/NA	Solid	8270C	5575
Analysis Batch: 56130					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-17392-1 - DL	NGW1DW 031512S	Total/NA	Solid	8270C	5575
GC VOA					
Prep Batch: 55768					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-17392-1	NGW1DW 031512S	Total/NA	Solid	5030B	
LCS 480-55768/2-A	Lab Control Sample	Total/NA	Solid	5030B	
MB 480-55768/1-A -	Method Blank	Total/NA	Solid	5030B	
Analysis Batch: 55769					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-17392-1	NGW1DW 031512S	Total/NA	Solid	8015B	5576
LCS 480-55768/2-A	Lab Control Sample	Total/NA	Solid	8015B	5576
MB 480-55768/1-A	Method Blank	Total/NA	Solid	8015B	5576

Prep Batch

Prep Type

Total/NA

Matrix

Solid

Method

3550B

Lab Sample ID

480-17392-1

Client Sample ID

NGW1DW 031512S

Client: URS Corporation Project/Site: Williamsburg

TestAmerica Job ID: 480-17392-1

GC Semi VOA (Continued)

Prep	Batcl	h: 55867
------	--------------	----------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-17392-1	NGW1DW 031512S	Total/NA	Solid	3550B	
LCS 480-55867/2-A	Lab Control Sample	Total/NA	Solid	3550B	
LCSD 480-55867/3-A	Lab Control Sample Dup	Total/NA	Solid	3550B	
MB 480-55867/1-A	Method Blank	Total/NA	Solid	3550B	

Analysis Batch: 55894

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-17392-1	NGW1DW 031512S	Total/NA	Solid	8015B	55867
LCS 480-55867/2-A	Lab Control Sample	Total/NA	Solid	8015B	55867
LCSD 480-55867/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B	55867
MB 480-55867/1-A	Method Blank	Total/NA	Solid	8015B	55867

Analysis Batch: 55897

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-17392-1	NGW1DW 031512S	Total/NA	Solid	8082	55796

Prep Batch: 55904

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-17392-2	NGW1DW 031512W	Total/NA	Water	3510C	
LCS 480-55904/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-55904/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
MB 480-55904/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 56043

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-17392-2	NGW1DW 031512W	Total/NA	Water	8082	55904
LCS 480-55904/2-A	Lab Control Sample	Total/NA	Water	8082	55904
LCSD 480-55904/3-A	Lab Control Sample Dup	Total/NA	Water	8082	55904
MB 480-55904/1-A	Method Blank	Total/NA	Water	8082	55904

Metals

Prep Batch: 55733

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-17392-1	NGW1DW 031512S	Total/NA	Solid	7471A	
480-17392-1 MS	NGW1DW 031512S	Total/NA	Solid	7471A	
480-17392-1 MSD	NGW1DW 031512S	Total/NA	Solid	7471A	
LCSSRM 480-55733/2-A	Lab Control Sample	Total/NA	Solid	7471A	
MB 480-55733/1-A	Method Blank	Total/NA	Solid	7471A	

Analysis Batch: 55804

ſ	I ah Camula ID	Client Comple ID	Dran Tura	Matrix	Mathad	Duan Datah
	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	480-17392-1	NGW1DW 031512S	Total/NA	Solid	7471A	55733
1	480-17392-1 MS	NGW1DW 031512S	Total/NA	Solid	7471A	55733
	480-17392-1 MSD	NGW1DW 031512S	Total/NA	Solid	7471A	55733
	LCSSRM 480-55733/2-A	Lab Control Sample	Total/NA	Solid	7471A	55733
	MB 480-55733/1-A	Method Blank	Total/NA	Solid	7471A	55733

Prep Batch: 56033

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-17392-2	NGW1DW 031512W	Total/NA	Water	3005A	
LCS 480-56033/2-A	Lab Control Sample	Total/NA	Water	3005A	

3

4

6

8

3

11

12

1 1

15

Client: URS Corporation TestAmerica Job ID: 480-17392-1 Project/Site: Williamsburg **Metals (Continued)** Prep Batch: 56033 (Continued) Client Sample ID Lab Sample ID Prep Type Matrix Method Prep Batch MB 480-56033/1-A Method Blank Total/NA Water 3005A Prep Batch: 56277 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch 480-17392-1 NGW1DW 031512S Total/NA Solid 3050B LCSSRM 480-56277/2-A Lab Control Sample Total/NA Solid 3050B MB 480-56277/1-A Method Blank Total/NA Solid 3050B Analysis Batch: 56287 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch 480-17392-2 NGW1DW 031512W Total/NA Water 6010B 56033 LCS 480-56033/2-A Total/NA Water 6010B 56033 Lab Control Sample MB 480-56033/1-A Method Blank Total/NA Water 6010B 56033 Analysis Batch: 56475 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch 480-17392-1 NGW1DW 031512S Total/NA Solid 6010B 56277 LCSSRM 480-56277/2-A Lab Control Sample Total/NA Solid 6010B 56277 MB 480-56277/1-A 6010B Method Blank Total/NA Solid 56277 **General Chemistry Analysis Batch: 55779** Lab Sample ID Client Sample ID Method Prep Batch Prep Type Matrix NGW1DW 031512S 480-17392-1 Total/NA Solid Moisture **Analysis Batch: 55883** Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Water NGW1DW 031512W Total/NA SM 2540C 480-17392-2 LCS 480-55883/2 Lab Control Sample Total/NA Water SM 2540C MB 480-55883/1 Total/NA SM 2540C Method Blank Water **Analysis Batch: 55956** Lab Sample ID Prep Batch Client Sample ID Prep Type Matrix Method 480-17392-2 NGW1DW 031512W Total/NA Water 9020 480-17392-2 MS NGW1DW 031512W Total/NA Water 9020 LCS 480-55956/2 9020 Lab Control Sample Total/NA Water MB 480-55956/1 Method Blank Total/NA 9020 Water **Analysis Batch: 56039** Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch 480-17392-2 NGW1DW 031512W Total/NA 1010 Water 480-17392-2 DU NGW1DW 031512W Total/NA Water 1010 LCS 480-56039/1 Total/NA Water 1010 Lab Control Sample

Prep Batch

Prep Type

Total/NA

Total/NA

Matrix

Solid

Solid

Method

9095A

9095A

Analysis Batch: 56934

Client Sample ID

NGW1DW 031512S

NGW1DW 031512S

Lab Sample ID

480-17392-1 DU

480-17392-1

Client: URS Corporation Project/Site: Williamsburg

TestAmerica Job ID: 480-17392-1

General Chemistry (Continued)

Analysis Batch: 57217

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
ı	480-17392-1	NGW1DW 031512S	Total/NA	Solid	D129	

_

А

4

5

_

9

11

4.0

14

Client: URS Corporation Project/Site: Williamsburg

Lab Sample ID: 480-17392-1

Matrix: Solid Percent Solids: 82.2

Client Sample ID: NGW1DW 031512S

Date Collected: 03/15/12 16:20 Date Received: 03/17/12 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Γotal/NA	Prep	5030B			56351	03/22/12 13:09	LH	TAL BUF
Total/NA	Analysis	8260B		5	56296	03/22/12 15:22	DC	TAL BUF
Total/NA	Prep	3550B			55759	03/19/12 08:58	CM	TAL BUF
Total/NA	Analysis	8270C		5	55811	03/19/12 18:56	HTL	TAL BUF
Total/NA	Prep	3550B	DL		55759	03/19/12 08:58	CM	TAL BUF
Total/NA	Analysis	8270C	DL	50	56130	03/21/12 17:52	HTL	TAL BUF
Total/NA	Prep	5030B			55768	03/19/12 09:35	LW	TAL BUF
Total/NA	Analysis	8015B		10	55769	03/19/12 14:14	LW	TAL BUF
Total/NA	Prep	3550B			55867	03/19/12 18:13	DE	TAL BUF
Total/NA	Analysis	8015B		10	55894	03/20/12 14:09	CD	TAL BUF
Total/NA	Prep	3550B			55796	03/19/12 12:03	CM	TAL BUF
Total/NA	Analysis	8082		1	55897	03/20/12 19:15	DB	TAL BUF
Total/NA	Prep	7471A			55733	03/19/12 08:45	JRK	TAL BUF
Total/NA	Analysis	7471A		1	55804	03/19/12 13:04	JM	TAL BUF
Total/NA	Prep	3050B			56277	03/22/12 10:50	SS	TAL BUF
Total/NA	Analysis	6010B		1	56475	03/22/12 18:04	AH	TAL BUF
Total/NA	Analysis	Moisture		1	55779	03/19/12 10:29	ZR	TAL BUF
Total/NA	Analysis	9095A		1	56934	03/27/12 12:51	KS	TAL BUF
Γotal/NA	Analysis	D129		1	57217	03/27/12 14:20	СТВ	TAL NSH

Client Sample ID: NGW1DW 031512W Lab Sample ID: 480-17392-2 Date Collected: 03/15/12 16:40 Matrix: Water Date Received: 03/17/12 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			55904	03/20/12 08:02	TR	TAL BUF
Total/NA	Analysis	8082		1	56043	03/20/12 18:54	JM	TAL BUF
Total/NA	Prep	3005A			56033	03/21/12 08:40	SS	TAL BUF
Total/NA	Analysis	6010B		1	56287	03/21/12 22:16	LH	TAL BUF
Total/NA	Analysis	SM 2540C		1	55883	03/19/12 22:56	KS	TAL BUF
Total/NA	Analysis	9020		1	55956	03/21/12 05:14	JM	TAL BUF
Total/NA	Analysis	1010		1	56039	03/20/12 14:12	KS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

TestAmerica Buffalo 3/29/2012

Client: URS Corporation Project/Site: Williamsburg

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Buffalo	Arkansas DEQ	State Program	6	88-0686
TestAmerica Buffalo	California	NELAC	9	1169CA
TestAmerica Buffalo	Connecticut	State Program	1	PH-0568
TestAmerica Buffalo	Florida	NELAC	4	E87672
TestAmerica Buffalo	Georgia	State Program	4	956
TestAmerica Buffalo	Georgia	State Program	4	N/A
TestAmerica Buffalo	Illinois	NELAC	5	100325 / 200003
TestAmerica Buffalo	lowa	State Program	7	374
TestAmerica Buffalo	Kansas	NELAC	7	E-10187
TestAmerica Buffalo	Kentucky	State Program	4	90029
TestAmerica Buffalo	Kentucky (UST)	State Program	4	30
TestAmerica Buffalo	Louisiana	NELAC	6	02031
TestAmerica Buffalo	Maine	State Program	1	NY0044
TestAmerica Buffalo	Maryland	State Program	3	294
TestAmerica Buffalo	Massachusetts	State Program	1	M-NY044
TestAmerica Buffalo	Michigan	State Program	5	9937
TestAmerica Buffalo	Minnesota	NELAC	5	036-999-337
TestAmerica Buffalo	New Hampshire	NELAC	1	2337
TestAmerica Buffalo	New Hampshire	NELAC	1	68-00281
TestAmerica Buffalo	New Jersey	NELAC	2	NY455
TestAmerica Buffalo	New York	NELAC	2	10026
TestAmerica Buffalo	North Dakota	State Program	8	R-176
TestAmerica Buffalo	Oklahoma	State Program	6	9421
TestAmerica Buffalo	Oregon	NELAC	10	NY200003
TestAmerica Buffalo	Pennsylvania	NELAC	3	68-00281
TestAmerica Buffalo	Tennessee	State Program	4	TN02970
TestAmerica Buffalo	Texas	NELAC	6	T104704412-08-TX
TestAmerica Buffalo	USDA	Federal		P330-08-00242
TestAmerica Buffalo	Virginia	NELAC Secondary AB	3	460185
TestAmerica Buffalo	Virginia	State Program	3	278
TestAmerica Buffalo	Washington	State Program	10	C1677
TestAmerica Buffalo	West Virginia DEP	State Program	3	252
TestAmerica Buffalo	Wisconsin	State Program	5	998310390
TestAmerica Nashville		ACIL		393
TestAmerica Nashville	A2LA	ISO/IEC 17025		0453.07
TestAmerica Nashville	Alabama	State Program	4	41150
TestAmerica Nashville	Alaska (UST)	State Program	10	UST-087
TestAmerica Nashville	Arizona	State Program	9	AZ0473
TestAmerica Nashville	Arkansas DEQ	State Program	6	88-0737
TestAmerica Nashville	California	NELAC	9	1168CA
TestAmerica Nashville	Canadian Assoc Lab Accred (CALA)	Canada		3744
TestAmerica Nashville	Colorado	State Program	8	N/A
TestAmerica Nashville	Connecticut	State Program	1	PH-0220
TestAmerica Nashville	Florida	NELAC	4	E87358
TestAmerica Nashville	Illinois	NELAC	5	200010
TestAmerica Nashville	lowa	State Program	7	131
		-		
TestAmerica Nashville	Kansas	NELAC	7	E-10229
TestAmerica Nashville	Kentucky	State Program	4	90038
TestAmerica Nashville	Kentucky (UST)	State Program	4	19
TestAmerica Nashville	Louisiana	NELAC	6	30613
TestAmerica Nashville	Louisiana	NELAC	6	LA110014
TestAmerica Nashville	Maryland	State Program	3	316
TestAmerica Nashville	Massachusetts	State Program	1	M-TN032

Certification Summary

Client: URS Corporation Project/Site: Williamsburg

TestAmerica Job ID: 480-17392-1

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Nashville	Mississippi	State Program	4	N/A
TestAmerica Nashville	Montana (UST)	State Program	8	NA
TestAmerica Nashville	New Hampshire	NELAC	1	2963
TestAmerica Nashville	New Jersey	NELAC	2	TN965
TestAmerica Nashville	New York	NELAC	2	11342
TestAmerica Nashville	North Carolina DENR	State Program	4	387
TestAmerica Nashville	North Dakota	State Program	8	R-146
TestAmerica Nashville	Ohio VAP	State Program	5	CL0033
TestAmerica Nashville	Oklahoma	State Program	6	9412
TestAmerica Nashville	Oregon	NELAC	10	TN200001
TestAmerica Nashville	Pennsylvania	NELAC	3	68-00585
TestAmerica Nashville	Rhode Island	State Program	1	LAO00268
TestAmerica Nashville	South Carolina	State Program	4	84009
TestAmerica Nashville	South Carolina	State Program	4	84009
TestAmerica Nashville	Tennessee	State Program	4	2008
TestAmerica Nashville	Texas	NELAC	6	T104704077-09-TX
TestAmerica Nashville	USDA	Federal		S-48469
TestAmerica Nashville	Utah	NELAC	8	TAN
TestAmerica Nashville	Virginia	NELAC Secondary AB	3	460152
TestAmerica Nashville	Virginia	State Program	3	00323
TestAmerica Nashville	Washington	State Program	10	C789
TestAmerica Nashville	West Virginia DEP	State Program	3	219
TestAmerica Nashville	Wisconsin	State Program	5	998020430
TestAmerica Nashville	Wyoming (UST)	A2LA	8	453.07

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

3

4

0

9

44

12

13

15

Method Summary

Client: URS Corporation Project/Site: Williamsburg

TestAmerica Job ID: 480-17392-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL BUF
8270C	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8015B	Gasoline Range Organics - (GC)	SW846	TAL BUF
8015B	Diesel Range Organics (DRO) (GC)	SW846	TAL BUF
3082	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010B	Metals (ICP)	SW846	TAL BUF
7471A	Mercury (CVAA)	SW846	TAL BUF
010	Ignitability, Pensky-Martens Closed-Cup Method	SW846	TAL BUF
9020	Organic Halides, Total (TOX)	SW846	TAL BUF
9095A	Paint Filter	SW846	TAL BUF
D129	Sulfur, Total Percent	ASTM	TAL NSH
Moisture	Percent Moisture	EPA	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

3

4

5

7

8

11

12

15

Sample Summary

Client: URS Corporation Project/Site: Williamsburg

TestAmerica Job ID: 480-17392-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-17392-1	NGW1DW 031512S	Solid	03/15/12 16:20	03/17/12 09:00
480-17392-2	NGW1DW 031512W	Water	03/15/12 16:40	03/17/12 09:00

4

5

6

8

9

1 0

13

15

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Road Nashville, TN 37204 Tel: 800-765-0980

TestAmerica Job ID: NWC2517 Client Project/Site: 480-17392-1 Client Project Description: TA-Buffalo

For:

TestAmerica Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Attn: Melissa Deyo

Authorized for release by: 3/28/2012 1:25:47 PM

Um Byan Fitzuata

Ryan Fitzwater Project Manager

Ryan.Fitzwater@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Page 33 of 48 3/29/2012

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	
Definitions	5
Client Sample Results	
QC Sample Results	7
QC Association	8
Chronicle	9
Method Summary	10
Certification Summary	
Chain of Custody	

3⁴

55

77

99

110

111

13

14

16

Sample Summary

Client: TestAmerica Buffalo Project/Site: 480-17392-1 TestAmerica Job ID: NWC2517

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
NWC2517-01	NGW1DW 031512S (480-17391-1)	Soil	03/15/12 16:20	03/20/12 08:00

₅5

Case Narrative

Client: TestAmerica Buffalo Project/Site: 480-17392-1 TestAmerica Job ID: NWC2517

2

33

4

55

77

110

12

14

15

Job ID: NWC2517

Laboratory: TestAmerica Nashville

NELAC Certification

NELAC certifications are not held for the following analytes included in this report:

 Method
 Matrix
 Analyte

 SW846 5050
 Soil
 Sulfate

Definitions/Glossary

Client: TestAmerica Buffalo Project/Site: 480-17392-1

TestAmerica Job ID: NWC2517

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
₩	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client Sample Results

Client: TestAmerica Buffalo Project/Site: 480-17392-1

TestAmerica Job ID: NWC2517

Client Sample ID: NGW1DW 031512S (480-17391-1)

Lab Sample ID: NWC2517-01 Date Collected: 03/15/12 16:20

Matrix: Soil

Date Received: 03/20/12 08:00

Method: SW846 5050 - General Chemistry Parameters									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfur	ND		0.111		%		03/27/12 14:20	03/27/12 14:20	5.00
Sulfate	ND		0.333	0.333	%		03/27/12 14:20	03/27/12 14:20	5.00

QC Sample Results

Client: TestAmerica Buffalo Project/Site: 480-17392-1

TestAmerica Job ID: NWC2517

Method: SW846 5050 - General Chemistry Parameters

Lab Sample ID: 12C5681-BLK1 Client Sample ID: Method Blank

Matrix: Soil **Prep Type: Total** Prep Batch: 12C5681_P Analysis Batch: 12C5681

Blank Blank Analyte Result Qualifier RL MDL Unit Analyzed Dil Fac Prepared Sulfate ND 0.0500 0.0500 % 03/27/12 14:20 03/27/12 14:20 1.00

Client Sample ID: NGW1DW 031512S (480-17391-1) Lab Sample ID: 12C5681-DUP1

Matrix: Soil **Prep Type: Total** Prep Batch: 12C5681_P Analysis Batch: 12C5681 **Duplicate Duplicate**

Sample Sample RPD RPD Limit Analyte Result Qualifier Result Qualifier Unit D Sulfate ND ND % 25

QC Association Summary

Client: TestAmerica Buffalo Project/Site: 480-17392-1

WetChem

Analysis Batch: 12C5681

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12C5681-BLK1	Method Blank	Total	Soil	SW846 5050	12C5681_P
12C5681-DUP1	NGW1DW 031512S (480-17391-1)	Total	Soil	SW846 5050	12C5681_P
NWC2517-01	NGW1DW 031512S (480-17391-1)	Total	Soil	SW846 5050	12C5681_P

Prep Batch: 12C5681_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12C5681-BLK1	Method Blank	Total	Soil	5050 Bomb	
12C5681-DUP1	NGW1DW 031512S (480-17391-1)	Total	Soil	5050 Bomb	
NWC2517-01	NGW1DW 031512S (480-17391-1)	Total	Soil	5050 Bomb	

TestAmerica Job ID: NWC2517

Lab Chronicle

Client: TestAmerica Buffalo Project/Site: 480-17392-1

Date Collected: 03/15/12 16:20 Date Received: 03/20/12 08:00 TestAmerica Job ID: NWC2517

Lab Sample ID: NWC2517-01

Mati	rix:	Soil

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Analysis	SW846 5050		5.00	12C5681	03/27/12 14:20	MSJ	TAL NSH
Total	Prep	5050 Bomb		1.33	12C5681_P	03/27/12 14:20	REM	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Road, Nashville, TN 37204, TEL 800-765-0980

Client Sample ID: NGW1DW 031512S (480-17391-1)

Method Summary

Client: TestAmerica Buffalo Project/Site: 480-17392-1 TestAmerica Job ID: NWC2517

2

33

3

44

55

77

99

100

112

14

15

16

 Method
 Method Description
 Protocol
 Laboratory

 SW846 5050
 General Chemistry Parameters
 TAL NSH

Protocol References:

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Road, Nashville, TN 37204, TEL 800-765-0980

Certification Summary

Client: TestAmerica Buffalo Project/Site: 480-17392-1 TestAmerica Job ID: NWC2517

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Nashville		ACIL		393
TestAmerica Nashville	A2LA	ISO/IEC 17025		0453.07
TestAmerica Nashville	Alabama	State Program	4	41150
TestAmerica Nashville	Alaska (UST)	State Program	10	UST-087
TestAmerica Nashville	Arizona	State Program	9	AZ0473
TestAmerica Nashville	Arkansas DEQ	State Program	6	88-0737
TestAmerica Nashville	California	NELAC	9	1168CA
estAmerica Nashville	Canadian Assoc Lab Accred (CALA)	Canada		3744
estAmerica Nashville	Colorado	State Program	8	N/A
estAmerica Nashville	Connecticut	State Program	1	PH-0220
estAmerica Nashville	Florida	NELAC	4	E87358
estAmerica Nashville	Illinois	NELAC	5	200010
estAmerica Nashville	lowa	State Program	7	131
estAmerica Nashville	Kansas	NELAC	7	E-10229
estAmerica Nashville	Kentucky	State Program	4	90038
estAmerica Nashville	Kentucky (UST)	State Program	4	19
estAmerica Nashville	Louisiana	NELAC	6	30613
estAmerica Nashville	Louisiana	NELAC	6	LA110014
estAmerica Nashville	Maryland	State Program	3	316
estAmerica Nashville	Massachusetts	State Program	1	M-TN032
estAmerica Nashville	Mississippi	State Program	4	N/A
estAmerica Nashville	Montana (UST)	State Program	8	NA
estAmerica Nashville	New Hampshire	NELAC	1	2963
estAmerica Nashville	New Jersey	NELAC	2	TN965
estAmerica Nashville	New York	NELAC	2	11342
estAmerica Nashville	North Carolina DENR	State Program	4	387
estAmerica Nashville	North Dakota	State Program	8	R-146
estAmerica Nashville	Ohio VAP	State Program	5	CL0033
estAmerica Nashville	Oklahoma	State Program	6	9412
estAmerica Nashville	Oregon	NELAC	10	TN200001
estAmerica Nashville	Pennsylvania	NELAC	3	68-00585
estAmerica Nashville	Rhode Island	State Program	1	LAO00268
estAmerica Nashville	South Carolina	State Program	4	84009
estAmerica Nashville	South Carolina	State Program State Program	4	84009
estAmerica Nashville	Tennessee	State Program State Program	4	2008
estAmerica Nashville	Texas	NELAC	6	T104704077-09-TX
	USDA	Federal		S-48469
estAmerica Nashville			0	
estAmerica Nashville	Utah Visainia	NELAC Secondary AB	0	TAN 460453
estAmerica Nashville	Virginia	NELAC Secondary AB	3	460152
estAmerica Nashville	Virginia	State Program	3	00323
estAmerica Nashville	Washington	State Program	10	C789
estAmerica Nashville	West Virginia DEP	State Program	3	219
estAmerica Nashville	Wisconsin	State Program	5	998020430
estAmerica Nashville	Wyoming (UST)	A2LA	8	453.07

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

11

₃3

₅5

₇7

88

99

1111

112

13

15

116

COOLER REC

NWC2517

Cooler Received/Opened On 3/20/2012 @ 0800	
1. Tracking # 6349 (last 4 digits, FedEx)	
Courier: FedEx IR Gun ID 14740456	
2. Temperature of rep. sample or temp blank when opened:	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO NA
4. Were custody seals on outside of cooler?	YESNONA
ir yes, now many and where.	ED NO NA
5. Were the seals intact, signed, and dated correctly?	YES.).NONA
6. Were custody papers inside cooler?	YES)NONA
I certify that I opened the cooler and answered questions 1-6 (intial)	
7. Were custody seals on containers: YES (10) and Intact	YESNO.
Were these signed and dated correctly?	YESNO. (NA)
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Paper	Other None
9. Cooling process: (Ce) Ice-pack Ice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	XES)NONA
11. Were all container labels complete (#, date, signed, pres., etc)?	ESNONA
12. Did all container labels and tags agree with custody papers?	ESNONA
13a. Were VOA vials received?	YES., NONA
b. Was there any observable headspace present in any VOA vial?	YESNONA
14. Was there a Trip Blank in this cooler? YESNO(NA) If multiple coolers, sequence	ce #
I certify that I unloaded the cooler and answered questions 7-14 (intial)	(M)
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNO(NA)
b. Did the bottle labels indicate that the correct preservatives were used	YESNONA
16. Was residual chlorine present?	YESNO(NA)
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	(W)
17. Were custody papers properly filled out (ink, signed, etc)?	(ES)NONA
18. Did you sign the custody papers in the appropriate place?	ESNONA
19. Were correct containers used for the analysis requested?	YESNONA
20. Was sufficient amount of sample sent in each container?	ESNONA
I certify that I entered this project into LIMS and answered questions 17-20 (intial)	
I certify that I attached a label with the unique LIMS number to each container (intial)	
21. Were there Non-Conformance issues at login? YES (NO) Was a PIPE generated? YES	NO.#

BIS = Broken in shipment Cooler Receipt Form.doc

Revised 6/24/09

TestAmerica Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

	Sampler	MG de la	-V		Carrier Tracking No(s):	COC No.	
Client Information (Sub Contract Lab)		Deyo	Deyo, Melissa L			480-3281.1	
Client Contact:	Phone:	后Mail melis	E-Mail: melissa devo@testamericainc.com	nericainc.com		Page 1 of 1	
Orinphilig/Necesiving Company:				A minimum D	- C	Job #:	
erica Laboratories, Inc				Analysis Kequested	duestea	Presentation Codes	
Address: 2960 Foster Creighton Drive, ,	Due Date Requested: 3/28/2012					}	1 - Hexane
	TAT Requested (days):					B - NaOH N C - Zn Acetate O	I - None) - AsNaO2 - Na2O4S
Sate, Zp. TN, 37204							Q - Na2SO3 R - Na2S2SO3
Phone: 800-765-0980(Tel) 615-726-0954(Fax)	PO#.		(0)			corbic Acid	- TSP Dodecahydra
Email:	WO#				,	I - ICE J - DI Water K - EDTA	v - MCAA V - ph 4-5
Project Name: Williamsburg	Project #: 48005665		io se,			L-EDA	Z - other (specify)
Site.	#MOSS) asv			<u>.</u>	
	Sample		lltered m MS/M MOD) Lo			NWC2517	517
Sample Identification - Client ID (Lab ID)	Sample (C=comp.	Secolid, np, Ceadatefoil, b) BT=Tissue, A=Air)	noheq			41 1 1 1 1	II3/28/12 ೨ನ ಕಿಲ್ಲ Special Instructions/Note:
	X	KO .	X			Ш	-
NGW1DW 031512S (480-17392-1)	.3/15/12 Fastern	Solid	×			1 NWC	NWC2517-01
1000年の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の							
							·
				*		-	
Possible Hazard Identification			Sample Dis	posal (A fee may be η To Client	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	etained longer than 1 r Archive For	nonth) Months
Deliverable Requested: I, II, III, IV, Other (specify)			Special Instr	Special Instructions/QC Requirements:	ents:		
Empty Kit Relinquished by:	Date:		Time:		Method of Shipment:		
Relinquished by: A Mourem	Data Time: 1500	Company 73/L	BUF Received by:	y.	Date/Time: 3.20 /2	C 060	Company
Rejirduished by:	Date/Time:	Company	Received by:	%	Date/Time:		Company
Relinquished by:	Date/Time:	Company	Received by	. ⁄c	Date/Time:		Company
Custody Seals Intact: Custody Seal No.			Cooler Fer	Cooler Temperature(s) °C and Otner Remarks.	Remarks: 1, 2		
		instanta Manadan				10 TO	

Buckingham, Paul

NWC2517

03/28/12 23:59

From:

Schove, John

Sent:

Tuesday, March 20, 2012 11:33 AM

To:

Buckingham, Paul

Cc:

Fitzwater, Ryan; McBride, Mike; Ford, Easton; Deyo, Melissa

Subject: RE: Job 480-17392-1

Paul,

It looks like the client is looking for Percent Total Sulfur in soil. We have it as method D129 in our system but if you use a different method, that is fine..

John

Announcing TotalAccess 4.0 - Online access to your data. New homepage with easier access to your data, multiple search criteria including sampling date and much more! Contact your Account Executive or Project Manager today to arrange for a live demonstration!

JOHN SCHOVE

Project Manager

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

10 Hazelwood Drive Amherst, NY 14228 Tel 716.504.9838 | Fax 716.691.7991 www.testamericainc.com

From: Buckingham, Paul

Sent: Tuesday, March 20, 2012 10:54 AM

To: Schove, John

Cc: Fitzwater, Ryan; McBride, Mike; Ford, Easton; Buckingham, Paul; Deyo, Melissa

Subject: RE: Job 480-17392-1

John, I got an out of office from Melissa. Thanks.

From: Buckingham, Paul

Sent: Tuesday, March 20, 2012 9:51 AM

To: Devo, Melissa

Cc: Fitzwater, Ryan; McBride, Mike; Ford, Easton

Subject: Job 480-17392-1

Job 480-17392-1

Analysis is listed as 'D129/(MOD) Local Method'

I do not understand the requested analysis. Could you provide a work share or more information?

Thanks. (Easton or Mike are likely to be entering the project)

777 New Durham Road Edison, New Jersey 08817 Phone: (732) 549-3600 Fax: (732) 549-3679

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING	

THE LEADER IN ENVIRONMENTAL TESTING		J						; ;	!					Page of	
Name (for report and invoice)		sampler:	Samplers Name (Printed) Meg. an TD	Name (Printed)	Ş	<u>ت</u>	<u>is</u>	te/Pro	ect Ider	tification 2 6 0	2	Π'M	im	Ste/Project Identification National God Williamsbra	
		P.O.#	a -	,	00		Ω	ate (Lc	cation	State (Location of site):	Ž	z	N.	Other: J	T
2 9 042			Ξ	111 10050	٥		Ě	egulato	Regulatory Program:	ram:					
Address 12 000 CL	-	nalysis Tu	Analysis Turnaround Time		- 1	AMALYSIS	REQUESTR	100 CE	X: BELOW	ANALYSIS REQUESTED (FESTIV), BELOW TO INDICATE RECUEST)	(EQUEST)			LAB USE ONLY	
1 1 4 00 delle 2T		Standard			40 <u>/</u> \	<u> </u>		γο ν 5	र्ट्स सं		<u>'</u>	<u>.</u> 1	<i>ለ</i> ጐ	Project No:	
State State		Rush Chrag	Rush Chrages Authorized For: 2 Week		בר. גר	160 160	ور لا	N 07	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 	~ح		<u>, </u>	75	Job No:	
Phone Fax 711.0-123-1207		1 Week			T 30	5 (1-8-	21-6 21-6 21-6	<u>2</u> μ8	त्रा १८ १		70	י צריי האבריי	7/		
Sample Identification	Date	Time	Matrix	No. of. Cont.	978 978	2108	7808 710	3100	100	808		201	· ·····	Sample Numbers	
NGW 10W 0315/25	1/2	1120	S	5	×	۲	X						igspace		T
031512W	_	1640	_	1					×	بر	>	メメ			Т
							-				-				Т
							-		-			ļ			1
								-	-		 	<u> </u>			т
									-						T
							_								
						1					1				
								-				_			
Preservation Used: $(=ICE)$ $2 = HCI$, $3 = H_2SO_4$, $4 =$	HNO	5 = NaOH	Ī	Soil:	7	×	×	کر بخ	*						
6 = Other , 7 = Other	ther			Water:				\dashv	2	Ż	y	싓			
ructions Call 50		-7169	23-120	vist-716923-1207 Wany greston	any	230	Asn	5			Wat	er Metal	s Filtered	Water Metals Filtered (Yes/No)?	
Reinfulshed by Company (Company)	» V		Date /	Date / Time $\int_{0.2}^{0.2} d$		Received by		\mathcal{N}_{q}	1	i	<u> </u>	Company	1 1/2	House	
	7	N	3/6/21	Date / Time	1 6	Received by	کو ک		1	16		Company		,	T
Relinquished by Company	A		9-1747	Date / Time	0	Received by	Z on	1				Company	3	W	1
Relinquished by Company	3		O	Date / Time		Received by	d by			!	0	Company			T
Laboratory Certifications: New Jersey (12028)		New York (11452)		Pennsylvania (68-522)	7 (6.9)	7 -522)	, in	ortici	Connecticut (PH-0200)	(0000	- 2	o lelan	Bhode Island (132)		¬,

Page 47 of 48

Massachusetts (M-NJ312), North Carolina (No. 578)

Login Sample Receipt Checklist

Client: URS Corporation Job Number: 480-17392-1

Login Number: 17392 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kinecki, Kenneth

Creator: Kinecki, Kenneth		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	2.3 C
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

5

4

_

1 0

12

13

15

16

APPENDIX G IDW DISPOSAL DOCUMENTATION

		٠.			HAM	47				-		
A		ON-HAZARDOUS 'ASTE MANIFEST	1. Generator ID Number NYROOOI	34184	2. Page 1 c		rgency Respon			Tracking Nu	ımber	3406
	5. Ge	nerator's Name and Maili	ng Address		i	' General	tor's Site Addre	ss (if different	than mailing add	iress)		
	ľ		Merotech				1 Nort	٨/١٤١	51			
		,	inclosion cen			1	Brook	YN, N	1.4			
		rator's Phone: Language Name Language La	300011N, N.1	11591	·				U.S. EPA IC) Number		
	/	UNS	nvironin	intal	Sann	1010	- 1. /	UC.	IN	200	0063	166
		nsporter 2 Company Nam		97 87 17 C		ر بی			U.S. EPA II		-	- 3
	8. De:	signated Facility Name ar	nd Site Address						U.S. EPA IC	Number 1		
	1	15 E.010	nd Site Address L GRID COUNTY	120					N	1/1/	106860	1.000
	Earth	Total (SVI)	1/2 My /	1801	•				1		U W J G G	0008
	гафи			092			10. Con	tainers	11, Total	12. Unit	1	
		9. Waste Shipping Nam	е ало респриоп				No.	Туре	Quantity	Wt./Vol.		
ENERATOR -		VON DO	T/non AC	`na Keg	UlAKOL.	3-16	18	DM	6300	165		
Ë		2.						<u> </u>				
1		No. 1 1	111 0000	0	L A 1 · .		}	om	200	165		
	3.0	1 (N) 1/3 1	NON RERA	Kejulitee	Pebris			-				
		· ·	•	•								
			. •									
		4.		· #								
				•								
	13. S	pecial Handling Instruction	ons and Additional Information	1		I				_1	<u> </u>	
		1. Decon	· Purje Water	: ~	•			•				
		L. PPE	(1)	,							,	
		., -			,							
		IN PO	ace of	Emerce	non 8	800	1124	-930	20 .	00	01500	3
			ATION: I certify the materials	s described above on this	manifest are not subje	ect to federa	al regulations (c	or reporting pro	oper disposal of l	Hazardous V		
		ator's/Offeror's Printed/Ty			· .	ignature	00	a		٠	Month 4-/	Day Year
¥ ¥		ernational Shipments	h on Behit	of Not G		1/		1~				3) 15
INT'L		porter Signature (for expo	Import to U.S.		Export from	1 U.S.		ntry/exit: ving U.S.:				
31	16. Ta	ansporter Acknowledgme	nt of Receipt of Materials			***********	5410 100	ang oron				
E	Trans	porter 1 Printed/Typed Na			S	ignature	ΔΛ A				Month r 41	Dây Year
dSN	Transi	porter 2 Printed/Typed Na	McG1.th		· /	ignature	MANN	<u> </u>	··· · · · · · · · · · · · · · · · ·		Month	Day Year
TRANSPORTER	11600	one z mnoż typou two			.	gnatoro	•				1	
	17. Di	screpancy			1							
	17a. D	iscrepancy Indication Spa	ace Quantity		Туре		Residue		Partial Re	ejection		Full Rejection
		Ŀ								:		
_ ≻	17b. A	Iternate Facility (or Gene	ralor) .	.		Mani	ifest Reference	Number:	U.S. EPA ID	Number	•	
FACILITY		• •		•	• .							
		r's Phone:								•		
DESIGNATED	17c. S	ignature of Alternate Faci	ility (or Generator)	•	,						Month	Day Year
IS S	3.4 :							YARI NONE			AARTA A	
DES												
						41.41						
			or Operator: Certification of re	ecelpt of materials covere		<u> </u>	l in Item 17a				Молth	Day Year
1	111	VTyped Name	1//0		١	igifaturė ///	111	7.*			1 9	30/2
169	BLC	O 6 10498 (Rev.	8/06)									ODYED 44

TRANSPORTER#1

A	NON-HAZARDOUS	1. Generator ID Number		Emergency Respons		4. Waste T				
Î	WASTE MANIFEST	NYROVOIS4184	/ / (531 924	541		34.	06		
	5. Generator's Name and Mailin	ng Address	Ge	nerator's Site Addres		• • • • • •	ess)			
	Metrotech				th 12°	12 P				
THE REAL PROPERTY.	Generator's Phone: (1977)	NY 1110 1	. 1	Ervor	140 1	U.S. EPA ID				
	6 Transporter 1 Company Nam	ne .		- 7 2 -11	· 17/1.	U.S. EPA ID	Number			
	VAS AUVI	converted Services				NY.	Rown	n62/66		
	7. Transporter 2 Company Nam	ne		•		U.S. EPA ID	Number	J		
	0.00-1	nd Cita Addraga		 		· U.S. EPA ID	Mumber	-		
KENNENDE	8. Designated Facility Name an		•							
	175 6.000	Eventy 124				NY_2	000	63660	08	
	Facility's Phones Suffe	NY 11801								
	9, Waste Shipping Name			10. Con	tainers	11. Total	12. Unit			
				No.	Type	Quantity	Wt./Vol.			
ä	Note Oat	Notinen Beguletul	Lihar	9		an min				
ENERATOR		· · · · · · · · · · · · · · · · · · ·		1 7	117	2,700	16-131			
ENE	2.			_	1					
5										
		<u> </u>			1					
	3.									y Vituri Agricus
10000000	4.			· ·	 					
NO PER SE		•						本語語學		
	13. Special Handling Instruction									
	91 - Decon 1	longe bloter	•							
				•						
No. of the last of	IN CASE	OF FMC GGC S ATION: I certify the materials described above on	00 424-971	מא (מי	CCMI	5623				
	14. GENERATOR'S CERTIFIC Generator's/Offeror's Printed/Ty		his manifest are not subject to Signate		or reporting pro	oper disposal of F	azardous W	aste. Month	Day	Year
		cer on hobbut of	oignair 		[]			08	70	1)
<u>'</u>	15. International Shipments	Import to U.S.	Export from U.S.	And the Board of the state of t	entry/exit:				,,,,,,	~
IA.	Transporter Signature (for expo	•	export from U.S.	Pon or e	iving U.S.:					
ă	16. Transporter Acknowledgme	ent of Receipt of Materials		ممر : وس				11	Davi	Vasi
TRANSPORTER	Transporter 1 Printed/Typed Na		Signate 1		A Comment			Month C	Day Book	Year /
NSP	Transporter 2 Printed/Typed Na		 Signali	<u> </u>	e gar 	····		Month	Day	Year
절	Transporter & Children John He	ni.i.v	Januar	···					1	
A	17. Discrepancy									
1	17a. Discrepancy Indication Sp.	ace Quantity	Туре	Residue		Partial Re	ection	П	uli Rejecti	on
		· · · · · · · · · · · · · · · · · · ·	••							
	17b. Alternate Facility (or Gene	valor)		Manifest Reference	Number:	U.S. EPA ID	Number			
FACILITY	17 b. Automate 1 donly for delia					- /				·
FAC	Facility's Phone:	•		,						
	17c. Signature of Alternate Fac	rility (or Generator)						Month	Day	Year
DESIGNATED					and a second of	and a read of the			1	
ESIC										
		1000年,1000年,1000年								
	18. Designated Facility Owner	or Operator: Certification of receipt of materials cov	ered by the manifest except as	noted in Item 17a	2 2 2 2 2					
H	Printed/Typed Name		Signati		n. 116	to.		Month	Day	Year €``)
Y	1/1/1/C (1)	Pre (10)		14 ('af)	Ke / //.			t-rif	30	14
169	9-BLC-O 6 10498 (Rev	. 8/06)	•	1 51	V			TRANSP	ORTE	7#1

5				. 1941 <u></u>									
1	NO W	ON-HAZARDOUS ASTE MANIFEST lerator's Name and Mailing	1. Generator ID Numb	er 2712	- 1	2. Page 1 of	3. Emergency Respon	nse Phone	- 4. Waste	Tracking No 	ımber		
	5. Gen	erator's Name and Mailing	Address	, e	11. 1	. <u>. 1 ' l</u>	Generator's Site Addr	ess (if different	than mailing add	ress)			:
	1 1	erator's Name and Maning	of the second	M. Fr. A.C.	J. 410	ناک	Willian	milion	ių.				
		ator's Phone: 11	erger i Estat original	Chr. K.	(a, i, N)	111 01		.3 (5)	š			t	
	Genera	ator's Phone: VII 🛠 🕓	11.2.34	3	('		To Fli	27 P	Y 112	11			
	6. Iran	sporter 1 Company Name		1.1.6	thu 4	Thurs		į.	U.S. EPA IC) Number ⊇nana	39716		
		sporter 2 Company Name	111, 142		TURNITA	110016			U.S. EPA IC	Number	12719	्रों	
	11.110	separat 2 dampany mana					<i>*</i> -		0.3. 27 8 12	NUIROEI			
	8. Desi	gnated Facility Name and	Site Address						U.S. EPA ID	Number		+ .	
	14	gnated Facility Name and	The first	713 BAG	in the lift.	F. K.			1 -5	ا امر د والسام الم	ennen 14.	4 2	
			A King	The Establish	1454. NJ	1. 1. 1.	52		_ MJ	for him	90015	Price gara	
	Facility	's Phone:	i - State	1 2 3 4 1 2 3 4 1 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		·							
		9. Waste Shipping Name a	nd Description				.	ntainers	11. Total	12. Unit			
	sla 322 1	 1.	-				No.	Type	Quantity	Wt./Vol.			Translatii.
TOR RO	500	Wash		Print A A	a Para di Anta	1 : 61		077	20	6. 34			
ERA			4.	tick Proces		1123	- /	Parker P	20	4.30	.	e de la composition della comp	
GENERATOR	2	2.											9.57.55
1													
	多数	3				·		1	-				
		v.		A 1	18.5								
							}		, ,		9-163-68-69-69-6		- 10 ju
	4	1.											
											e e e e	0.46.59	
	12 00	noist Unndiina Instructions		-M									
2000	13. Spe	ecial Handling Instructions	ano Audiudiai inigilii	duuit									
									Box 18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<i>}</i> 4.		
;									rgas / C	_{act} the A	*		X and a second
							_	1	**	SeCF F			
	44.0511	Innivanta annuma a						**************************************	and the same of the same				
		NERATOR'S CERTIFICAT or's/Offeror's Printed/Type		irials described abo	ve on this manifes		rederal regulations for	r reporting pro	per disposal of H	azardous W	aste. Monti	Day	Year
٧	fig.	1/ Mican	Carlo Jack	Syl 1,4		1 .			15		100	Pay	1001
—	15. Interi	national Shipments	Import to U.S.		Г	Export from U.S		ntry/exit:					
IT NI		rter Signature (for exports	only):		·	Export ROIII 0.0		ving U.S.:					
TRANSPORTER		sporter Acknowledgment or rter 1 Printed/Typed Name											
Ϋ́OR	Manspoi		and sp	Zeno		Signat	75 t	r Ben			Month 1 ∠ ≤	Day エメン料	Year
ANS	Transpor	rter 2 Printed/Typed Name		2 C. 911X	· · · · · · · · · · · · · · · · · · ·	Signal		15-810)-^^ }		Month	Day	Year
TR											:]		1
A	17. Discr			777							· · ·		
	17a. Disc	crepancy Indication Space	Quantity	i.	Type		Residue		Partial Rej	ection		Full Reject	tion
<u>,</u>	17b. Alte	emate Facility (or Generato	r) .	- <u> </u>			Manifest Reference	Nember:	U.S. EPA ID I	Jumher			
듯		• • •	•						4.47 1711- 1	,			
FAC	Facility's	Phone:	1,14.15	• .,•									
	17c. Sign	nature of Alternate Facility	(or Generator)						,		Month	Day	. Year
Š	USERVICEUM	The State of the Action No.	Table Service Services	86 St. 14 F. W. Chell Phila . Steel .	ing of the second secon	er die		. V S 10 SQ 12 00 00 00			Suppose sittle and con-		Na incominante de la companya de la
DESIGNATED FACILITY	1												
	-000 -314 (5)										ga di de site Se da di de s		
	18. Desig	gnated Facility Owner or O	perator: Certification of	of receipt of material	ls covered by the r	manifest except as	noted in Item 17a	<u> </u>	经存在 经决定 经计划的现在	o de la professión de la companya de		- व्यक्तिको व्यक्तिकी	
		yped Name				Signati					Month	Day	Year
V						1					1 ,	1	

							*				
À		NON-HAZARDOUS 1. Generator ID Number		2. Page 1 of	3. Emergency Response		4. Waste T		_		
		WASTE MANIFEST 35/7/427/2	! - 2 3/		631 924-	8///	042	720	>/2		
	5. G	enerators Name and Mailing Address The Shooke yn Willon Gas Co,	OBA .		Generator's Site Address		than mailing addi	ess)	•		i
	1	THE THOOKEYN ON ON VAS CO,	NATIONA	7.C	50 Kent	1ve					
	(DIVE Metrotech Center	Gnin								ļ
2] :	BRUDKCYN NY 11201 (718) 9	Va Curs	1	Brooklyn A	19 11	2//				
		ransporter 1 Corppany Name	<u> </u>			*******	U.S. EPA ID	Number	· · · · · · · · · · · · · · · · · · ·	<u> </u>	
	0. 1	ransporter i Company Name							071	~ >	
		forwith Trocking @ Cler	n Venture 11	2 C			U.S. EPA ID		971	7.3	
	7. T	ransporter 2 Company Name					0.0. jera ib	TARRIDO			
			. #				110 771 17				
	8.0	pasignated Facility Name and Site Address Sty Stone Soil ManaGerrent LC	.a.				U.S. EPA ID	Number			
				+ *	. •		. سي رو		ec.	•	
		15 Crows MILL Rd	es a l'				NUL	2250	0/522		
	Fac	Censiley No. 08832 (73.	2) 738-6000		•		1				
					10. Conta	iners	11. Total	12. Unit			
		Waste Shipping Name and Description			No	Type	Quantity	Wt./Vol.	·		
	6/80	<u> </u>			(NV/75				满色的种	护子主动	
16		NON Dot, NON 1/12, NON REA	n Regulated	Solids	V:24	DM	35,000	KAR	经基础		
ERATOR			, ,	_	T	1	39,000	1			
当	STATE OF THE SERVICE	2.			- ~			1	电影影响	20 32 AZ (A)	80 -8
			•						ーフィ		1
			•						7/5	· W ()	经验
	199	3 0						 	STATE OF THE	estalania Sanakaran	
	100	₫ 3.						l			
	3										
	7.7							<u> </u>			ENGERS.
		4.						1			Zibir-(†6 Sichet⊬
				• •							143 55 T
								<u> </u>	- 李元达(1945)		(4.9) / FE.
	13.	Special Handling Instructions and Additional Information	interest constant	Lance -			1			-	
			:	₹ .	. ** * . *						g.
										-	
									•		
				-			•				·
		and the second of the second o	m. 18			•					100
1	14.	GENERATOR'S CERTIFICATION: I certify the materials des	cribed above on this manifes	st are not subject	to federal regulations for	reporting pro	oper disposal of H	azardous V	laste.		
		erator's/Offeror's Printed/Typed Name			nature /	/			Monti	Day	Year
y		Peter Ducher on be	chner or	. 1	111111 Kul				09	127	12
ئىي	15.1		TIPE OF OF	75	I.S. Port of en	tarlouis					
NTL	1	import to 0.8.	L.	Export from U	r.s. Port of en Date leav	•					
я—		sporter Signature (for exports only): Fransporter Acknowledgment of Receipt of Materials			17010 1604	g 5.0					
TRANSPORTER		sporter 1 Printed/Typed Name		Sion	nature , , , ,	<u> </u>			Month	Day	Year
Б		-ILBERTO WELE		.	1911/12	£ 1	J. Len		100	127	12
함	12	asporter 2 Printed/Typed Name		Slor	nature	~ 6	-0		Monti		Year
8	Han	oponer a Frittam i shan ismita		l Jigi		-			1	1	
#F			,				·			<u> </u>	1
A		Discrepancy		 	*****						
	17a.	Discrepancy Indication Space Quantity	Туре		Residue		Partial Re	ection	· L	Full Rejec	tion
		_ ,	•				1120	アショ	<		
	L				Manifest Reference	lumber:	<u> こしょこ</u>	ر در ر	<u> </u>	·	
בן	17b.	Alternate Facility (or Generator)	•	,			U.S. EPA ID	19Omuve			
Ħ								•	•	-	
ĭ	Faci	lity's Phone:									
品	17c.	Signature of Alternate Facility (or Generator)							Month	Day	Year
¥					•				<u> </u>		
= :	<u> </u>			100 get 54 g 56							
	366		マル・コン・カー・コング こうだい かんこうさい	1981年8月2日日本全	·····································		数数数字规则				
DESIG					以"的"是"是"的"是"	THE PERSON	新越州的中央市场			- 1 - 1	5 - T4: Cir 14 D
- DESIGNATED FACILITY			A								
DESIG	18 1	Pasignated Eacility Owner or Operator Certification of residen	iof materials covered by the	manifest except	as noted in XemAva						
DESIG		Designated Facility Owner or Operator: Certification of recipied/Typed Name	tof materials covered by the		as noted in fem 17a				Monti	Day	Year Y

Bayshore Recycling Corp. 75 Crows Mill Rd PO Box 290

Keasbey, NJ 08832

Facility ID: 132397

Ticket: 113585

Date: 4/27/2012

, Net: 54020 lb

Time: 14:22:14 - 17:36:13

Gross: 85900 lb In Scale 2

Tare: 31880 15 Out Scale 3

Scale

Customer: WRS ENVIRONMENTAL SERVICES,

INC./BSM0056

Carrier: CLEGN VENTURE INC.

17 OLD DOCK ROAD

YAPHANK, NY 11980-

Truck: AN454M

CUYDs: 35

Truck Type: TRACTOR

Manifest: 04272012 Remaining: 0.00 TN

Profile: 2712-231/WILLIAMSBURG PROJECT Generator: WILLIAMSBURG PROJECT

Commence

Origin

Materials & Services Quantity Unit

Brooklyn

ID27 DRUM

75.00 Units

THE ABOVE IS CORRECT AND HON-HAZARDOUS TO THE BEST OF MY KNOWLEDGE

Weighmaster: Andres

£.		AON-HAZARDOUS WASTE MANIFEST	1. Senerator ID Number 13577 # 2 79	12-23/	1 -	3. Emergency Respon	_	4. Waste	Tracking No	umber 9°2	
	۱ ا	ONE Metro Cente	ing Address DNION CAS CO	DISIA NATIONA	16010	ienerator's Site Addr Williams 50 Kenth	bung	than mailing add	iress)		
	6.	Transporter 1 Company Nar	Trucking	67-5457		Proofet yn		U.S. EPA ID	Number (PAO 14671-	1878 50
	8.	Designated Facility Name a	nd.Site Address		· · · · · · · · · · · · · · · · · · ·		•	U.S. EPA ID			
	Fa	Tryshore Soll To Crows Mill Leasbey NJ Offin's Phone:	TAMIGENENT PC/ 08872 (772) 738-6000				NJ/	250	0/522	• •
		9. Waste Shipping Nam				10. Cor No.	italners Type	11. Total Quantity	12. Unit Wt./Vol.		
EBATOR -			NoN/ACAR,	Regulated Sol	(n) 1027	1.	C/7.	10	April 10 To		
GEN	医高热器	2.								10.9	9
		3.									
		4.	•		-						
Taranta de Caracteria de Carac	ł	Special Handling Instruction - Continuent	ns and Additional Information		:						, .
					`.	130	ox R	26.94 0.5			
	Ge	nerator's/Offeror's Printed/Ty	ped Name	described above on this manifes	st are not subject to Signatu		t tebougud bro	per disposal of H	azardous W	Month Day	Year
NT.L	15.	International Snipments	On hehner Import to U.S.	* 0£	Export from U.S.	Port of e				04 30	/2
A -	16.	nsporter Signature (for expor Transporter Acknowledgmer asporter 1 Printed/Typed Na.	nt of Receipt of Materials		Signatu		ring U.S.:			· Month Day	Year
TRANSPORTER		RAYMO46 S	BERR		. Signatu	Regnal 51	<u>Béon</u>	-1		OY 30 Month Day	Year
À		Discrepancy								1	
		. Discrepancy Indication Spa	L_I Quantity	Туре		Residue Manifest Reference I	Number:	Partial Reje	72	Full Rejer	ction
FACILITY		. Alternate Facility (or General	alor) .				. •	U.S. EPA TO N	lumber		
DESIGNATED F	17c.	lity's Phone: Signature of Alternate Facil	ity (or Generator)	·		*	•			Month Day	Year
Desig							/_				
\		Designated Facility Owner or led/Typed Name	Operator: Certification of rec	elpt of diaterials covered by the	manifest except as n Signatur					Month Day	Year

1 169-BLC-O 6 10498 (Rev. 8/06)

DESIGNATED FACILITY TO GENERATOR

-	and the second second	,	
	· ·	Facility ID: 132397	[
	Bayshore Racy Lind Sorp.	Lange to the torner	
	75 Crows Mill Rd	to have going group grown	-
		Ticket: 113795	}
	PO Box 298	Date: 4/30/2012	
	Keasbey, NJ 00832	Time: 09:32:03 - 10:01:03	-
:		Scale	
		 · · · · · ·	14878
	Customer: WRS ENVIRONMENTAL SERVICES,	Gross: 55840 lb In Scale 2	850
	INC./BSM0026	Tare: 34860 lb Out Scale 3	13.20
	TMM / ponegan	Net: 20980 1b	í
	17 OLD DOCK ROAD		
	YADHANK, NY 11980-	CUYDs: 20 License: AF07824	1
	Truck: 01522	Truck Type: SINGLE AXLE	
		LUES 13 he a contract of the	
	- CONTRACTOR TOURNS THE	· ·	
	Carrier: HORWITH TRUCKS INC	Manifest: 002	
	THE PROPERTY OF THE PROPERTY O	Remaining: 0.00 TM	
	Profile: 2712-231/WILLIAMSBURG PROJECT		E4041.53
	Generator: WILLIAMSBURG PROJECT		
	The same and the s	A make the thorite	阿勒斯
	Origin : Materials & Services	Quantity Unit	
+	14 1 16 14 15	for grade transferred processing from the first processing and processing and grade product and grade	
	Brooklyn ID27 INDUSTRIAL WASTE	10.49 Tons	V//
	Brooklyn INST INDUSTRIAL WASTE		17
			SECTION OF
•		THE PERT OF MY KNOW FORE	143.50
	THE ABOVE IS CORRECT AND MON-HAZARDOUS TO	THE REDI OF ALL LABORATION .	國際機
	\$ 45a 1 Ma M 1 m	•	1920
•		• •	
	IDriver: Reds Bear	Weighmaster: Andres	MARKET AND
	Driver: Ngul- Dea		
	the contract of the contract o		100 Sec-
÷		يد منط ومن كالمستان الله الراب المنافق المنافق المدان المنتسب المداني المنافق	
;		ند معمد داملوگیستان کا در بازار در در در دارد در این بازار میشد در در میشد. محمد میشود بازار در	
· .	The state of the s	and the second s	
1	114 3011		
1	114 7011		
-	7077	Pris DZK94	
	114 7011	Box R2694	
	77.4 3011	Mover	
	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are no	MOLE / of subject to federal regulations for reporting proper disposal of Hazardous Waste.	
· · · · · · · · · · · · · · · · · · ·	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are no Generator's/Offeror's Printed/Typed Name	ot subject to federal regulations for reporting proper disposal of Hazardous Waste. Signature Month	Day Year
	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's Offeror's Printed Typed Name Policy Westiter On behave OF	ot subject to federal regulations for reporting proper disposal of Hazardous Waste. Signature Month	Day Year
1.	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generators/Offeror's Printed/Typed Name Peter Wecker On behave Offeror's Printed/Typed Name	ot subject to federal regulations for reporting proper disposal of Hazardous Waste. Signature Month	_ ` ı
INT'L <	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's Officer's Printed/Typed Name Peler Wecker On behave Of 15. International Shipments Import to U.S. Expo	ot subject to federal regujations for reporting proper disposal of Hazardous Waste. Signature Month Off art from U.S. Port of entry/exit:	_ ` ı
a INT'L ←	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's/Offeror's Printed/Typed Name Peter Describer On behave OF 15. International Shipments Import to U.S. Expo	ot subject to federal regulations for reporting proper disposal of Hazardous Waste. Signature Month	_ ` 1
	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's/Offeror's Printed/Typed Name Policy Decriper On School OF 15. International Shipments Import to U.S. Exports Signature (for exports only): 16. Transporter Acknowledgment of Receipt of Materials	ot subject to federal regujations for reporting proper disposal of Hazardous Waste. Signature Month Off out from U.S. Port of entry/exit: Date leaving U.S.:	70 /2
	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's/Offeror's Printed/Typed Name Policy Decicer On Johnson Offeror 15. International Shipments Import to U.S. Exportence	ot subject to federal regujations for reporting proper disposal of Hazardous Waste. Signature Month Off Date leaving U.S.: Signature Month Month	Po //
	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's Printed Typed Name Petr Wecker On behave OF	Signature Month Of U.S. Port of entry/exit: Date leaving U.S.: Signature Month Of J	20 /2 Day Year
	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's/Offeror's Printed/Typed Name Policy Decicer On Johnson Offeror 15. International Shipments Import to U.S. Exportence	Signature Month Of U.S. Port of entry/exit: Date leaving U.S.: Signature Month Of J	Po //
	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's Printed Typed Name Petr Wecker On behave OF	Signature Month Of U.S. Port of entry/exit: Date leaving U.S.: Signature Month Of J	20 /2 Day Year
TRANSPORTER INT'L	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's/Offeror's Printed/Typed Name Confidence	Signature Month Of U.S. Port of entry/exit: Date leaving U.S.: Signature Month Of J	20 /2 Day Year
	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's Printed/Typed Name Peter Wecker On behave OF	ot subject to federal regulations for reporting proper disposal of Hazardous Waste. Signature	Day Year Day Year
	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's/Offeror's Printed/Typed Name Confidence	ot subject to federal regulations for reporting proper disposal of Hazardous Waste. Signature	20 /2 Day Year
	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's Printed/Typed Name Peter Wecker On behave OF	ot subject to federal regulations for reporting proper disposal of Hazardous Waste. Signature	Day Year Day Year
	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's Printed/Typed Name Peter Wecker On Scholer Of 15. International Shipments Import to U.S. Exportant Signature (for exports only): 16. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name RAYMOLA SB LC: R Transporter 2 Printed/Typed Name 17. Discrepancy Indication Space Quantity Type	ot subject to federal regulations for reporting proper disposal of Hazardous Waste. Signature	Day Year Day Year
TRANSPORTER	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's Printed/Typed Name Peter Wecker On behave OF	Assidue Partial Rejection Partial Rejection Full	Day Year Day Year
TRANSPORTER	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's Printed/Typed Name Peter Wecker On Scholer Of 15. International Shipments Import to U.S. Exportant Signature (for exports only): 16. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name RAYMOLA SB LC: R Transporter 2 Printed/Typed Name 17. Discrepancy Indication Space Quantity Type	Assidue Partial Rejection Full Manifest Reference Number:	Day Year Day Year
TRANSPORTER	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's/Offeror's Printed/Typed Name Policy Describer On Selection Offeron	Assidue Partial Rejection Full Manifest Reference Number:	Day Year Day Year
TRANSPORTER	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's/Offeror's Printed/Typed Name Policy Describer On Johnson Offeron	As subject to federal regulations for reporting proper disposal of Hazardous Waste. Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month Of Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month Interpret of entry/exit: Date leaving U.S.: Signature Month Interpret of entry/exit: Date leaving U.S.: Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month U.S. EPA ID Number	Day Year Day Year Rejection
TRANSPORTER	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's/Offeror's Printed/Typed Name Policy Describer On Selection Offeron	As subject to federal regulations for reporting proper disposal of Hazardous Waste. Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month Of Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month Interpret of entry/exit: Date leaving U.S.: Signature Month Interpret of entry/exit: Date leaving U.S.: Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month U.S. EPA ID Number	Day Year Day Year
TRANSPORTER	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's/Offeror's Printed/Typed Name Policy Describer On Johnson Offeron	As subject to federal regulations for reporting proper disposal of Hazardous Waste. Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month Of Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month Interpret of entry/exit: Date leaving U.S.: Signature Month Interpret of entry/exit: Date leaving U.S.: Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month U.S. EPA ID Number	Day Year Day Year Rejection
CILIIY TRANSPORTER	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's/Offeror's Printed/Typed Name Policy Describer On Johnson Offeron	As subject to federal regulations for reporting proper disposal of Hazardous Waste. Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month Of Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month Interpret of entry/exit: Date leaving U.S.: Signature Month Interpret of entry/exit: Date leaving U.S.: Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month U.S. EPA ID Number	Day Year Day Year Rejection
CILLIY TRANSPORTER	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's/Offeror's Printed/Typed Name Policy Describer On Johnson Offeron	As subject to federal regulations for reporting proper disposal of Hazardous Waste. Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month Of Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month Interpret of entry/exit: Date leaving U.S.: Signature Month Interpret of entry/exit: Date leaving U.S.: Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month U.S. EPA ID Number	Day Year Day Year Rejection
CILLIY TRANSPORTER	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's/Offeror's Printed/Typed Name Policy Describer On Johnson Offeron	As subject to federal regulations for reporting proper disposal of Hazardous Waste. Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month Of Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month Interpret of entry/exit: Date leaving U.S.: Signature Month Interpret of entry/exit: Date leaving U.S.: Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month Of Interpret of entry/exit: Date leaving U.S.: Signature Month U.S. EPA ID Number	Day Year Day Year Rejection
TRANSPORTER TRANSPORTER	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generators/Offeror's Printed/Typed Name Pele Websell On Selver Of	As subject to federal regulations for reporting proper disposal of Hazardous Waste. Signature Month Of Intermorphism Signature Signature Signature Month Of Signature Month Of Signature Month US Signature Month US Signature Month Of Interpretation Month Month	Day Year Day Year Rejection
TRANSPORTER	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's Offeror's Printed/Typed Name Policy Decice On Jechner Of	As subject to federal regulations for reporting proper disposal of Hazardous Waste. Signature Month Of Interpretation of entry/exit: Date leaving U.S.: Signature Month Of Signature Month Of Interpretation Month Interpretation Month Interpretation Month Month Month Interpretation Month Month Month Interpretation Month Month Interpretation Month Month Interpretation Month Interpretation Month M	Day Year Day Year Rejection
TRANSPORTER	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generators/Offeror's Printed/Typed Name Pele Websell On Selver Of	As subject to federal regulations for reporting proper disposal of Hazardous Waste. Signature Month Of Interpretation of the subject to federal regulations for reporting proper disposal of Hazardous Waste. Month Signature Month Of Signature Month Partial Rejection Manifest Reference Number: U.S. EPA ID Number Month I except as noted in Item 179	Day Year Day Year Rejection
TRANSPORTER	14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not Generator's Offeror's Printed/Typed Name Policy Decice On Jechner Of	As subject to federal regulations for reporting proper disposal of Hazardous Waste. Signature Month Of Interpretation of entry/exit: Date leaving U.S.: Signature Month Of Signature Month Of Interpretation Month Interpretation Month Interpretation Month Month Month Interpretation Month Month Month Interpretation Month Month Interpretation Month Month Interpretation Month Interpretation Month M	Day Year Day Year Rejection

,169-BLC-O 6 10498 (Rev. 8/06)

DESIGNATED FACILITY TO GENERATOR

	•											
		NON-HAZARDOUS	1. Generator ID Number	ř	2. Page 1 of 3. E	nergency Respons	e Phone	4, Waste 1	racking N	mupet		
		WASTE MANIFEST		1 - 6 1 - 6 4 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1 of 1 - (71	8)963+545	第86号	Mar o GI	<u> 13080</u>	00075023	± 2,52. ,	
	÷ 1	Generator's Name and Mailin	g Address CassCommany≫	rendersk state	and the property of the control of t	rators Site Addres	s (it differen	i Gran maising addi	ess)		*	
	ĘŲ	ia Mana Tech Cent	Para La Cart			175 Page	OH CO	otry Road	表示			
÷	Bi	Generators Name and Mailin 16 Brooklyn: Union 18 Mairo Tach Cam 100klyn: NY 11201			新聞等即即為楊利斯	Hicksvill	NYI	10 10 14 14 16 18 18 18 18 18 18 18 18 18 18 18 18 18	九本 五			·
	- 10	enerator's Phone: (718) Transporter I Company Name	0.43_4349ea				***	U.S. EPA ID				
	Ă	JCHTER INDUST	TIAL-VACHEED	VICIR	ender Karen en 1827 en 1	alanak di silan kacamatan Ko	r. Lateratura			ARAREU -	÷.,	
	7,	Transporter 2 Company Name		in and and the second s	2011年 中国共和国	。 3.公记《云至4号4公卷·李	· · · · · · · · · · · · · · · · · · ·	U.S. EPA ID	Number	(444/00°	11.	
		- This	自己中华中华	14. 20 h		٠.		1	. '		. :	
ŀ	8.	Designated Facility Name and	Site Address Clea	n Bartheof North Je	rsevacines _{es} .		. •	_U.S. EPA ID			c+ -	
	10	5 Jacobus Ave	rzi z zem alkazan	建设 的设施基础的		ss - 14 . Saraankeit (1	on Time on Leading	പറ്റുകൾ ലിൽ സ്വാസി	vereina.			
1	So	5 Incobus Ave with Keamy, NJ 070	132	可以外的第三人称单数形式的 第 14:第2章中是指案的条件	是是这个一个。 这种是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	语引发与"距入岭内 行品和金融。"	TO STATE OF	AND THE STATES	(1) <u>[3</u> (1)] (())	Walthiam C	<u>.</u>	
	Fa	cliby's Phone Time (973)	344-4004 Bras					, !	1	+	·,	
Н		9. Waste Shipping Name	新文 and Description		•	10, Cont	1	11. Total	12. Unit			
	Sec.					No.	Туре	Quantity	Mr.Vor		i Blance J	
80		Non-Regulated	Material	体积的人们走过了一种	中国共和国共和国	物为1	DM® -	经全种异型	i di tari	D//2	7 T	
Ž		111/2	国际基金条件	家吃蒜		127		149 (
GENERATOR	闣	卷2.		<u> </u>				1. 7.				
8	盪			•			·		,			
1				`.								
4		3.			- :							
Ī	麼											
1				•								
1	緩	4.	•									
1			•									
1							•				e e e e e e e e e e e e	
≟ .	10.	Special Handing Instructions	ano Audunaa miomalon	-CEL 3080000750.	23 App: 123	080902 ₌₃₅	Y					-
		DOS WALES	· c. 在后来从外边的	25-27-26-36-25-21-15-16-16-1	第40年 1970 東東三年 一	建工艺 艺艺 学 》		250				
3 150	- in	to the tree to the same of the	E 13 - 2 - 3 - 3 - 3 - 1 - 2 - 1 - 2 - 1 - 2 - 2 - 2 - 2 - 2	I · ¬ • • • · ·								
l												
	16.0	GENERATOR'S/OFFEROR'S	annumasuas es Cu		abit an interior and and fedler	nd annumitativelan	arthad filiana	hu tha nonnershi	กร้อง กรากส	and are classifi	ed necka	nerì
	14.1	marked and labeled/placarded	, and are in all respects in	proper condition for transport	according to applicable into	mational and nation	nmayog Enx	ental regulations.	haiñ iranic	, and are vession	ou, paose,	g~a,
	Gen	erator's/Offeror's Printed/Type	d Name		Signature	12	1				Day	Year
٧.	V	Mya Coppy	llo							<u> </u>	2	10
тл.	15.1	International Shipments	Import to U.S.	,	Expoit from U.S.	Port of ent	ry/exit:					
Σ		sporter Signature (for exports	only):	+		Date leavi	ng U.S.:					
5		Transporter Acknowledgment of						****		Mosth	Dout	Year
THANSPORTER	iran	sporter 17 righed Typed Name	Med 5	11/5	Signature	11/	10		-	Month	Day	12
2	- /	sporter 2 Printed Typed Name	110101	Neg	Signature		70			Month	Day	Year
₹	11011	shoureus Linnera Libert Mante	, ·	•) Signature					[
	17. E	Discrepancy		•		<u>.</u>					<u> </u>	
1	~	Discrepancy Indication Space	TT726	———		7						
		,	Quantity	Туре	Ĺ	J Residue		Partial Reje	noit	: 🗀	Full Reject	י מסגו
				4	Mar	ifest Reference M	mher					- 8
٠.	17b.,	Alternate Facility (or Generato	r)	+	1			U.S. EPA ID N	mber	ores.		
PACILIT		·	•		. •	20年後	VED F	EMBING.	, Allers	が上でつい		
Ĕ.	Facili	ty's Phone:				いた。社会は	VAND	us epaidn Empine Oualit	YCC	MIKOL		
₫.[17c.	Signature of Afternate Facility	(or Generator)	2\$ =	_	1. C. N. 1 Co. a.				Month	Day	Year.
Y.		112011111								[r.]		
2 	31 mg											
5.8												
								型表的		· · · · · · · · · · · · · · · · · · ·		注臺
	18. D	esignated Facility. Owner or Op	perator. Certification of rec	ceipt of materials covered by the							D	Vest
,	Prote	esignated Facility Owner or Oped/Typed Name	T EYTO	- 70	Signature	Post	75.h	12 TR		Month 1 7 1	Day へ) i	Year

Clean Earth of North Jersey 115 Jacobus Avenue	Ticketa	308000074155 Dete	Time	Scale
South Kearny, NJ 07032 Ph: (973) 444-4004 Fax: (973) 344-2652	Îក្ខុន្ ពីបង់ន	5/2/2012 16 5/2/2012 16	#51#45	Seale
Manifest: CE136600075023 Vehicle ID: AUCHTER Customer: WRS ENVIRONMENTAL SERVICE	Grosss Tares Nets Hauler DEP; Ity ApprovalA: Tab Wada.	Lbs 00 0 00 0 00 0 16648 NA INSOUND PROJEC	Ths .00 .00 .00 .00	j
New York Non Haz Liquid - Drums	و مساور و ما و در و ما و در و ما و در و د	Quantity	· · · · · · · · · · · · · · · · · · ·	
Contaminate Type: Not Applicable Treatment Type: Not Applicable Fac Waste Code: NJ DEP ID 72 (Profile	Pricing ONLY)	27 . 80	Drms.	
Comment:	••			
			•	
Driver:	Facility:		•	,
The second secon		rone, Joe	*	7-15

_ - .

and the second s		1			A ₁
NON-HAZARDOUS 1. Genetativité Number 4. Waste Manifest	2 + 231 **2 Page 1 of 3. Em	ergency Résponse Pho		racking Number	
I i G (2opore)oro Namo and Mailino Addraed 9 A)(K•	alor'a Sita Address (il d	Herent then malling add	088)	· · ·
Generator's Phone:	co. appla-	J. Hianys	DAY I		
Generator's Phone:	Klyni, MY.11201 }	y Keri	NY 112	-11	١, ،
6. Transponer i Company Name	4		U.S. EPA ID		rG 7
7. Transporter 2 Company Name	, , , ,		H O FOAD	2000027	(1/5)
, , , , , , , , , , , , , , , , , , , ,		i junt 1995.	**		
8. Designated Facility Name and Site Address	ent Lic	•	U.S. EPA ID	-	
8. Designated Facility Name and Site Address	Dey. DIT OF \$3	<u>*</u>	NJ	122500	15 Z Z
Facility's Phone: 1 2 77 3 1000					<u> </u>
9. Wasto Shipping Name and Description	a production and the second section of	10. Containers	Type Quantity	12. Unit Wi./Val.	-
1 3 1 1 3 1 1 2 1 2 2 3 3 1 1 3 1 1 2 1 2			513		
Win His MINKERA	Kendah 1941	/ /	m 20	CU	
2.					
3.	4 22		<u> </u>		
	weggati				
4.	to the same of the		·		
13. Special Handling Instructions and Additional Information	. — , .			MARKET	
	the summing on the second of the second		- American State of a		, ,
	-	•	" Box R	1695	
		(p**	184	
44.050000000000000000000000000000000000		· ```	print -	1 M COP 11 -1	
14. GENERATORIS CENTIFICATION: Learlify the mulertule described Generator SQUATOR Printed/Typed Name	above on this manifest are not subject to fade Signature	ral regulations for repor	rting proper disposal of H		onth Day Year.
Her Buch when the	->-	A Committee of the Comm	· · · · · · · · · · · · · · · · · · ·		4/1 27 1/2
1 15. International Shipments " Import to U.S. Transporter Signature (for exports only):	Deport from U.S.	Port of entry/ex		-	-
16. Trensporter Acknowledgment of Réceipt of Materials		Dale leaving U.			<u>-</u>
Transporter Printed Typed Name X R P Y mond 58 care	,S)gnature	1	<u> </u>		onth Day Year
Transporter 2 Printed/Typed Name	Signature	rigin X 1	2 cm		onlh Day Year
17. Discrepancy		'			<u> </u>
17a. Discrepancy Indication Space Quantity	П-,	, , , , , , , , , , , , , , , , , , , 	,		
		Residue	Partial Rej	ection	Full Rejection
17b. Allemene Facility (or Generalor)	Mar Mar	fest Reference Number	4 100	Yumbar —	<u> </u>
made with	· marin	1			
Facility's Phone: 17c. Signature of Alierrate Facility (or Generator)				1	
A CALL AND STATE OF THE STATE O	Andrew Marie	4.		. Mc	nth Day Year
18. Designated Facility Owner or Operator, Certification of receipt of male	stats covared by the manifest except as noted	In Hem 17a			
Printed/Typed Name	Signature	· /	18	Mo %]	nth Day Year
9-BLC-O 6 10498 (Rev. 6/06)	M	. / l	F Comment		[m]
to t				,	COPY .

MONTECALUO DISPOSAL 75 CRONS MILL ROAD KEASBEY NJ 08832 732-738-6000

TERMINAL I.D.: MERCHANT #:

3030

AMEX SALE BATCH: 000033

INV:000022 AUTH:100926

APR 30: 12

17:27

TOTAL \$1349.37

I AGREE TO PAY ABOUE TOTAL AMOUNT ACCORDING TO CARD ISSUER AGREEMENT (MERCHANT AGREEMENT IF CREDIT VOUCHER)

MERCHANT COPY

Facility ID: 197408 Montecalvo Disposal Services, Inc Permit: SW9079 75 Crows Mill Rd Ticket: 114091 PO Box 290 Date: 4/30/2012 Keasbey, NJ 08832 Time: 17:37:45 - 17:39:38 Scale Gross: 70020 lb In Manual Wt Customer: WRS ENVIRONMENTAL SERVICES/MDS0324 Tare: 39000 lb Out Manual Wt 17 OLD DOCK ROAD Net: 31020 lb YAPHANK, NY 11980-License: AN848C Truck: 02587 Trail/Cont: 305 CUYDs: 30 Truck Type: ROLLOFF Decal: 09336 Decal: 02587 Carrier: MONTECALVO DISPOSAL A-901: 10103 Comment: Materials & Services Quantity Unit: Rate/Unit Amount Origin 15.51 Tons \$87.00/TN \$1,349.37 Woodbridge Twp. C & D Total Amount: \$1,349.37 American Express: xxxx-: \$1,349.37 \$0.00 Changer THE ABOVE IS CORRECT AND NON-HAZARDOUS TO THE BEST OF MY KNOWLEDGE

Drivers

Weighmaster: Andres

APPENDIX H RESULTS OF GEOPHYSICAL INVESTIGATION

Subsurface Geophysical Surveys

GPR
MAGNETICS
ELECTROMAGNETICS
SEISMICS
RESISTIVITY
UTILITY LOCATION
UXO DETECTION
BOREHOLE CAMERA
STAFF SUPPORT

Results of a Geophysical Investigation

Former manufactured Gas Plant 50 Kent Avenue Williamsburg (Brooklyn), New York

Prepared for: URS Corporation

Buffalo, New York

Date of Investigation: February 23 and April 30, 2012

Prepared by:

Kelly A. Weyer

Geologist - Project Manager NAEVA Geophysics, Inc. 225 North Route 303, Suite 102

Congers, NY 10920

NEW YORK 225 N Route 303 Suite 102 Congers New York 10920 (845) 268-1800 (845) 268-1802 Fax

Contents

Introduction

Methods

Results

Figure 1

Results of a Geophysical Investigation

VIRGINIA P.O. Box 7325

Charlottesville Virginia 22906 (434) 978-3187

(434) 978-3187 (434) 973-9791 Fax **Results of a Geophysical Investigation** Former Manufactured Gas Plant 50 Kent Avenue Williamsburg (Brooklyn), New York

Introduction On February 23 and April 30, 2012, NAEVA Geophysics, Inc. conducted a geophysical investigation on portions of the former Manufactured Gas Plant located at 50 Kent Avenue in Williamsburg (Brooklyn), New York. The purpose of this investigation was to markout detectable subsurface utilities and features within 25 feet of the interior side of the perimeter fence, and to confirm any onecall marks indicating utilities enter the property.

> This investigation began on February 23; however, due to stored materials in the area of concern (AOC), the second day of work was postponed until April 30 while an attempt was made to remove the stored materials. Most of the materials from the first day of the investigation were not moved. NAEVA investigated around the areas with obstructions.

Methods

The equipment selected for this investigation included a Fisher TW-6 Pipe and Cable Locator (a type of hand-held electromagnetic metal-detector), a Malå RAMAC/Ground Penetrating Radar (GPR) system with a 250-Megahertz (MHz) antenna, a Subsite 950 utility locator, and a 3M Dynatel 2250 Cable Locator.

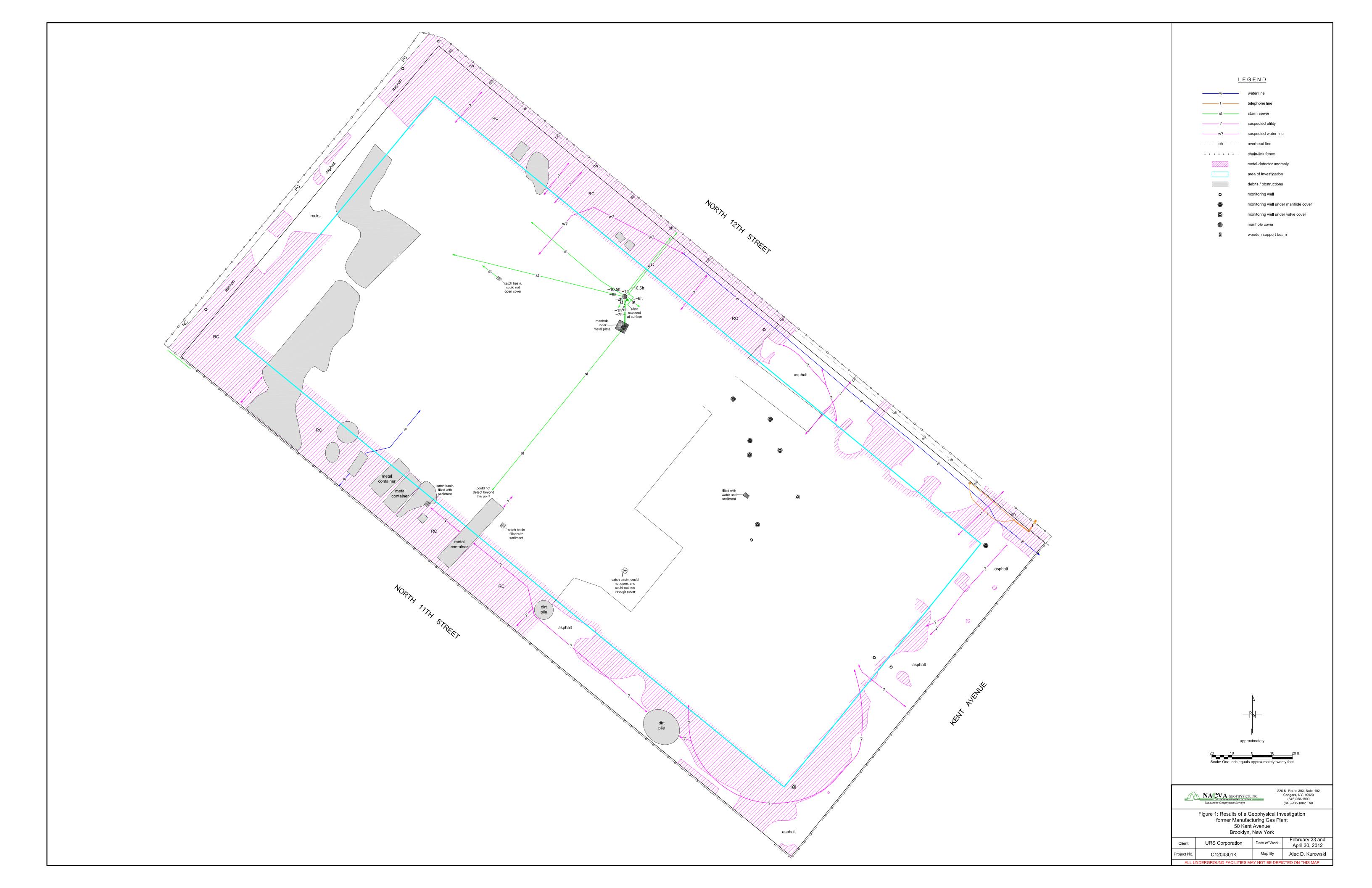
The AOC was visually inspected for evidence of subsurface utilities (such as utility valves and conduits, fire hydrants, manhole covers, parking lot lamps, etc). Whenever a metallic/electrically conductive utility was noted, a radiofrequency signal was conducted or induced onto the line using one of the utility locating instruments' transmitters. This signal was then used to delineate the utility using the locating instrument's receiver.

Many utilities carry electric currents, and produce electromagnetic fields that can be detected at the surface. In addition, buried metallic conduits, acting as antennas, often pick up and re-radiate background commercial radio signals. The AOC was searched for evidence of these signals using the Subsite operating in passive modes.

The TW-6 metal-detector was carried over the AOC in a series of closely spaced bi-directional traverses in an attempt to locate USTs, subsurface utilities, and other buried metallic features. Anomalies detected with the TW-6 were further investigated with the GPR and utility locators in an attempt to identify their sources. The TW-6 is not suitable for use near metallic objects or over reinforced concrete. Where the TW-6 was not suitable for use, the GPR was used as the primary investigative instrument. It should be noted that reinforced concrete can hinder the effectiveness of the GPR by limiting the penetration of the signal into the subsurface and obscuring underlying targets.

The AOC was also investigated using the Dynatel in a split-box fashion. Two operators, one carrying the transmitter and one carrying the receiver, walked bi-directionally across the AOC at a fixed distance to one another while listening for increases in signal strength that would suggest possible subsurface utilities. The Dynatel is particularly suited for locating the surface trace of telephone lines, electric lines, and other narrow-gauge wiring, but can also detect larger metallic conduits and piping.

Results


NAEVA identified multiple manhole and valve covers that appeared to be sewer and gas related, however, most were determined to be monitoring wells (see Figure 1). One manhole cover was lifted to reveal nine sewer pipes. The sewer lines were traced to their detectable extents. Two of the lines were traced to a second manhole located under a metal plate. One additional sewer line was traced to its detectable extent from the second manhole. Four catch basins were identified. One cover could not be lifted, although, it was determined to be filled with sediment, as seen through the cover. Two other covers could not be lifted and the inside of the vault was not visible through the cover. The last cover could not be opened, but one pipe was visible on the northwest wall of the vault. Since the cover could not be opened, it could not be determined if additional lines existed. One rectangular cover was lifted, but it was filled with water and sediment and no utilities were visible.

NAEVA identified two water valves in the southwest and southeast sidewalks. The lines were traced on the interior side of the perimeter fence. The water line on the southwest side was traced into the property transecting the AOC. The water line on the southeast side was traced inside the perimeter fence to the northwest along the northeast fence until it either ends or continues then turns to the southwest, west of where the sewer lines were determined to exit the property.

Two telephone lines were traced from conduits exposed on the property to a manhole north of the property and to the northwest to a second exposure of the conduits. One-call marks indicated electric lines ran along the northeast and southeast sidewalks, on the exterior of the perimeter fence. These lines were not detected by NAEVA, and NAEVA is not permitted to access ConEdison manholes.

Several metal-detector anomalies and suspected utilities of undetermined use were identified within the AOC. The large metal-detector anomaly in the north portion of the property is a response to the reinforced concrete. The sources of the metal-detector anomalies in the southern portion of the property and the smaller anomalies in the north could not be determined. GPR data profiles did not aid in characterizing the anomalies. The penetration depth of the GPR signal appeared to be approximately 2-3 feet over most of the site.

The results of this investigation were marked on the ground with spray paint using the American Public Works Association color code (green for sewer, blue for water, orange for telephone). Fluorescent pink was used to mark the locations of metal-detector anomalies and suspected utilities. All detected subsurface utilities and features marked in the field are indicated on the accompanying site map. NAEVA recommends that you exercise caution when excavating near any detected and marked out features.

APPENDIX I NAPL STABILIZATION BENCH TEST RESULTS

Treatability Study Final Report Williamsburg Works Former MGP Site

Prepared by Remedius, LLC for URS Corporation

This *Treatability Study Final Report* describes the findings of a study to evaluate stabilization as a treatment technology for reducing the migration of NAPL from the Williamsburg Works Former Manufactured Gas Plant (MGP) Site.

Introduction

Site Description

The Williamsburg Works Former Manufactured Gas Plant (MGP) Site is comprised of four parcels in the Williamsburg neighborhood of Brooklyn, New York. The parcels are bounded by North 12th and North 11th Streets, Kent Avenue, and the East River. This study pertains to NAPL-impacted soil on the 50 Kent Street parcel.

The Williamsburg Works Manufactured Gas Plant operated from 1850 to the 1930s, first by Williamsburg Gas Light Company and later by the Brooklyn Union Gas Company, a predecessor to National Grid. The MGP was dismantled prior to 1941 and subsequently divided into four parcels which were sold to third parties. The site was redeveloped for commercial and industrial uses.

When the MGP was operational, there were three gas holders, purifying houses, salt water condensers, and offices on the 50 Kent Street parcel. When the MGP was closed, most above-ground structures were dismantled, but below-ground structures such as the gas holders remained in place. The New York City Parks Department currently owns the property and uses it for parking and storage. It wishes to redevelop the property as a park.

Waste Stream Description

Numerous investigations have identified NAPL-impacted soil at the site. Data from these investigations suggest that the sources of tar are the former gas holders and tar handling structures. NAPL-impacted soil is generally observed in the

coarse-grained sand and gravelly sand layers from depths ranging from 5 to 55 feet below ground surface. There are no visual impacts of tar below a clay layer present from 41 to 72 feet below ground surface.

Treatment Technology Description

Section 1.11(a) of the NYSDEC DER-10 establishes "a priority during investigation and/or remediation is to contain and/or stabilize, to the extent possible, sources of contamination in any media to reduce/eliminate receptor exposure to contaminants or to contain further movement of contaminants through any pathway."

Stabilization is both a physical and chemical process. Seldom is stabilization only one or the other. One might predominate for a particular application, but the combination of chemical processes that transform the hazardous constituents to less soluble forms and physical processes that encapsulate them act together to reduce a matrix's leachability.

For inorganic constituents (e.g., lead), the process is primarily chemical. With proper selection of reagents, more soluble metal-salts are replaced with less soluble metal-salts. For organic constituents, the process is primarily physical. The stronger and less permeable the matrix, the less likely it is that compounds will diffuse through the solid matrix into groundwater.

Prior studies have demonstrated that NAPL can be immobilized by encapsulating it within an impermeable monolith that is an order or two less permeable than surrounding soil.

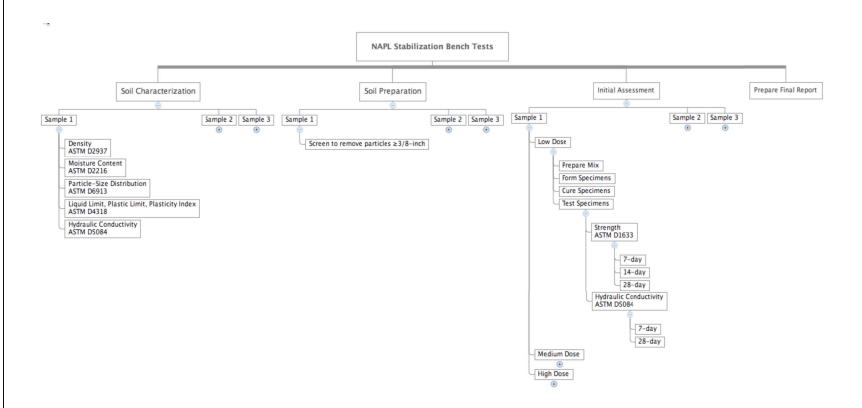
Treatability Study Protocol

Test Objectives and Rationale

This treatability study's purpose is to determine whether NAPL-contaminated soil from the Williamsburg Works Former MGP Site is amenable to treatment using solidification and stabilization as the treatment technology. The study is designed to (1) evaluate the compatibility of NAPL-contaminated soil with various stabilization reagents; and (2) to develop parameters for effectively implementing the treatment technology.

The goal for this study is to minimize, to the extent possible, the migration of contaminants through the environment, thereby reducing the exposure of receptors to these contaminants. One assessment method to determine whether this goal is attained is to compare the permeability of NAPL-contaminated soil before treatment to the same soil after treatment.

The primary mechanism causing contaminants to migrate through the subsurface environment is advection. Advection is the transport of a substance due to a fluid's bulk motion. An example of advection is the transport of pollutants in a river via current. A technique to limit the migration of contaminants through the subsurface environment is to reduce the NAPL-contaminated soil's permeability. Permeability is a measure of the propensity for one substance to flow through another. When the soil's permeability is decreased sufficiently, groundwater and infiltrating surface water flow around rather than through the soil.


As a general rule-of-thumb, soil that is an order or two less permeable than adjacent soil, and no more permeable than 1×10^{-6} cm/s, is relatively unaffected by advection because groundwater and infiltrating surface water will flow around rather than through this material. Some advection will continue to occur along the surface of the solidified monolith, but, the main volume of material will be unaffected. Because NAPL compounds are not water soluble, dissolution is not a factor that affects their migration. So, the primary remaining mechanism by which these compounds can migrate into the larger environment is via diffusion.

There are a number of factors that affect the rate of diffusion, including the concentration gradient, resistance, distance, molecular weight, temperature, and pressure. Stabilization increases resistance. So, reducing the soil's permeability not only decreases advection, it also decreases diffusion.

Experimental Design and Procedures

A treatability study is an iterative process whereby small samples of contaminated material are treated by mixing the material with different combinations and quantities of reagents. Treated specimens are cured for the time necessary for reactions to occur. Most chemical reactions occur fairly rapidly (i.e., within 24 to 72 hours), whereas physical changes such as strength and impermeability develop more slowly, often taking 28 days or more to fully develop. After curing, pertinent characteristics of treated specimens are determined. Post treatment parameters are compared to the corresponding pre treatment parameters and to the project's performance criteria. Combinations of reagents and dosages that produce desirable changes to the contaminated material are refined and retested. This process continues until an optimal treatment regimen is developed. Figure 1 is a pictographic of the experimental design for this study.

Figure 1. Experimental Design and Procedures

Equipment and Materials

Portland cement

Portland cement is the most common type of cement in general use around the world. It is a fine powder produced by grinding Portland cement clinker, a limited amount of calcium sulfate which controls the set time, and other minor constituents (as allowed by various standards).

Type I Portland cement is known as common or general purpose cement. It is commonly used for general construction especially when making precast and precast-prestressed concrete that is not to be in contact with soils or ground water.

Type II Portland cement is intended to have moderate sulfate resistance with or without moderate heat of hydration. This type of cement costs about the same as Type I. Because of similar price to that of Type I, Type II is often used as a general purpose cement, and the majority of Portland cement sold in North America meets this specification. Portland cement meeting both Type I and Type II specifications (i.e., Type I/II) is in common use.

Type I/II Portland cement provided by LaFarge North America was used for this study.

Ground Granulated Blast Furnace Slag

Ground granulated blast furnace slag (GGBFS) is obtained by quenching molten iron slag (a by-product of iron and steel making) from a blast furnace in water or steam, to produce a glassy, granular product that is then dried and ground into a fine powder.

GGBFS is used to make durable concrete structures in combination with ordinary portland cement and/or other pozzolanic materials. ASTM C 989-82 and AASHTO M 302 were developed to cover ground granulated blast furnace slag for use in concrete and mortar.

Experience with solidification/stabilization of soils containing NAPL has shown that the addition of GGBFS achieves a lower permeability than use of Portland cement alone. Additionally, the use of GGBFS reduces the heat of hydration for more controlled strength-gain in a large treated mass, provides better resistance to adverse alkali-silica reactions (ASR) and provides resistance to sulfate and other chemicals which can interfere with cement hydration reactions.

Grade 120 GGBFS provided by LaFarge North America was used for this study.

Sampling and Analysis

Soil samples were collected from soil borings installed during the IRM Design Investigation and archived in 5-gallon buckets for possible use for the bench-scale treatability study. From these buckets, URS prepared three composite samples._ The samples were composited from soil collected from soil borings SB-104, SB-

105, and a combination of SB-106 and SB-107._ These locations and depth intervals were selected based on several factors including:

- The availability of soil material—different intervals from different borings had varying degrees of recovery. Not all soil recovered during drilling was archived for treatability testing for practical purposes of segregated soil storage.
- The presence of DNAPL—the SB-106 interval of 47' to 57'bgs exhibited 100% NAPL saturation, and was combined with soil from SB-107 that was collected from 43' to 57' bgs (also with 100% NAPL saturation) as well as more soil from SB-107 from the entire length of the boring.

Soil Characterization

Sample Descriptions

Remedius received a total of nine five-gallon containers of NAPL-contaminated soil from the Williamsburg Works Former MGP Site—three five-gallon containers of soil from each of three sample locations. When received, soil from each sample location was labeled with a unique numeric laboratory ID.

Figure 2. 13551—Soil 1

Figure 3. 13552—Soil 2

Figure 4. 13553—Soil 3

The individual containers of soil from each sample location were combined and homogenized to form a single composite sample for that location. These are the three samples that were used for this study.

Prior to treating the soil, a portion of soil from each composite sample was used for determination of these physical properties:

- Moisture Content
- Particle-Size Distribution
- Density
- Atterberg Limits
- Hydraulic Conductivity

The purpose for determining these properties is to establish baseline conditions and to gain insight into characteristics that might affect the types and quantities of reagents used to stabilize the soil.

Sample Preparation

Moisture content and particle-size distribution were determined using samples of soil "as received." Density and Atterberg limits were determined using samples of soil after particles greater than 3%-inch were removed. The reason for removing these particles is to ensure that specimens prepared for strength and permeability tests comply with ASTM requirements for these tests. Both tests stipulate the maximum particle size in relation to the diameter of the cylindrical specimens to be tested. Oversize particles were removed using a sieve.

Sample Testing

Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass—ASTM D2216-10

This test is used to determine the water (moisture) content by mass of soil, rock, and similar materials where the reduction in mass by drying is due to loss of water. A test specimen is dried in an oven at a temperature of 110° ± 5° C to a constant mass. The loss of mass due to drying is considered to be water. The water content is calculated using the mass of water and the mass of the dry specimen.

$$w = \frac{M_w}{M_s} \times 100 \tag{EQ 1}$$

where:

w = water content (%)

 $M_w = \text{mass of water } M_w = M_{ms} - M_s$

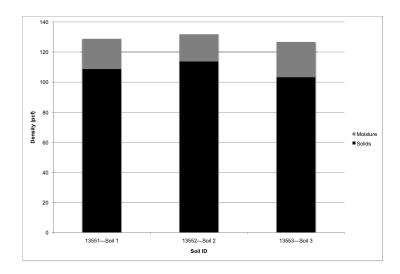
 M_s = mass of oven dry specimen

 M_{ms} = mass of moist specimen

The moisture contents of the three soils are similar, ranging from 15.9 percent to 22.6 percent.

Table 1. Moisture Content of Soil Samples

Sample ID	Moisture (%)
13551—Soil 1	18.5
13552—Soil 2	15.9
13553—Soil 3	22.6


Compaction Characteristics of Soil Using Standard Effort—ASTM D698-12

This test is used to determine the relationship between water content and dry unit weight of soils (compaction curve) compacted in a 4 or 6-in. (101.6 or 152.4-mm) diameter mold with a 5.5-lbf (24.4-N) rammer dropped from a height of 12 in. (305 mm) producing a compactive effort of 12,400 ft-lbf/ft³ (600 kN-m/m³). A single point compaction test using a sample of soil "as received" was performed to determine the approximate in-place density of soil. The densities of the three soils are similar, ranging from 126.7 to 131.8 lbs/ft³ wet weight, and 103.3 to 113.7 lbs/ft³ dry weight.

Table 2. Soil Densities

Sample ID	Wet Density (lbs/ft ³)	Dry Density (lbs/ft ³)	Moisture (%)
13551—Soil 1	128.8	108.7	18.5
13552—Soil 2	131.8	113.7	15.9
13553—Soil 3	126.7	103.3	22.6

Particle-Size Analysis of Soils—ASTM D422 - 63(2007)

This test covers the quantitative determination of the distribution of particle sizes in soils. The objective of a particle-size analysis is to group soil particles into separate ranges of sizes and to determine the relative proportion by weight of each size range. The distribution of particle sizes larger than 75 micrometers (retained on the No. 200 sieve) is determined by sieving, while the distribution of particle sizes smaller than 75 micrometers is determined by a sedimentation process using a hydrometer.

All three soils are similar, consisting primarily of sand and silt, with a minor gravel component. Table 3 is a tabulation of the soils' particles sizes. Figure 6 is a graphic illustrating the soils' compositions using a color gradation from dark, representing the largest particles, to light, representing the smallest. The graphic makes clear that Soil 2 is composed of a greater percentage of large particles than either of the

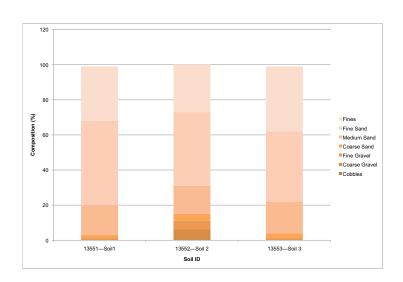

other two soils. The other two soils are relatively equal, with Soil 3 composed of slightly less sand and more fines than Soil 1.

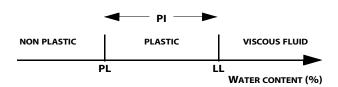
Table 3. Particle-Size Analysis of Soil Samples

		Particle-Size Composition (%)					Clay (%) ^a				Moisture (%)		
Sample ID	Cobbles	Coarse Gravel	Fine Gravel	Coarse Sand	Medium Sand	Fine Sand	Fines	<0.005 mm	<0.002 mm	Total Sample	Finer Portion First Subsample ^b	Finer Portion Second Subsample ^c	
13551—Soil 1	0	0	1	2	17	48	31	10	8	18.5	6.8	6.7	
13552—Soil 2	0	6	5	4	16	42	27	8	6	15.9	8.7	8.8	
13553—Soil 3	0	0	1	3	18	40	37	14	10	22.6	11.8	12.1	

a. Percentage of particles smaller than No. 200 sieve.

Figure 6. Distribution of Particle Sizes

Liquid Limit, Plastic Limit, and Plasticity Index of Soils—ASTM D4318 - 10


These tests are used as an integral part of several engineering classification systems to characterize the fine-grained fractions of soils. The liquid limit, plastic limit, and plasticity index of soils are also used extensively, either individually or together, with other soil properties to correlate with engineering behavior such as compressibility, hydraulic conductivity (permeability), compactibility, shrink-swell, and shear strength.

b. First subsample consists of soil smaller than No. 4 sieve and larger than No. 10 sieve.

c. Second subsample consists of soil smaller than No. 10 sieve.

The liquid (LL) and plastic (PL) limits define the water content boundaries between non-plastic, plastic and viscous fluid states. The plasticity index (PI) defines the complete range of plastic state.

Figure 7. Plasticity Index Relationship

All three soils are similar, exhibiting only a very narrow moisture range where the soil is plastic.

Table 4. Atterberg Limits of Soil Samples

Sample ID	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)
13551—Soil 1	22	18	4
13552—Soil 2	20	18	2
13553—Soil 3	23	17	6

Hydraulic Conductivity of Saturated Porous Materials—ASTM D5084

Hydraulic conductivity, often referred to as permeability, is a measurement of the resistance of a material to the passage of water. Permeability tests estimate the quantity and flow rate of water through material under saturated conditions.

ASTM Standard D5084 is a methodology for determining the hydraulic conductivity of water-saturated porous materials using a flexible wall permeameter. A material's permeability is determined by applying a hydraulic head of water to one end of a specimen and measuring the flow through the specimen. A pressure somewhat greater than the pressure under which liquids enter the specimen is imposed to press a flexible membrane firmly against the specimen, thereby preventing flow along the sidewall. A confining pressure of 10 psi was applied to all the specimens of this study.

Figure 8. Hydraulic Conductivity Apparatus

The relevance of permeability tests are best understood by comparing them to natural materials. Sand, a permeable material, has a hydraulic conductivity in the order of 10^{-2} cm/sec. Clay, a relatively impermeable material, has a hydraulic conductivity in the order of 10^{-6} cm/sec or less.

To obtain the permeability of soil prior to treatment, each soil was compacted to 100% of its dry density at its "as received" moisture content—no moisture adjustment. Coupled with the 10 psi confining pressure applied to the specimens when tested, this procedure produced specimens that are likely more compacted than the indigenous soil.

The soils are quite impermeable, ranging from a minimum of 1.1×10^{-7} to a maximum of 4.3×10^{-6} cm/s. As discussed previously, these results likely overstate the impermeability of the indigenous soil.

Table 5. Atterberg Limits of Soil Samples

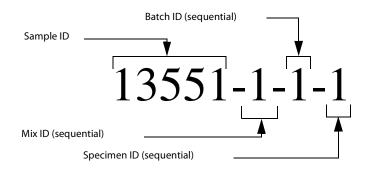
Sample ID	Hydraulic Conductivity (cm/s)
13551—Soil 1	3.9 x 10 ⁻⁷
13552—Soil 2	4.3 x 10 ⁻⁶
13553—Soil 3	1.1 x 10 ⁻⁷

First Iteration Mixes

For each soil, three mixes were prepared. One mix was created using a low dose of reagents, the second a medium dose, and the third a high dose. All mixes were prepared using the following procedure.

Mix Design Procedure

- 1. Weigh quantity of soil.
- 2. Compute the soil's dry weight.


Assume that the soil's wet weight is 7110.0 grams and its moisture content is 18.5% (weight of moisture \div weight of solids x 100). The soil's dry weight is computed as follows: 7110.0 grams \div (1 + 0.185) = 6000 grams.

3. Compute prescribed quantity of reagent(s).

Assume a mix design consists of 4.5% ground granulated blast furnace slag and 1.5% cement. The weight of each reagent is computed as follows: 6000 grams (soil's dry weight) x 4.5% (GGBFS dose) = 270 grams and 6000 grams x 1.5% (cement dose) = 90 grams.

- **4.** Weigh prescribed quantity of reagent(s).
- 5. Place the reagents and enough water to create a flowable grout into an appropriate container. Record the amount of water used to make the grout. Mix using a commercial mixer or by hand using a stainless steel spoon or other non-reactive implement until thoroughly blended.
 - N.B. The minimum quantity of water that a contractor might use to create a grout is equal to 60% of the reagents' weights. A grout prepared using less water would be too viscous to pump.
- **6.** Add the grout to the soil and mix until the grout is thoroughly intermixed with the soil. If the mix is too dry to achieve a uniform consistency, add water until a uniform consistency is achieved. Record the amount of water added. The desired consistency is similar to the consistency of controlled low strength material (CLSM). It is a fluid material with typical slumps of 2 to 6 inches.
- 7. Place grouted soil into appropriate molds. Tamp the molds with a blunt object to remove any air and to allow the grouted soil to naturally compact. If the grouted soil is not self-leveling with a moderate amount of vibration, the mix is too dry. Add more water (record the quantity of water added), remix, and remold.
- **8.** Cure specimens in a cooler at room temperature and 100% relative humidity for a prescribed duration, then remove from molds and test.

Figure 9. Mix Design Nomenclature

The mixes and compositions are tabulated in Table 6.

Treatability Study Final Report Williamsburg Works Former MGP Site

Table 6. Mix Designs

Soil 1				Soil 2					Soil 3					
Mix ID	Component	Mass (g)	Ratio (%)	w/r ^a	Mix ID	Component	Mass (g)	Ratio (%)	w/r	Mix ID	Component	Mass (g)	Ratio (%)	w/r
13551-1-1	Soil (Wet Mass)	7110			13552-1-1	Soil (Wet Mass)	6954			13553-1-1	Soil (Wet Mass)	7356		
	Soil (Dry Mass)	6000	100			Soil (Dry Mass)	6000	100			Soil (Dry Mass)	6000	100	
	GGBFS	270	4.5			GGBFS	270	4.5			GGBFS	270	4.5	
	Cement	90	1.5			Cement	90	1.5			Cement	90	1.5	
	Grout Moisture	516		1.43		Grout Moisture	716		1.99		Grout Moisture	416		1.16
	Soil Moisture	1110				Soil Moisture	954				Soil Moisture	1356		
	Total Moisture ^b	1626		4.52		Total Moisture	1670		4.64		Total Moisture	1772		4.92
13551-2-1	Soil (Wet Mass)	7110			13552-2-1	Soil (Wet Mass)	6954			13553-2-1	Soil (Wet Mass)	6954		
	Soil (Dry Mass)	6000	100			Soil (Dry Mass)	6000	100			Soil (Dry Mass)	6000	100	
	GGBFS	405	6.75			GGBFS	405	6.75			GGBFS	405	6.75	
	Cement	135	2.25			Cement	135	2.25			Cement	135	2.25	
	Grout Moisture	574		1.06		Grout Moisture	774		1.43		Grout Moisture	544		1.01
	Soil Moisture	1110				Soil Moisture	954				Soil Moisture	1356		
	Total Moisture	1684		3.12		Total Moisture	1728		3.20		Total Moisture	1900		3.52
13551-3-1	Soil (Wet Mass)	7110			13552-3-1	Soil (Wet Mass)	6954			13553-3-1	Soil (Wet Mass)	6954		
	Soil (Dry Mass)	6000	100			Soil (Dry Mass)	6000	100			Soil (Dry Mass)	6000	100	
	GGBFS	540	9.0			GGBFS	540	9.0			GGBFS	540	9.0	
	Cement	180	3.0			Cement	180	3.0			Cement	180	3.0	
	Grout Moisture	632		0.88		Grout Moisture	832		1.16		Grout Moisture	582		0.81
	Soil Moisture	1110				Soil Moisture	954				Soil Moisture	1356		
	Total Moisture	1742		2.42		Total Moisture	1786		2.48		Total Moisture	1938		2.69

a. Water to reagents ratiob. Total moisture is the sum of the grout's moisture and the soil's moisture.

For each mix that was prepared, five cylindrical specimens were formed—three specimens for strength and two for permeability. Specimens for strength were molded in 3-inch diameter by 6-inch length molds. Specimens for hydraulic conductivity were molded in 3-inch diameter by 3-inch length molds. Specimens were cured at 100% relative humidity and standard temperature and pressure. After curing for a prescribed duration, specimens were extruded from their molds and tested. Strength was determined after specimens cured 7, 14, and 28 days. Permeability was determined after specimens have cured 7 and 28 days.

Sample Testing

Compressive Strength of Molded Soil-Cement Cylinders—ASTM D1633 - 00(2007)

This test covers the determination of the compressive strength of soil-cement using molded cylinders as test specimens. Unconfined compressive strength is a measurement of a material's shear strength. Shear strength is the maximum stress that a material can withstand before failure in shear. Shear refers to deformation in which parallel surfaces slide past one another.

The method determines the shear strength of cohesive, soil-like material in unsaturated undrained conditions with no lateral confinement of the specimen. The test entails placing a cylindrical specimen between two plates. The specimen is subjected to a vertical strain at a rate between 0.5 to 2 percent per minute until the specimen fails. Loading continues until the load values decrease with increasing strain, or until 15 percent strain is reached. The peak stress (at failure) is defined as the Unconfined Compressive Strength.

Figure 10. Compression Machine

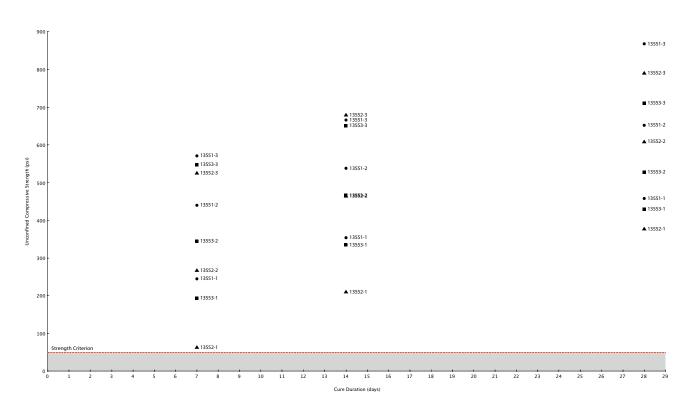

Strengths of mixes increase with dose and time. Mixes prepared using Soil 2 gain slightly less early strength using the 6% dose of GGBFS and cement than mixes prepared using either of the other two soils. However, all mixes exceed the minimum strength criterion after curing seven days, and strength continues to increase.

Table 7. First Iteration Strengths

		Dose ^a		Strength (psi)	
Soil	Mix ID	(%)	7-day	14-day	28-day
Soil 1	13551-1-1	6	245	354	458
	13551-2-1	9	440	538	652
	13551-3-1	12	571	666	868
Soil 2	13552-1-1	6	63	210	377
	13552-2-1	9	267	464	608
	13552-3-1	12	525	679	790
Soil 3	13553-1-1	6	193	335	429
	13553-2-1	9	345	466	527
	13553-3-1	12	548	651	711

a. Total dose of cementitious materials consisting of 3 parts GGBFS and 1 part cement

Figure 11. First Iteration Strengths

Hydraulic Conductivity of Saturated Porous Materials—ASTM D5084

Permeabilities of the mixes decrease with dose and time. All mixes are less permeable than the criterion after curing seven days, and permeability continues to decrease.

Table 8. First Iteration Permeabilities

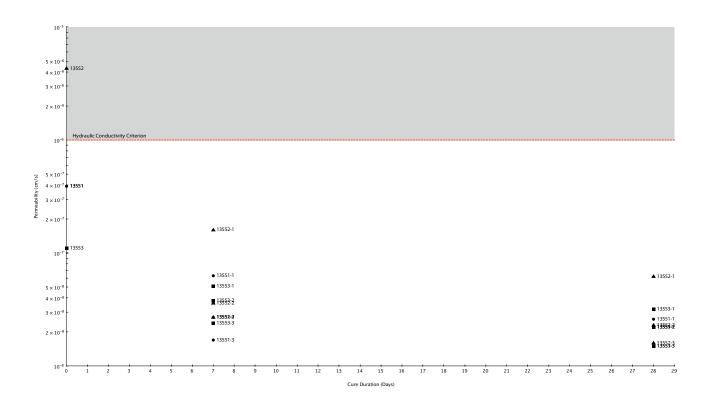

			Permeability (cm/s)	
Soil	Mix ID	Dose ^a (%)	7-day	28-day
Soil 1	13551-1-1	6	6.3 x 10 ⁻⁸	2.6 x 10 ⁻⁸
	13551-2-1	9	2.7 x 10 ⁻⁸	2.2 x 10 ⁻⁸
	13551-3-1	12	1.9 x 10 ⁻⁸	1.5 x 10 ⁻⁸
Soil 2	13552-1-1	6	1.6 x 10 ⁻⁷	6.2 x 10 ⁻⁸
	13552-2-1	9	3.6 x 10 ⁻⁸	2.3 x 10 ⁻⁸
	13552-3-1	12	2.7 x 10 ⁻⁸	1.6 x 10 ⁻⁸

Table 8. First Iteration Permeabilities

			Permeability (cm/s)	
Soil	Mix ID	Dose ^a (%)	7-day	28-day
Soil 3	13553-1-1	6	5.1 x 10 ⁻⁸	3.2 x 10 ⁻⁸
	13553-2-1	9	3.8 x 10 ⁻⁸	2.2 x 10 ⁻⁸
	13553-3-1	12	2.4 x 10 ⁻⁸	1.5 x 10 ⁻⁸

a. Total dose of cementitious materials consisting of 3 parts GGBFS and 1 part cement

Figure 12. First Iteration Permeabilities

Data Analysis and Interpretation

There were only minor differences in the three soil samples that were received. Soil 2 differs slightly from the other two soil samples in these ways:

- Slightly more dense,
- Composed of slightly more gravel,
- Moisture content is slightly less, and
- Slightly more permeable.

Conclusions and Recommendations

In all other respects the three soils are very similar.

All three soils were treated using the same mix designs—6, 9, and 12 percent doses of GGBFS and cement. The GGBFS and cement are combined in a 3-to-1 ratio of three parts GGBFS and one part cement. Only the water-to-reagents ratio differed from one mix to another.

The strengths of all mixes exceed the likely engineering requirements for future use of the property.

The permeabilities of all mixes are less than the indigenous soils' permeability and an order or two less permeable than this study's criterion of 1×10^{-6} cm/s.

The data indicates that NAPL-contaminated soil can be treated to produce a solid, impermeable monolith that will limit further movement of contaminants through any pathway.

Conclusions and Recommendations

Conclusions

A 6% dose of GGBFS and cement (4.5% GGBFS and 1.5% cement) produces a material with strength that will resist physical degradation and greatly exceeds the likely engineering requirements for future use of the property. The treatment also reduces the soil's permeability sufficiently to significantly limit the flow of ground water or surface water through it. The permeability of the treated material asymptotes toward 1×10^{-8} cm/s. This is two orders of magnitude less permeable than the criterion for this study.

Some adjustments to the mix design will undoubtedly be expected if the remedy is implemented on a full-scale basis.

First, because strength exceeds the likely engineering requirements for future use of the property, a mix design using less reagent might be feasible. However, most mixing processes require a minimum volume of grout during the mixing process to fluidize the soil and lubricate mixing equipment. If the grout volume is insufficient, friction can prevent the columns from being mixed. If the amount of reagent is decreased and the volume of water for grout makeup remains unchanged so as to produce approximately the same volume of grout, the water-to-reagents ratio increases. This will likely decrease strength, which is desirable. But, it will also likely increase permeability, which is not desirable.

Second, if the remedy is implemented by creating overlapping columns of treated material, the soil's ultimate strength will have to be moderated where columns cure for lengthy durations before overlapping columns can be mixed. Moderating the

Conclusions and Recommendations

strength will require some adjustments to the mix design. This might entail reducing the dose of GGBFS and cement, or it might entail adding a retarder to the mix design to slow the hydration and setting of GGBFS and cement, or it might entail adding bentonite, which previous studies have shown decreases strength when added in sufficient doses. If the dose of GGBFS and cement is reduced for these columns, the same precaution mentioned previously also applies.

Alternatively, the mix design could be used "as is," and columns could be created with each column abutting adjacent columns rather than overlapping them. Or, only columns that cure for a lengthy duration before overlapping columns can be mixed might have adjacent columns abut them rather than overlap them. Either option would decrease reagent costs because slightly less soil would be treated. And, it would also decrease installation costs because fewer columns would be mixed. There will be small interstitial areas of untreated soil between columns. But, because these areas of untreated soil would be "sandwiched" between large monolithic columns of treated soil, ground water would still flow around rather than through the mass. There is the possibility that surface water might infiltrate through the monolith following the vertical pathway of untreated soil. However, the untreated soil volume will be a very small percentage compared to the treated soil volume, so the mass of contaminants that might migrate via advection will be minimal. If water infiltration through these vertical channels is a concern, an impermeable layer could be incorporated into the final surface design for the park.

Recommendations

Because stabilization might be one component of a multi-component remedy for the site, and because equipment that might be used to treat the soil in situ will differ from contractor to contractor, contractors should be consulted for input about the operating parameters for their specific equipment. Based on their responses, a small sidebar study is recommended to determine the sensitivity of a mix design to changes of dose, water-to-reagents ratio, or addition of additives to retard the hydration of GGBFS and cement or to increase the fluidity and lubricity of the mix design.

TIMELY Engineering SoilTests, llc

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By ER/AV Date

05/07/12 Checked By

	TESTS, LLC	Web: www.test-llc.com		Checked By	18
Client Pr. #	-	Lab. PR. #	1210-0)1-1	
Pr. Name	Williamsburg Works Former MGP Site	S. Type	Bulk	K	
Sample ID	13551/Soil 1	Depth/Elev.	-		
Location	-	Add. Info	-		

ASTM D 422/AASHTO T 88

Standard Test Method for Particle-Size Analysis of Soils (with Double Separation per ASTM D6913 and Hydrometer Analysis)

		Moisture Co	ontent of FINE	R PORTION
As-Received Moisture (Content (Total Sample)		1st Subsample	2nd Subsample
Mass of Wet Sample & Tare, g	1092.1	Mass of Wet Sample & Tare, g	411.9	392.80
Mass of Dry Sample & Tare, g	953.6	Mass of Dry Sample & Tare, g	391.1	373.40
Mass of Tare, g	203.9	Mass of Tare, g	87.2	82.70
Moisture Content, %	18.5	Moisture Content, %	6.8	6.7
				•
<u>-</u>	<u></u>		1st Subsample	2nd Subsample
Mass of Total Sample before	74800	Mass of Wet Finer Portion & Tare, g	1407.0	101.94
separation on 3/8" sieve & Tare, g		Mass of Tare	0.0	0.0
Mass of Tare, g	0.0	Dry Mass, g	1316.9	95.56
Total Mass of Dry Sample, q	63136	% of Total Sample passing Split Sieve	99.3	98.6

SIEVE ANALYSIS

COARSER PORTION OF <u>SAMPLE</u> (<u>RE</u> TAINED ON 3/8" SIEVE					2nd Subsample of FINE	R PORTION O	F SAMPLE (PAS	SING #4 SIEV	E:Hydrometer Backsieve)
Mass of Tare	, g	0.00		% PASSING					
Sieve Size		Sample & Tare, g	% RETAINED	(of Total)					
12"	COBBLES		0	100			Cumulative	% PASSING	
3"			0	100	Sieve Size	_	Mass retained, g	(of Total)	
2.5"	COARSE		0	100	#10	MEDIUM	2.41	96	
2"	GRAVEL		0	100	#20	SAND	8.45	90	
1.5"		0.0	0	100	#40		19.14	79	
1"		165.1	0	100	#60	FINE SAND	37.83	60	
.75"		238.0	0	100	#100		53.03	44	
.5"	FINE GRAVEL	404.5	1	99	#200	FINES	65.36	31	
.375"		443.4	1	99			Remarks		
#4	COARSE SAND		1	99		<u> </u>	_		
#4 <first 8"<="" finer="" of="" portion<3="" subsample="" td=""><td></td><td></td><td></td><td></td><td></td></first>									

HYDROMETER ANALYSIS

Length of Dispersion Period Mechanical Dispersion Device ID # Amount of Dispersing Agent (ml) Specific Gravity (assumed) Specific Gravity (tested) Starting time

1 Minute
61
125.0
2.650
11:46

PARTICLE-SIZE ANALYSIS

% COBBLES	0	% MEDIUM SAND	17
% COARSE GRAVEL	0	% FINE SAND	48
% FINE GRAVEL	1	% FINES	31
% COARSE SAND	2	% TOTAL SAMPLE	100
% CLAY(<0.005mm)	10	% CLAY(<0.002mm)	8

Date	Time	Testing time	Reading	Temp	K	Composite	Actual	Effective	а	Particle	Percent
		(min)		(°C)		Correction	Reading	Depth (cm)		Diam. (mm)	Passing
	11:48	2	25.0	21.4	0.01348	5.0	20.0	13.1	1.00	0.0344	20.6
01/00/00	11:51	5	22.0	21.4	0.01348	5.0	17.0	13.6	1.00	0.0222	17.5
01/00/00	12:01	15	19.5	21.4	0.01348	5.0	14.5	14.0	1.00	0.0130	15.0
01/00/00	12:16	30	18.0	21.4	0.01348	5.0	13.0	14.2	1.00	0.0093	13.4
01/00/00	12:46	60	16.0	21.4	0.01348	5.0	11.0	14.6	1.00	0.0066	11.3
01/00/00	15:56	250	13.5	21.4	0.01348	5.0	8.5	15.0	1.00	0.0033	8.8
01/01/00	11:46	1440	12.0	21.4	0.01348	5.0	7.0	15.2	1.00	0.0014	7.2

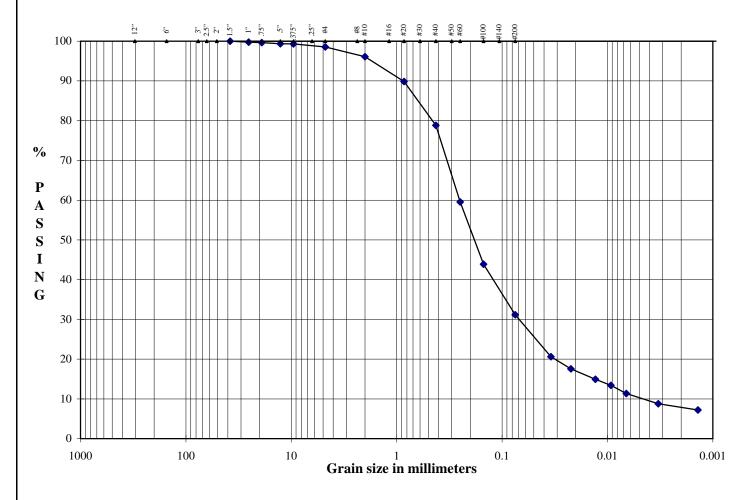
Hydrometer 152H ID #	451190	Oven ID #	12/13/14/
Sieve Shaker ID #	54/130	Balance ID#	1/6/7
		Page 1 of 2	

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By ER/AV 05/07/12 Date

Checked By


Tests, Llc Web: www.test-llc.com Client Pr. # Williamsburg Works Former MGP Site Pr. Name Sample ID 13551/Soil 1 Location

Lab. PR. # 1210-01-1 S. Type Bulk Depth/Elev. Add. Info

ASTM D 422/AASHTO T 88

Standard Test Method for Particle-Size Analysis of Soils (with Double Separation per ASTM D6913 and Hydrometer Analysis)

Particle-Size Analysis

			Coarse	Fine	Coarse	Medium	Fine	Silt or	Clay	
	Boulders	Cobbles	Gra	vel		San	d	Fin	es	
	-							D ₁₀	NA	mm
DESCRIPTION		NA						D ₃₀	NA	mm
								D ₆₀	NA	mm
								Cu	NA	
		-						Сс	NA	
USCS (AST	M D2487; I	D2488)		NA						

Page 2 of 2

Timely Engineering Soil

Tests, llc

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Web: www.test-llc.com

Tested By

Date

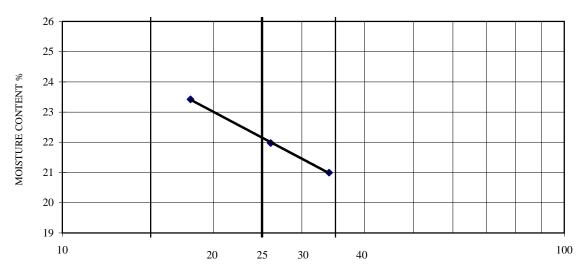
NK 05/14/12

Checked By

	•			, -
Client Pr. #	-	Lab. PR. #	1210-	-01-1
Pr. Name	Williamsburg Works Former MGP Site	S. Type	Ви	ılk
Sample ID	13551/Soil 1	Depth/Elev.	-	
Location	•	Add. Info	-	

ASTM D 4318/AASHTO T 88, T 89

Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils (Atterberg Limits)


Number of Blows Mass of Wet Sample & Tare, g Mass of Dry Sample & Tare, g Mass of Tare, g Moisture Content, %

LIQUID LIMIT						
34	26	18				
42.78	42.60	38.83				
39.95	39.60	36.01				
26.47	25.95	23.97				
20.99	21.98	23.42				

Oven ID # 12/13/14/15

Balance ID # 2

Liquid Limit Device ID # 56

NUMBER OF BLOWS

Mass of Wet Sample & Tare, g Mass of Dry Sample & Tare, g Mass of Tare, g Moisture Content, %

34.51	33.11					
32.86	31.76					
23.71	24.35					
18.03	18.22					

PLASTIC LIMIT

PREPARATION PROCEDURE

DRY

NOTE: MATERIAL PASSING NO. 40 SIEVE WAS USED FOR TEST

NATURAL MOISTURE

Mass of Wet Sample & Tare, g Mass of Dry Sample & Tare, g Mass of Tare, g Moisture Content, %

JAAL WOIS	·
1092.10	
953.60	
203.90	
18.47	

LIQUID LIMIT (LL)
PLASTIC LIMIT (PL)
PLASTICITY INDEX (PI)
LIQUIDITY INDEX (LI)

22
18
4
0.12

DESCRIPTION

NA

USCS (ASTM D2487; D2488)

NA

AASHTO (M 145)

NA

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By Date

RΙ 05/09/12

4250.5

0.0333

318

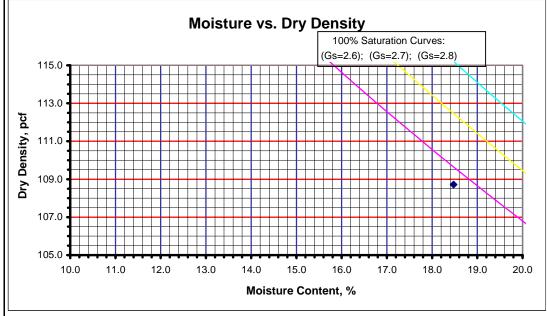
25

3

	TESTS, LLC	Web: www.test-llc.com		Checked By	18
Client Pr. #	-	Lab. PR. #	12	10-01-1	
Pr. Name	Williamsburg Works Former MGP Site	S. Type		Bulk	
Sample ID	13551/Soil 1	Depth/Elev.		-	
Location	-	Add. Info		-	
-		<u> </u>			

ASTM D 698 Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600kN-m/m³))

DETERMINATION OF TEST PROCEDURE


		wet	dry			MOISTUI	RE CONTENT	
Mass of Soil before sieving, g]			Coarse + Fine Fraction	Coars Fraction
Mass of Mat. Retained on No. 4 sieve, g					Mass	of Wet Sample & Tare,		
Mass of Mat. Retained on 3/8" sieve, g					Mass	s of Dry Sample & Tare,	g	
Mass of Mat. Retained on 3/4" sieve, g						Mass of Tare,	g	
			_	-		Moisture Content, 9	%	
Material Retained on No. 4 Sieve, %							-	
Material Retained on 3/8" Sieve, %								
Material Retained on 3/4" Sieve, %			1			Procedure	В	
Total, % (oversized)			1					
			TES	T DATA				
Points	1	2	3	4	5	Mold ID Number		321E

Mass of Mold and Soil, g Mass of Wet Sample & Tare, g Mass of Dry Sample & Tare, g Mass of Tare, g Moisture Content, %

Wet Density, pcf Dry Density, pcf

1	2	3	4	5	Mold ID Number
6196.0					Mass of Mold, g
1092.1					Volume of Mold, ft ³
953.6					Hammer ID Number
203.9					Number of Blows per layer
18.5					Number of Layers
					_ _

128.8		
108.7		

Method A: Material retained on No. 4 < 20% Method B: Material retained on No. 4 > 20%

and material retained on 3/8" < 20%

Method C: Material retained on 3/8" > 20% and material retained on 3/4" < 30%

REMARKS

One Point Proctor was performed for material (<3/8") @ as-received moisture content

DESCRIPTION

	DEGOINI HON	
NA		

USCS (ASTM D2487; D2488)

NA

Maximum Dry Density, pcf Optimum Moisture Content, %

Corrected Maximum Dry Density, pcf
Corrected Optimum Moisture Content, %

NA	
NA	

TIMELY Engineering Soil Tests LLC

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

Tested By Date

ΕB 05/11/12

18 Checked By

	1			Tests,	, LLC	Web: www	w.test-llc.com	<u>1</u>						Checked By	18
Client Pr. #									Lab. PR. # 1210-01-1						
Pr. Name	Williamsburg Works Former MGP Site								S. Type						
Sample ID					13551/Soil	1				Depth/Elev.			-		
Location					-					Add. Info			-		
				ASTM D	5084; Standa	rd Test M	ethod for N	/leasureme	nt of Hy	draulic Con	ductivity o	f Satura	ted Porous		
					Materials U	sing a Flo	exible Wall	Permeame	ter (Metl	hod D, Cons	stant Rate	of Flow)		
lı	nitial Sar	mple Dat	a (Before	e Test)			Test Data	a				F	inal Data (After Test)	
Height		3.004	in	7.63 c	m Speed			10	1						
Diameter		2.852	in		m Board N	umber		4	1	Average Hei	ght of Samp	ole	2.707 in	6.88 cm	
Area			in ²		m ² Cell Num	nber		5		Average Dia	meter of Sa		2.881 in	7.32 cm	
Volume			cm ³	0.0111 ft		np Numbei	r	1B		Area	6.52	in ²	42.06 cm ²		
Mass		647.50	g	1.43 lk		•		2.24E-04	cm ³ /sec	Volume	289.18	cm ³	0.0102 ft ³	Dry Density	118.9 pcf
Specific Gra	vity	2.700	(Assume	d)	B - Value			0.95		Mass	636.50	g	1.40 lb	Vol. of Voids	85.11 cm ³
Dry Density		108.4	pcf		Cell Pres			100.0	psi					Vol. of Solids	204.07 cm ³
					Back Pre			90.0	psi					Void Ratio	0.42
		ture Cont		1		g (Effective) Pressure	10.0	psi			sture Co		Saturation	100.5 %
Mass of wet			1092.10	g	Max Hea			85.81		Mass of wet	•		723.30 g		
Mass of dry Mass of tare		tare	953.60	9	Min Head	a n Gradient		85.11	cm	Mass of dry s	•	re	637.80 g		
% Moisture)		203.90 18.5	9		n Gradient i Gradient		12.48 12.38		Mass of tare % Moisture	1		86.90 g 15.5		
	FUNCT	ION			1	1	T		A DIL 1737		1	N / 5		S 1.00 = 4	
	FUNCT	1	Δt	READING	Head	Gradient	Temp.			(cm/sec)	4	Note: D	eaired Water Used for F	Permeability Test	•
DATE	HOUR	MIN	(sec)	(psi)	(cm)		T _x (°C)	@ T _x	R _T	@ 20 °C		N. 1.0	DESCRIPTION	_	
05/11/12	8	0	-	1.22	85.81	12.48	24.0	-	-	-		NA		U	SCS
05/11/12	8	5	300	1.21	85.11	12.38	24.0	4.28E-07	0.910	3.90E-07				(ASTM I	D2487;2488)
05/11/12	8	10	300	1.21	85.11	12.38	24.0	4.30E-07	0.910	3.91E-07					NA
05/11/12	8	15	300	1.22	85.81	12.48	24.0	4.28E-07	0.910	3.90E-07	*		REMARI	-	
05/11/12	8	20	300	1.21	85.11	12.38	24.0	4.28E-07	0.910	3.90E-07	*		passed 3/8" sieve used d to 99.8% of dry densit	•	
05/11/12	8	25	300	1.22	85.81	12.48	24.0	4.28E-07	0.910	3.90E-07	*		at as-received moisture		uaiu
05/11/12	8	30	300	1.22	85.81	12.48	24.0	4.27E-07	0.910	3.88E-07	*	,			
					Reported	Average I	Hydraulic Co	nductivity*		3.9E-07	cm/sec				
Flow pump	ID#	2	22	В	Balance ID #	1/6/7		Differential I	Pressure 7	Γransducer ID) #		70/68		
Thermomet	er ID#		33	C	Oven ID #	14/15		Board Press	sure Trans	sducer ID#			29		
Syringe ID #	ŧ	1.	41]			•	Pore Pressu	ure Transo	lucer ID#			26/27		

TIMELY Engineering Soil Tests, llc

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By Date

ER/AV 05/07/12 18

	TESTS, LLC	Web: www.test-llc.com	Checked By
Client Pr. #	•	Lab. PR. #	1210-01-1
Pr. Name	Williamsburg Works Former MGP Site	S. Type	Bulk
Sample ID	13552/Soil 2	Depth/Elev.	-
Location	-	Add. Info	-

ASTM D 422/AASHTO T 88

Standard Test Method for Particle-Size Analysis of Soils (with Double Separation per ASTM D6913 and Hydrometer Analysis)

		Moisture Co	ontent of FINE	R PORTION
As-Received Moisture (Content (Total Sample)		1st Subsample	2nd Subsample
Mass of Wet Sample & Tare, g	921.6	Mass of Wet Sample & Tare, g	422.2	481.20
Mass of Dry Sample & Tare, g	821.8	Mass of Dry Sample & Tare, g	396.5	453.70
Mass of Tare, g	195.0	Mass of Tare, g	99.8	140.70
Moisture Content, %	15.9	Moisture Content, %	8.7	8.8
			1st Subsample	2nd Subsample
Mass of Total Sample before	78950	Mass of Wet Finer Portion & Tare, g	1238.0	101.42
separation on 3/8" sieve & Tare, g		Mass of Tare	0.0	0.0
Mass of Tare, g	0.0	Dry Mass, g	1139.3	93.23
Total Mass of Dry Sample, g	68106	% of Total Sample passing Split Sieve	90.8	88.3
			<u> </u>	

SIEVE ANALYSIS

COARSER	PORTION OF	SAMPLE (RE	IAINED ON 3	3/8" SIEVE)	2nd Subsample of FINE	R PORTION OF	- SAMPLE (PAS	SING #4 SIEVE	=:
Mass of Tare,	, g	0.00		% PASSING					
Sieve Size		Sample & Tare, g	% RETAINED	(of Total)					
12"	COBBLES		0	100			Cumulative	% PASSING	
3"			0	100	Sieve Size	_	Mass retained, g	(of Total)	
2.5"	COARSE	0.0	0	100	#10	MEDIUM	4.19	84	
2"	GRAVEL	159.5	0	100	#20	SAND	10.18	79	
1.5"		744.9	1	99	#40		20.59	69	
1"		2488.8	4	96	#60	FINE SAND	38.96	51	
.75"		4293.2	6	94	#100		54.00	37	
.5"	FINE GRAVEL	5278.1	8	92	#200	FINES	65.21	27	
.375"		6283.0	9	91			Remarks	<u>_</u>	
#4	COARSE SAND	-	3	88					
#4 <	:First Subsa	mple of Fine	r Portion<3	3/8"					

HYDROMETER ANALYSIS

Length of Dispersion Period Mechanical Dispersion Device ID # Amount of Dispersing Agent (ml) Specific Gravity (assumed) Specific Gravity (tested) Starting time

1 Minute	l
61	
125.0	
2.650	
11:48	

PARTICLE-SIZE ANALYSIS

% COBBLES	0	% MEDIUM SAND	16
% COARSE GRAVEL	6	% FINE SAND	42
% FINE GRAVEL	5	% FINES	27
% COARSE SAND	4	% TOTAL SAMPLE	100
% CLAY(<0.005mm)	8	% CLAY(<0.002mm)	6

Date	Time	Testing time	Reading	Temp	K	Composite	Actual	Effective	а	Particle	Percent
		(min)		(°C)		Correction	Reading	Depth (cm)		Diam. (mm)	Passing
	11:50	2	23.0	21.4	0.01348	5.0	18.0	13.4	1.00	0.0349	17.0
01/00/00	11:53	5	21.0	21.4	0.01348	5.0	16.0	13.7	1.00	0.0223	15.1
01/00/00	12:03	15	18.0	21.4	0.01348	5.0	13.0	14.2	1.00	0.0131	12.3
01/00/00	12:18	30	16.0	21.4	0.01348	5.0	11.0	14.6	1.00	0.0094	10.4
01/00/00	12:48	60	14.5	21.4	0.01348	5.0	9.5	14.8	1.00	0.0067	9.0
01/00/00	15:58	250	12.0	21.4	0.01348	5.0	7.0	15.2	1.00	0.0033	6.6
01/01/00	11:48	1440	11.0	21.4	0.01348	5.0	6.0	15.4	1.00	0.0014	5.7

Hydrometer 152H ID # Sieve Shaker ID# 54/130

451190

Oven ID# Balance ID# Page 1 of 2

12/13/14/15

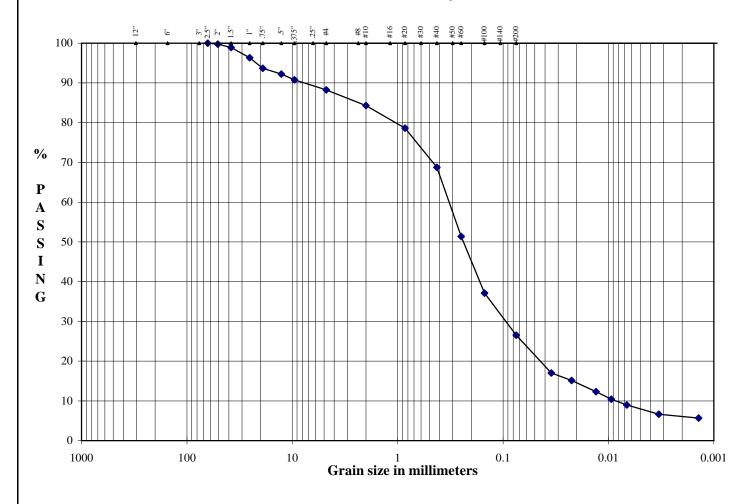
1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By	ER/AV
Date	05/07/12

Tests, Llc

Web: www.test-llc.com


Checked By

Client Pr. #	•	Lab. PR. #	1210-01-1	
Pr. Name	Williamsburg Works Former MGP Site	S. Type	Bulk	
Sample ID	13552/Soil 2	Depth/Elev.	-	
Location	-	Add. Info	-	

ASTM D 422/AASHTO T 88

Standard Test Method for Particle-Size Analysis of Soils (with Double Separation per ASTM D6913 and Hydrometer Analysis)

Particle-Size Analysis

			Coarse	Fine	Coarse	Medium	Fine	Silt or	Clay	
	Boulders	Cobbles	Gra	vel		San	d	Fin	es	
	-							D ₁₀	NA	mm
DESCRIPTI	ON	NA						D ₃₀	NA	mm
								D ₆₀	NA	mm
								Cu	NA	
		-					<u>_</u>	Сс	NA	
USCS (AST	M D2487; I	D2488)		NA					<u> </u>	

Page 2 of 2

TIMELY ENGINEERING SOIL

Tests, llc

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Web: www.test-llc.com

Tested By
Date

NK 05/14/12

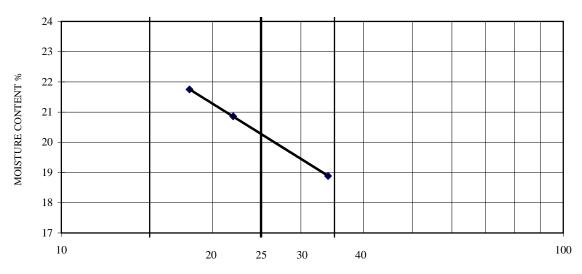
Checked By

05/14/12

	•			
Client Pr. #	-	Lab. PR. #	1210	-01-1
Pr. Name	Williamsburg Works Former MGP Site	S. Type	Ві	ulk
Sample ID	13552/Soil 2	Depth/Elev.		-
Location	-	Add. Info		-
-				

ASTM D 4318/AASHTO T 88, T 89

Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils (Atterberg Limits)


Number of Blows Mass of Wet Sample & Tare, g Mass of Dry Sample & Tare, g Mass of Tare, g Moisture Content, %

LIQUID LIMIT						
34	22	18				
40.97	45.94	42.26				
38.56	42.60	39.30				
25.80	26.59	25.69				
18.89	20.86	21.75				

Oven ID # 12/13/14/15

Balance ID # 2

Liquid Limit Device ID # 56

NUMBER OF BLOWS

Mass of Wet Sample & Tare, g Mass of Dry Sample & Tare, g Mass of Tare, g Moisture Content, %

PLASTIC LIMIT				
35.65	32.84			
33.84	31.55			
24.00	24.55			
18.39	18.43			

PREPARATION PROCEDURE

DRY

NOTE: MATERIAL PASSING NO. 40 SIEVE WAS USED FOR TEST

NATURAL MOISTURE

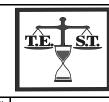
Mass of Wet Sample & Tare, g Mass of Dry Sample & Tare, g Mass of Tare, g Moisture Content, %

١	JIVAL IVIOIO	
	921.60	
	821.80	
	195.00	
	15.92	

LIQUID LIMIT (LL)
PLASTIC LIMIT (PL)
PLASTICITY INDEX (PI)
LIQUIDITY INDEX (LI)

20
18
2
-1.04

DESCRIPTION


NA

USCS (ASTM D2487; D2488)

NA

AASHTO (M 145)

NA

wet

Tests llc

1874 Fo	orae Stre	et Tuck	er. GA	30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By RΙ 05/09/12

Date 10 Checked By

	TESTS, LLC	Web: www.test-llc.com		Checked By
Client Pr. #	-	Lab. PR. #	12	10-01-1
Pr. Name	Williamsburg Works Former MGP Site	S. Type		Bulk
Sample ID	13552/Soil 2	Depth/Elev.		-
Location	-	Add. Info		-
-				

ASTM D 698 Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600kN-m/m³))

DETERMINATION OF TEST PROCEDURE

dry

	 ٠.,	11101010101		
Mass of Soil before sieving, g			Coarse + Fine Fraction	Coars Fraction
Mass of Mat. Retained on No. 4 sieve, g		Mass of Wet Sample & Tare, g		
Mass of Mat. Retained on 3/8" sieve, g		Mass of Dry Sample & Tare, g		
Mass of Mat. Retained on 3/4" sieve, g		Mass of Tare, g		
	•	Moisture Content, %		
Material Retained on No. 4 Sieve, %				
Material Retained on 3/8" Sieve, %				
Material Retained on 3/4" Sieve, %		Procedure	В	
Total, % (oversized)				
	 TEST [DATA		

Points Mass of Mold and Soil, g Mass of Wet Sample & Tare, g Mass of Dry Sample & Tare, g Mass of Tare, g Moisture Content, %

Wet Density, pcf Dry Density, pcf

		_			
1	2	3	4	5	Mold ID Number
6242.0					Mass of Mold, g
921.6					Volume of Mold, ft ³
821.8					Hammer ID Number
195.0					Number of Blows per layer
15.9					Number of Layers
					-

volume of Mola, it
Hammer ID Number
Number of Blows per layer
Number of Layers

MOISTURE CONTENT

321B
4250.5
0.0333
318
25
3

										Mo	Г					tura		_					_												
											(Gs	=2.	6):	((Gs=	=2.	7):	((Gs=	=2.	8)													
	120.0	1	П	П	\top	П	П		П	\top	1	T	T	1		П	T	,, 		T	П	-, 	T	\dashv	$\overline{}$	П	_	П	П	Т	П	\pm	П	\top	
		1		П	1	П	\top		Ħ	\top	П	T	\Box	4	T	Ħ		T	4	T			1		T	П		П	П	T	Ħ	T	Ħ		П
		1													Ţ					$\sqrt{}$													П		
	118.0											\perp		Т																			П		
	110.0	1	Ш	ш		Ш	\perp		Ш	\perp	Ц	\perp	Ш	4	┸	\perp	\perp	┺	Ш	\perp					┸		\perp	Ш	Ш		Ш	┸	Ш	\perp	Ш
5		┵	Ш	\perp	_	Ш	\perp		Ш	_	Ш	\perp	Ш	4	1	Ш	λ	┸	Ш	4		1	\bot		┸	Ш	1	\perp		_	Ш	4	Ш		Ш
Dry Density, pcf		┵		\perp	_	Ш	\perp		Ш	_	Н	_	Ш	_	1			\checkmark					\overline{P}		\perp	Н		1				4	Н	_	Ш
	116.0	┵	-	+	-	\vdash	+	+	Н	+	Н	+	Н	+	+	\vdash	+	₩	¥	+	+	-		7	+	Н	+	H	4	+	Н	+	++	-	н
		╅╫	++	+	+	H	+	+	\forall	+	Н	+	Н	+	+	\vdash	+	╀	-	+	+	-	+	-	+	Н	+	+	\vdash	\downarrow	Н	+	++	+	Н
		╅┼	Н	+	+	Н	+	+	Н	+	Н	+	Н	+	+	Н	+	╀	+	+	\mathbf{k}	+		+	÷	H	+	Н	Н	+	\forall	+	++	+	Н
í		╅╫	++	+	+	++	+	+	+	+	Н	+	+	+	+			╫	+	+	H	\forall		-	+	HÌ	+	+	H	+	\rightarrow	╅	++	+	Н
_	114.0	++	++	+	_	++	+	+	H	+	Н	+	H	+	+	+	+	+	+	+		+	\leftarrow	_	+	Н	+	낷	H	+	H	7	+	+	н
		1		+	\pm	\vdash	_		+	+	Н	+	H	+	+	\Box	+	т		+	•		+	$\overline{}$	+	H	+	+	\forall		H	╈	14	\top	Н
•		1	\Box	\Box	\top	П	\top		П	\top	П	\top	Ħ	\top	1	T		T	Ħ	1				7	T	Ħ		П	Ť		Ħ	1	\Box	\star	П
	112.0	1				П			П		П	T	П	T	T		T	Т	П	T	П			T	\wedge	Ħ	T	П	П		Ħ	┰	T	\top	N
	112.0	1		П										Т				Г							Т	7	$\overline{}$					J	П		
		1		Ш	\perp	Ш	Ш				Ц	\perp	Ш	\perp		Ш		┸							\perp	Ш		Ш						\perp	Ш
		1		\perp							Ш		Ш	_	\perp			┸							┸			\mathbb{N}					\square	\perp	Ш
	110.0	Щ.	щ	Щ.	_	щ	Ш	_	щ	4	Ц	+	Н	4	╄	щ	_	Ц.	4	4		_	_	_	4	Ц	4	Ш	\setminus	_	Ц	_	щ	_	Щ
		0 0		44	^		40	^	•	4		•	٠,		^	•	4	- 0		•	40				7.0	` '		40		Ţ.,	٠,		`		20.
	1	0.0		11	.0		12	.0		13	3.0			14.0	U		- 13	5.0	1		16	.0		1	7.0)		18	5.0			19.0	J		20.

131.8

113.7

Method A: Material retained on No. 4 < 20% Method B: Material retained on No. 4 > 20%

and material retained on 3/8" < 20%

Method C: Material retained on 3/8" > 20% and material retained on 3/4" < 30%

REMARKS

One Point Proctor was performed for material (<3/8") @ as-received moisture content

DESCRIPTION

	DEGOINI HON	
NA		

USCS (ASTM D2487; D2488)

Maximum Dry Density, pcf Optimum Moisture Content, %

Corrected Maximum Dry Density, pcf	
Corrected Optimum Moisture Content,	%

NA
NA

TIMELY Engineering Soil Tests, llc

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

Tested By Date

FB 05/11/12

Checked By

48

Web: www.test-llc.com Lab. PR. # Client Pr. # 1210-01-1 Pr. Name Williamsburg Works Former MGP Site S. Type Bulk Sample ID 13552/Soil 2 Depth/Elev. Location Add. Info ASTM D 5084; Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter (Method D, Constant Rate of Flow) **Initial Sample Data (Before Test) Test Data** Final Data (After Test) Height 3.004 7.63 cm Speed 8 Diameter 2.852 lin 7.24 cm **Board Number** 3 Average Height of Sample 2.957 lin² cm² Area 6.39 41.22 Cell Number 1 Average Diameter of Sample 2.850 in 7.24 314.48 cm³ 0.0111 Flow Pump Number 1A Area 6.38 41.16 cm² Volume 664.90 1.47 Flow Pump Rate 8.96E-04 cm³/sec Volume 309.12 cm³ 0.0109 Dry Density 116.2 Mass pcf B - Value cm³ Specific Gravity 2.700 (Assumed) 0.95 Mass 671.60 1.48 Vol. of Voids 95.84 cm³ Dry Density 113.8 pcf Cell Pressure 100.0 psi Vol. of Solids 213.28 90.0 Back Pressure psi Void Ratio 0.45 Moisture Content Confining (Effective) Pressure 10.0 psi Moisture Content Saturation 99.9 Mass of wet sample & tare 921.6 Max Head 34.47 Mass of wet sample & tare 773.80 cm 821.8 Min Head Mass of dry sample & tare 33.76 Mass of dry sample & tare 678.10 cm Mass of tare 195.0 Maximum Gradient 4.59 Mass of tare 102.50 % Moisture 15.9 Minimum Gradient 4.50 % Moisture 16.6 TIME FUNCTION Δt Head PERMEABILITY (cm/sec) Note: Deaired Water Used for Permeability Test. READING Gradient Temp. T_x(°C) @ 20 °C R_{T} DATE **HOUR** MIN @ T_x DESCRIPTION (sec) (psi) (cm) NΑ 7 05/11/12 0 0.49 34.47 4.59 24.0 USCS 05/11/12 7 5 300 0.48 33.76 4.50 24.0 4.79E-06 0.910 4.36E-06 (ASTM D2487;2488) 05/11/12 10 300 0.48 33.76 4.50 24.0 4.84E-06 0.910 4.41E-06 NA 7 15 300 0.49 34.47 4.59 24.0 4.79E-06 0.910 4.36E-06 05/11/12 **REMARKS** Material passed 3/8" sieve used for testing. Material was 7 20 4.50 4.79E-06 05/11/12 300 0.48 33.76 24.0 0.910 4.36E-06 remolded to 100.1% of dry density (one point standard 7 25 4.59 24.0 4.79E-06 05/11/12 300 0.49 34.47 0.910 4.36E-06 proctor) at as-received moisture content. 7 4.59 4.74E-06 05/11/12 30 300 0.49 34.47 24.0 0.910 4.32E-06 Reported Average Hydraulic Conductivity* 4.3E-06 cm/sec Flow pump ID # 22 Balance ID # 1/6/7 Differential Pressure Transducer ID # 24/25 29 Thermometer ID # 63 Oven ID # 14/15 Board Pressure Transducer ID # 140 26/27 Syringe ID # Pore Pressure Transducer ID #

TIMELY Engineering Soil Tests, llc

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By ER/AV Date Checked By

05/07/12 18

Web: www.test-llc.com Client Pr. # Lab. PR. # 1210-01-1 Williamsburg Works Former MGP Site Pr. Name S. Type Bulk 13553/Soil 3 Sample ID Depth/Elev. Location Add. Info

ASTM D 422/AASHTO T 88

Standard Test Method for Particle-Size Analysis of Soils (with Double Separation per ASTM D6913 and Hydrometer Analysis)

		Moisture Co	ontent of FINE	R PORTION
As-Received Moisture C	Content (Total Sample)		1st Subsample	2nd Subsample
Mass of Wet Sample & Tare, g	1075.8	Mass of Wet Sample & Tare, g	460.4	442.30
Mass of Dry Sample & Tare, g	931.9	Mass of Dry Sample & Tare, g	421.9	406.80
Mass of Tare, g	295.4	Mass of Tare, g	95.7	112.70
Moisture Content, %	22.6	Moisture Content, %	11.8	12.1
			1st Subsample	2nd Subsample
Mass of Total Sample before				
Mass of Total Campic before	69500	Mass of Wet Finer Portion & Tare, g	1545.0	100.72
	69500	Mass of Wet Finer Portion & Tare, g Mass of Tare	1545.0 0.0	100.72 0.0
separation on 3/8" sieve & Tare, g Mass of Tare, g	0.0	, 9		
separation on 3/8" sieve & Tare, g		Mass of Tare	0.0	0.0

SIEVE ANALYSIS

COARSER PORTION OF <u>SAMPLE (RE</u> TAINED ON 3/8" SIEVE)					2nd Subsample of FINER PORTION OF SAMPLE (PASSING #4 SIEVE:Hydrometer Backsieve)						
Mass of Tare	, g	0.00		% PASSING							
Sieve Size		Sample & Tare, g	% RETAINED	(of Total)							
12"	COBBLES		0	100			Cumulative	% PASSING			
3"			0	100	Sieve Size	_	Mass retained, g	(of Total)			
2.5"	COARSE		0	100	#10	MEDIUM	2.73	95			
2"	GRAVEL	0.0	0	100	#20	SAND	9.67	88			
1.5"		97.3	0	100	#40		19.26	77			
1"		97.3	0	100	#60	FINE SAND	33.15	62			
.75"		267.7	0	100	#100		45.18	49			
.5"	FINE GRAVEL	462.5	1	99	#200	FINES	56.15	37			
.375"		601.3	1	99			Remarks				
#4	COARSE SAND	-	1	98		<u> </u>		<u> </u>			
#4 <first 8"<="" finer="" of="" portion<3="" subsample="" td=""><td></td><td></td><td></td><td></td><td></td></first>											

HYDROMETER ANALYSIS

Length of Dispersion Period Mechanical Dispersion Device ID # Amount of Dispersing Agent (ml) Specific Gravity (assumed) Specific Gravity (tested) Starting time

1 Minute
61
125.0
2.650
11:50

PARTICLE-SIZE ANALYSIS

% COBBLES	0	% MEDIUM SAND	18
% COARSE GRAVEL	0	% FINE SAND	40
% FINE GRAVEL	1	% FINES	37
% COARSE SAND	3	% TOTAL SAMPLE	100
% CLAY(<0.005mm)	14	% CLAY(<0.002mm)	10

Date	Time	Testing time	Reading	Temp	K	Composite	Actual	Effective	а	Particle	Percent
		(min)		(°C)		Correction	Reading	Depth (cm)		Diam. (mm)	Passing
	11:52	2	29.5	21.4	0.01348	5.0	24.5	12.3	1.00	0.0334	26.7
01/00/00	11:55	5	26.5	21.4	0.01348	5.0	21.5	12.8	1.00	0.0216	23.5
01/00/00	12:05	15	23.0	21.4	0.01348	5.0	18.0	13.4	1.00	0.0127	19.6
01/00/00	12:20	30	21.0	21.4	0.01348	5.0	16.0	13.7	1.00	0.0091	17.5
01/00/00	12:50	60	19.0	21.4	0.01348	5.0	14.0	14.1	1.00	0.0065	15.3
01/00/00	16:00	250	16.0	21.4	0.01348	5.0	11.0	14.6	1.00	0.0033	12.0
01/01/00	11:50	1440	13.5	21.4	0.01348	5.0	8.5	15.0	1.00	0.0014	9.3

Hydrometer 152H ID #	451190
Sieve Shaker ID #	54/130

Oven ID# 12/13/14/15 Balance ID#

Page 1 of 2

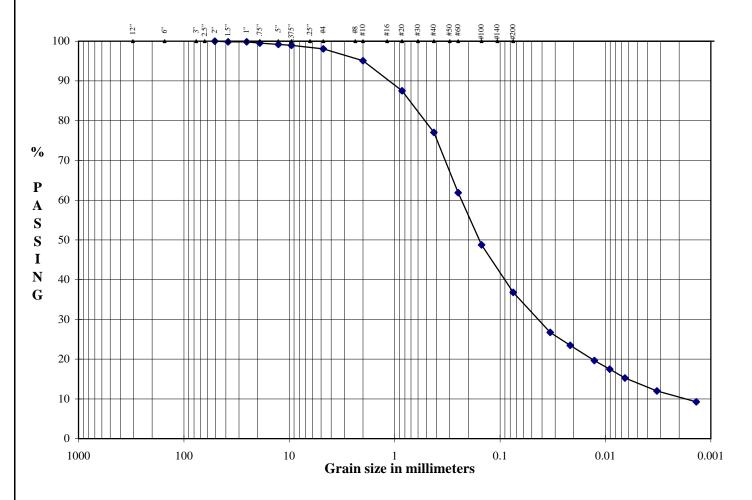
1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By ER/AV 05/07/12 Date

Tests, Llc

Web: www.test-llc.com


Checked By

Client Pr. #	-	Lab. PR. #	1210-01-1	
Pr. Name	Williamsburg Works Former MGP Site	S. Type	Bulk	
Sample ID	13553/Soil 3	Depth/Elev.	-	
Location	-	Add. Info	-	

ASTM D 422/AASHTO T 88

Standard Test Method for Particle-Size Analysis of Soils (with Double Separation per ASTM D6913 and Hydrometer Analysis)

Particle-Size Analysis

			Coarse	Fine	Coarse	Medium	Fine	Silt or	Clay	
	Boulders	Cobbles	Gra	vel		San	d	Fin	es	
	-							D ₁₀	NA	mm
DESCRIPTION		NA						D ₃₀	NA	mm
								D ₆₀	NA	mm
								Cu	NA	
		-					<u>_</u>	Сс	NA	
USCS (AST	M D2487; I	D2488)		NA					<u> </u>	

Page 2 of 2

Tests, llc

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

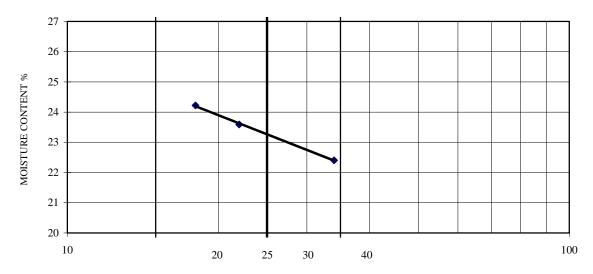
Tested By Date

Checked By

NK 05/14/12

18

Web: www.test-llc.com Client Pr. # Lab. PR. # 1210-01-1 Williamsburg Works Former MGP Site Pr. Name S. Type Bulk Sample ID 13553/Soil 3 Depth/Elev. -Add. Info Location


ASTM D 4318/AASHTO T 88, T 89

Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils (Atterberg Limits)

Number of Blows Mass of Wet Sample & Tare, g Mass of Dry Sample & Tare, g Mass of Tare, g Moisture Content, %

L	IQUID LIMI	Т
34	22	18
44.62	42.22	40.51
41.51	38.92	37.79
27.63	24.93	26.56
22.41	23.59	24.22

Oven ID # 12/13/14/15 Balance ID # Liquid Limit Device ID # 56

NUMBER OF BLOWS

Mass of Wet Sample & Tare, g Mass of Dry Sample & Tare, g Mass of Tare, g Moisture Content, %

	0 =
37.11	32.75
35.50	31.55
25.91	24.40
16.79	16.78

PLASTIC LIMIT

PREPARATION PROCEDURE

DRY

NOTE: MATERIAL PASSING NO. 40 SIEVE WAS USED FOR TEST

NATURAL MOISTURE

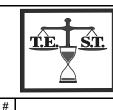
Mass of Wet Sample & Tare, g Mass of Dry Sample & Tare, g Mass of Tare, g Moisture Content. %

•	JINAL INIOIS	
	1075.80	
	931.90	
	295.40	
	22.61	

LIQUID LIMIT (LL) PLASTIC LIMIT (PL) PLASTICITY INDEX (PI) LIQUIDITY INDEX (LI)

23	1
17	
6	
0.93	

DESCRIPTION


NA

USCS (ASTM D2487; D2488)

NA

AASHTO (M 145)

NA

wet

Tests llc

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Tested By RΙ 05/09/12 Date

Fax: 770-923-8973 18 Web: www.test-llc.com Checked By

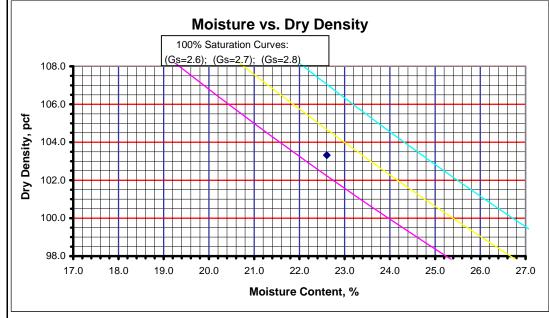
MOISTURE CONTENT

				- · · · · · · · · · · · · · · · · · · ·	
Client Pr. #	-	Lab. PR. #	12	10-01-1	
Pr. Name	Williamsburg Works Former MGP Site	S. Type		Bulk	
Sample ID	13553/Soil 3	Depth/Elev.		-	
Location	-	Add. Info		-	
•			•		

ASTM D 698 Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600kN-m/m³))

DETERMINATION OF TEST PROCEDURE

dry


Mass of Soil before sieving, g			Coarse + Fine Fraction	Coars Fraction
Mass of Mat. Retained on No. 4 sieve, g		Mass of Wet Sample & Tare, g		
Mass of Mat. Retained on 3/8" sieve, g		Mass of Dry Sample & Tare, g		
Mass of Mat. Retained on 3/4" sieve, g		Mass of Tare, g		
	 _	Moisture Content, %		
Material Retained on No. 4 Sieve, %			-	
Material Retained on 3/8" Sieve, %			_	
Material Retained on 3/4" Sieve, %		Procedure	В	
Total, % (oversized)				
	 TEST DATA			

Points Mass of Mold and Soil, g Mass of Wet Sample & Tare, g Mass of Dry Sample & Tare, g Mass of Tare, g Moisture Content, %

Wet Density, pcf Dry Density, pcf

		TES	r data		
1	2	3	4	5	Mold ID Number
6164.0					Mass of Mold, g
1075.8					Volume of Mold, ft ³
931.9					Hammer ID Number
295.4					Number of Blows per layer
22.6					Number of Layers
		•	•	•	_ _

126.7		
103.3		

Method A: Material retained on No. 4 < 20% Method B: Material retained on No. 4 > 20%

321B

4250.5

0.0333

318

25

3

and material retained on 3/8" < 20%

Method C: Material retained on 3/8" > 20% and material retained on 3/4" < 30%

REMARKS

One Point Proctor was performed for material (<3/8") @ as-received moisture content

DESCRIPTION

	DEGOINI HON	
NA		
INA		

USCS (ASTM D2487; D2488)

Maximum Dry Density, pcf Optimum Moisture Content, %

Corrected	Maximum Dry Density, pcf	
Corrected	Optimum Moisture Content,	%

NA
NA

Client Pr. #

Pr. Name

TIMELY
ENGINEERING
SOIL
TESTS. LLC

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By Date EB 05/11/12

| Checked By | Che

Sample ID 13553/Soil 3 Location Add. Info ASTM D 5084; Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter (Method D, Constant Rate of Flow) **Initial Sample Data (Before Test) Test Data** Final Data (After Test) Height 3.004 7.63 cm Speed 12 Diameter 2.852 lin 7.24 cm **Board Number** 11 Average Height of Sample 2.564 6.51 cm lin² cm² Area 6.39 41.22 Cell Number 17 Average Diameter of Sample 2.932 in 7.45 cm 314.48 cm³ 0.0111 ft³ Flow Pump Number 1B Area 6.75 43.56 cm² Volume 638.40 1.41 Flow Pump Rate 5.60E-05 cm³/sec Volume 283.69 cm³ 0.0100 Dry Density 115.5 Mass pcf B - Value cm³ Specific Gravity 2.700 (Assumed) 0.95 Mass 614.20 1.35 Vol. of Voids 89.27 cm³ Dry Density 103.3 pcf Cell Pressure 100.0 psi Vol. of Solids 194.42 90.0 Back Pressure psi Void Ratio 0.46 Moisture Content Confining (Effective) Pressure 10.0 psi Moisture Content Saturation 100.0 Mass of wet sample & tare 1075.80 a Max Head 68.93 Mass of wet sample & tare 714.80 cm Min Head Mass of dry sample & tare 931.90 68.23 Mass of dry sample & tare 625.60 cm Mass of tare 295.40 Maximum Gradient 10.58 Mass of tare 101.10 % Moisture 22.6 Minimum Gradient 10.48 % Moisture 17.0 TIME FUNCTION Δt Head Temp. PERMEABILITY (cm/sec) Note: Deaired Water Used for Permeability Test. **READING** Gradient T_x(°C) @ 20 °C R_{T} DATE **HOUR** MIN (cm) @ T_x DESCRIPTION (sec) (psi) NΑ 05/11/12 11 0 0.98 68.93 10.58 24.0 USCS 05/11/12 11 5 300 0.97 68.23 10.48 24.0 1.22E-07 0.910 1.11E-07 (ASTM D2487;2488) 05/11/12 11 10 300 0.97 68.23 10.48 24.0 1.23E-07 0.910 1.12E-07 NA 11 15 300 0.98 68.93 10.58 24.0 1.22E-07 0.910 05/11/12 1.11E-07 **REMARKS** Material passed 3/8" sieve used for testing. Material was 20 1.22E-07 05/11/12 11 300 0.97 68.23 10.48 24.0 0.910 1.11E-07 remolded to 100.0% of dry density (one point standard 25 10.58 24.0 1.22E-07 05/11/12 11 300 0.98 68.93 0.910 1.11E-07 proctor) at as-received moisture content. 10.58 1.21E-07 05/11/12 11 30 300 0.98 68.93 24.0 0.910 1.11E-07 Reported Average Hydraulic Conductivity* 1.1E-07 cm/sec Flow pump ID # 22 Balance ID # 1/6/7 Differential Pressure Transducer ID # 70/68 Thermometer ID # 63 Oven ID # 14/15 Board Pressure Transducer ID # 216 141 28 Syringe ID # Pore Pressure Transducer ID

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Web: www.test-llc.com

Batch Worksheet

BATCH-SAMPLE ID			13551/(Soil 1)	BATCH #	1	
PR. NUMBER	-		LOCATION	-	MIXING TECH	RI/AV
PR. NAME	Williamsburg Works F	ormer MGP Site	SAMPLE TYPE	Mold	BATCH DATE	5/21/2012

Time Batch Mixing Started
Total Time Batch was Mixed, min
Time Batch Completely in Molds

Soil Moisture Mass, g Soil Moisture Content, %

Type of Cement Used
Grout Water/Cem. Mat (Solids) Ratio*

Mass of Dry Soil, g Total Water/Cem. Mat. Ratio 1110.0 18.5 |/|| 0.60

6000.0 4.517

Remarks

mL of water was added to make soil/grout mixable/moldable

* Cementous Materials (solids) is total mass of GGBFS and

Mix Constituents:

Component	Component	Amount,		
ID	Name	% (based on soil dry mass)	g	
13551	Soil (wet)	100.0	7110.0	
13661	GGBFS	4.5	270.0	
13662	Cement	1.5	90.0	
	Water, mL	216		

	Required	Nominal	Mold Size	Tamping			End Pre	eparation
Sample ID	Test	Diam., in.	Height, in.		Removal Tech	Trim Tech	Method	Comments
13551-1-1	UCS	3	6					7 days
13551-1-1-2	UCS	3	6					14 days
13551-1-1-3	UCS	3	6					28 days
13551-1-1-4	Perm	3	3					7 days
13551-1-1-5	Perm	3	3					28 days
				-				

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Web: www.test-llc.com

Batch Worksheet

BATCH-SAMPLE ID		13551/(Soil 1)	-2-1	BATCH #	1	
PR. NUMBER	-		LOCATION	-	MIXING TECH	RI/AV
PR. NAME	Williamsburg Works F	Former MGP Site	SAMPLE TYPE	Mold	BATCH DATE	5/21/2012

Time Batch Mixing Started
Total Time Batch was Mixed, min
Time Batch Completely in Molds

Soil Moisture Mass, g Soil Moisture Content, %

Type of Cement Used

18.5 I/II 0.60

1110.0

Grout Water/Cem. Mat (Solids) Ratio* Mass of Dry Soil, g

Total Water/Cem. Mat. Ratio

6000.0 3.119

Mix Constituents:

Component	Component	Amount,		
ID	Name	% (based on soil dry mass)	g	
13551	Soil (wet)	100.0	7110.0	
13661	GGBFS	6.75	405.0	
13662	Cement	135.0		
	Water, mL	324		

Remarks

mL of water was added to make soil/grout mixable/moldable

	Required	Nominal	Mold Size	Tamping			End Pre	paration
Sample ID	Test	Diam., in.	Height, in.		Removal Tech	Trim Tech	Method	Comments
13551-2-1-1	UCS	3	6					7 days
13551-2-1-2	UCS	3	6					14 days
13551-2-1-3	UCS	3	6					28 days
13551-2-1-4	Perm	3	3					7 days
13551-2-1-5	Perm	3	3					28 days

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Web: www.test-llc.com

Batch Worksheet

BATCH-SAMPLE ID			13551/(Soil 1)	BATCH #	1	
PR. NUMBER	-		LOCATION	-	MIXING TECH	RI/AV
PR. NAME	Williamsburg Works F	Former MGP Site	SAMPLE TYPE	Mold	BATCH DATE	5/21/2012

Time Batch Mixing Started
Total Time Batch was Mixed, min
Time Batch Completely in Molds

Soil Moisture Mass, g Soil Moisture Content, %

Type of Cement Used Grout Water/Cem. Mat (Solids) Ratio*

Mass of Dry Soil, g

Total Water/Cem. Mat. Ratio

ntent, % 18.5
: Used | |/||
s) Ratio* 0.60
oil, g 6000.0
Mat. Ratio 2.419

1110.0

Mix Constituents:

Component	Component	Amount,		
ID	Name	% (based on soil dry mass)	g	
13551	Soil (wet)	100.0	7110.0	
13661	GGBFS	9.0	540.0	
13662	Cement 3.0 18			
	Water, mL	432		

Remarks

mL of water was added to make soil/grout mixable/moldable

	Required	Nominal	Mold Size	Tamalaa		End Preparation			
Sample ID	Test	Diam., in.	Height, in.	Tamping Tech	Removal Tech	Trim Tech	Method	Comments	
13551-3-1-1	UCS	3	6					7 days	
13551-3-1-2	UCS	3	6					14 days	
13551-3-1-3	UCS	3	6					28 days	
13551-3-1-4	Perm	3	3					7 days	
13551-3-1-5	Perm	3	3					28 days	

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Web: www.test-llc.com

Batch Worksheet

BATCH-SAMPLE ID		13552/(Soil 2)	BATCH #	1		
PR. NUMBER	i		LOCATION	-	MIXING TECH	RI/AV
PR. NAME	Williamsburg Works F	Former MGP Site	SAMPLE TYPE	Mold	BATCH DATE	5/22/2012

Time Batch Mixing Started
Total Time Batch was Mixed, min
Time Batch Completely in Molds

Soil Moisture Mass, g Soil Moisture Content, %

Type of Cement Used

15.9 |/|| 0.60 6000.0

4.639

954.0

Grout Water/Cem. Mat (Solids) Ratio*
Mass of Dry Soil, g

Total Water/Cem. Mat. Ratio

Remarks

mL of water was added to make soil/grout mixable/moldable

* Cementous Materials (solids) is total mass of GGBFS and

Mix Constituents:

Component	Component	Amount,			
ID	Name	% (based on soil dry mass)	g		
13552	Soil (wet)	100.0	6954.0		
13661	GGBFS	4.5	270.0		
13662	Cement	1.5	5 90.0		
	Water, mL	216			

	Required	Nominal	Mold Size	Tamping			End Pre	paration
Sample ID	Test	Diam., in.	Height, in.	Tech	Removal Tech	Trim Tech	Method	Comments
13552-1-1-1	UCS	3	6					7 days
13552-1-1-2	UCS	3	6					14 days
13552-1-1-3	UCS	3	6					28 days
13552-1-1-4	Perm	3	3					7 days
13552-1-1-5	Perm	3	3					28 days
				_				
		_	_					

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Web: www.test-llc.com

Batch Worksheet

BATCH-SAMPLE ID			13552/(Soil 2)	-2-1	BATCH#	1
PR. NUMBER	-		LOCATION	-	MIXING TECH	RI/AV
PR. NAME	Williamsburg Works Former M	IGP Site S	SAMPLE TYPE	Mold	BATCH DATE	5/22/2012

Time Batch Mixing Started
Total Time Batch was Mixed, min
Time Batch Completely in Molds

Soil Moisture Mass, g Soil Moisture Content, %

Type of Cement Used

0.60 6000.0

Grout Water/Cem. Mat (Solids) Ratio* Mass of Dry Soil, g

Total Water/Cem. Mat. Ratio

3.200

954.0

15.9

Mix Constituents:

Component	Component	Amount,		
ID	Name	% (based on soil dry mass)	g	
13552	Soil (wet)	100.0	6954.0	
13661	GGBFS	6.75	405.0	
13662	Cement	Cement 2.25 1		
	Water, mL	324		

Remarks

mL of water was added to make soil/grout mixable/moldable

	Required	Nominal	Mold Size	Tamping			End Pre	eparation
Sample ID	Test	Diam., in.	Height, in.	Tech	Removal Tech	Trim Tech	Method	Comments
13552-2-1-1	UCS	3	6					7 days
13552-2-1-2	UCS	3	6					14 days
13552-2-1-3	UCS	3	6					28 days
13552-2-1-4	Perm	3	3					7 days
13552-2-1-5	Perm	3	3					28 days

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Web: www.test-llc.com

Batch Worksheet

BATCH-SAMPLE ID			13552/(Soil 2)	BATCH #	1	
PR. NUMBER	-		LOCATION	-	MIXING TECH	RI/AV
PR. NAME	Williamsburg Works F	ormer MGP Site	SAMPLE TYPE	Mold	BATCH DATE	5/22/2012

Time Batch Mixing Started
Total Time Batch was Mixed, min
Time Batch Completely in Molds

Soil Moisture Mass, g Soil Moisture Content, %

> 0.60 6000.0

Type of Cement Used
Grout Water/Cem. Mat (Solids) Ratio*
Mass of Dry Soil, g

Total Water/Cem. Mat. Ratio

2.481

954.0

15.9

Mix Constituents:

Component	Component	Amount,		
ID	Name	% (based on soil dry mass)	g	
13552	Soil (wet)	100.0	6954.0	
13661	GGBFS	9.0	540.0	
13662	Cement	3.0	180.0	
	Water, mL	432		

Remarks

mL of water was added to make soil/grout mixable/moldable

	Required	Nominal	Mold Size	Tamping			End Pre	paration
Sample ID	Test	Diam., in.	Height, in.	Tech	Removal Tech	Trim Tech	Method	Comments
13552-3-1-1	UCS	3	6					7 days
13552-3-1-2	UCS	3	6					14 days
13552-3-1-3	UCS	3	6					28 days
13552-3-1-4	Perm	3	3					7 days
13552-3-1-5	Perm	3	3					28 days

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Web: www.test-llc.com

Batch Worksheet

BATCH-SAMPLE ID			13553/(Soil 3)	BATCH#	1	
PR. NUMBER	-		LOCATION	-	MIXING TECH	RI/AV
PR. NAME	Williamsburg Works F	ormer MGP Site	SAMPLE TYPE	Mold	BATCH DATE	5/23/2012

Time Batch Mixing Started
Total Time Batch was Mixed, min
Time Batch Completely in Molds

Soil Moisture Mass, g Soil Moisture Content, %

Type of Cement Used

22.6 |/|| 0.60

1356.0

Grout Water/Cem. Mat (Solids) Ratio* Mass of Dry Soil, g

Mass of Dry Soil, g 6000.0

Total Water/Cem. Mat. Ratio 4.922

Mix Constituents:

Component	Component	Amount,		
ID	Name	% (based on soil dry mass)	g	
13553	Soil (wet)	100.0	7356.0	
13661	GGBFS	4.5	270.0	
13662	Cement	nt 1.5 90.0		
	Water, mL	216		

Remarks

200 mL of water was added to make soil/grout mixable/moldable

	Required	Nominal	Mold Size	Townsins			End Pre	paration
Sample ID	Test	Diam., in.	Height, in.	Tamping Tech	Removal Tech	Trim Tech	Method	Comments
13553-1-1-1	UCS	3	6					7 days
13553-1-1-2	UCS	3	6					14 days
13553-1-1-3	UCS	3	6					28 days
13553-1-1-4	Perm	3	3					7 days
13553-1-1-5	Perm	3	3					28 days

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Web: www.test-llc.com

Batch Worksheet

BATCH-SAMPLE ID		13553/(Soil 3)	BATCH #	1		
PR. NUMBER	-		LOCATION	-	MIXING TECH	RI/AV
PR. NAME	Williamsburg Works F	ormer MGP Site	SAMPLE TYPE	Mold	BATCH DATE	5/23/2012

Time Batch Mixing Started
Total Time Batch was Mixed, min
Time Batch Completely in Molds

Soil Moisture Mass, g Soil Moisture Content, %

Type of Cement Used
Grout Water/Cem. Mat (Solids) Ratio*
Mass of Dry Soil, g

0.60 6000.0 3.519

1356.0

22.6

1/11

Total Water/Cem. Mat. Ratio

Remarks

mL of water was added to make soil/grout mixable/moldable

* Cementous Materials (solids) is total mass of GGBFS and

Mix Constituents:

Component	Component	Amount,		
ID	Name	% (based on soil dry mass)	g	
13553	Soil (wet)	100.0	7356.0	
13661	GGBFS	6.75	405.0	
13662	Cement	135.0		
	Water, mL	324		

	Required	Nominal	Mold Size	Tamping			End Pre	eparation
Sample ID	Test	Diam., in.	Height, in.	Tech	Removal Tech	Trim Tech	Method	Comments
13553-2-1-1	UCS	3	6					7 days
13553-2-1-2	UCS	3	6					14 days
13553-2-1-3	UCS	3	6					28 days
13553-2-1-4	Perm	3	3					7 days
13553-2-1-5	Perm	3	3					28 days

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Web: www.test-llc.com

Batch Worksheet

	BATCH-SAMPLE ID		13553/(Soil 3)	-3-1	BATCH#	1
PR. NUMBER	-		LOCATION	-	MIXING TECH	RI/AV
PR. NAME	Williamsburg Works Former	MGP Site	SAMPLE TYPE	Mold	BATCH DATE	5/23/2012

Time Batch Mixing Started
Total Time Batch was Mixed, min
Time Batch Completely in Molds

Soil Moisture Mass, g Soil Moisture Content, %

Type of Cement Used

Total Water/Cem. Mat. Ratio

I/II **0.60**

Grout Water/Cem. Mat (Solids) Ratio* Mass of Dry Soil, g

6000.0

1356.0

22.6

Mix Constituents:

Component	Component	Amo	ount,		
ID	Name	% (based on soil dry mass)	g		
13553	Soil (wet)	100.0	7356.0		
13661	GGBFS	9.0	540.0		
13662	Cement	3.0	180.0		
	Water, mL	432			

Remarks

mL of water was added to make soil/grout mixable/moldable

	Required	Nominal	Mold Size	Tamping			End Pre	paration
Sample ID	Test	Diam., in. Height, in.			Removal Tech	Trim Tech	Method	Comments
13553-3-1-1	UCS	3	6					7 days
13553-3-1-2	UCS	3	6					14 days
13553-3-1-3	UCS	3	6					28 days
13553-3-1-4	Perm	3	3					7 days
13553-3-1-5	Perm	3	3					28 days

Client Pr. # Pr. Name

Sample ID

Subsample

TIMELY Engineering Soil

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

Tested By Date

EB/KP 05/28/12 18

Tests, llc

ΓESTS, LLC	Web: www.test-llc.com			Checked By	18
-		Lab. PR. #	1210-01-1		
Williamsburg Works Forn	ner MGP Site	S. Type	Mold		
13551/(Soil 1)-	1-1	Depth/Elev.	•		
4		Add. Info	Curing Age: 7 Da	ays	

ASTM D 5084; Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter (Method D, Constant Rate of Flow)

Ir	Initial Sample Data (Before Test) Test Da								a	Final Data (After Test))		
Height									13]							
Diameter		2.980	in	7.57	cm	Board Nu	mber		3		Average Heig	ght of Samp	ole	2.849	in	7.24 cm	
Area		6.97	in ²	45.00	cm ²	Cell Num	ber		4	1	Average Diar	meter of Sa	mple	2.980	in	7.57 cm	
Volume		325.28	cm ³	0.0115	ft ³	Flow Pum	np Number		1A		Area	6.97	in ²	45.00	cm ²		
Mass		654.20	g	1.44	lb	Flow Pum	np Rate		2.80E-05	cm ³ /sec	Volume	325.62	cm ³	0.0115	ft ³	Dry Density	101.6 pcf
Specific Gra	vity	2.700	(Assumed	d)		B - Value			0.95		Mass	661.00	g	1.46	lb	Vol. of Voids	129.25 cm ³
Dry Density		101.7	pcf			Cell Press	sure		100.0	psi						Vol. of Solids	s 196.38 cm ³
				Back Pres	ssure		90.0	psi						Void Ratio	0.66		
	Mois	ture Con		1		Confining	(Effective)	Pressure	10.0	psi		Мо	isture Co	ntent	7	Saturation	101.2 %
Mass of wet	sample &	tare	654.20	g		Max Head			64.01	cm	Mass of wet			759.60	g		
Mass of dry	•	tare	530.30	g		Min Head			62.60	cm	Mass of dry s		re	628.80	g		
Mass of tare)		0.00	g		Maximum			8.85		Mass of tare			98.50	g		
% Moisture			23.4		1	Minimum			8.65		% Moisture	_		24.7			
	FUNCTI		Δt	READING	i	Head	Gradient	Temp.		T	(cm/sec)		Note: D	Deaired Wate	r Used for Pe	ermeability Tes	it.
DATE	HOUR	MIN	(sec)	(psi)		(cm)		T _x (°C)	@ T _x	R_T	@ 20 °C			DESCRIPT	ION	_	
05/28/12	8	5	-	0.90	(63.31	8.75	25.1	-	-	-		NA				USCS
05/28/12	8	15	600	0.91	(64.01	8.85	25.1	7.07E-08	0.887	6.28E-08					(AST	M D2487;2488)
05/28/12	8	25	600	0.89	(62.60	8.65	25.1	7.11E-08	0.887	6.31E-08						NA
05/28/12	8	35	600	0.91	(64.01	8.85	25.1	7.11E-08	0.887	6.31E-08	*			REMARK	(S	
05/28/12	8	45	600	0.89	(62.60	8.65	25.1	7.11E-08	0.887	6.31E-08	*					
05/28/12	8	55	600	0.89	(62.60	8.65	25.1	7.19E-08	0.887	6.38E-08	*					
05/28/12	9	5	600	0.90	(63.31	8.75	25.1	7.15E-08	0.887	6.35E-08	*					
						Reported	Average H	ydraulic Con	ductivity*		6.3E-08	cm/sec					
Flow pump I	D#	2	22		Balanc	e ID#	1/6/7		Differential F	Pressure T	ransducer ID	#		24/25			
Thermomete		3	77		Oven II	D #	14/15		Board Press	ure Trans	ducer ID#			29	1		
Syringe ID # 140					Pore Pressu	re Transd	ucer ID #			26/27	1						
- ,g								,						_			

TIMELY Engineering Soil $Tests, \\ \text{Llc}$

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973 Web: www.test-llc.com

Tested By Date

Checked By

Dy	נ
Э	06/18/12
d Bv	12

Client Pr. #						-					Lab. PR. #				1210-01-1			
Pr. Name				William			ner MGP S	Site			S. Type				Mold			
Sample ID					1355	51/(Soil 1)-	1-1				Depth/Elev.				-			
Subsample						5					Add. Info			Cur	ing Age: 28 [Days		
				ASTM D						•	draulic Con hod D, Con	-			us			
Ir	nitial San	nple Dat	a (Before	e Test)				Test Data	a	_	Final Data (After Test)							
Height		2.952	in	7.50	cm	Speed			14						-			
Diameter		3.005	in	7.63	cm	Board Nu	mber		17		Average Hei	ght of Samp	ole	2.945	in	7.48 cm	1	
Area			in ²		cm ²	Cell Number		9		Average Diar	meter of Sa		3.000	in	7.62 cm	1		
Volume		343.08	cm ³	0.0121	ft ³	Flow Pun	np Number		2B		Area	7.07	in ²	45.60	cm ²			
Mass		672.40	g	1.48	lb	Flow Pun	np Rate		1.40E-05	cm ³ /sec	Volume	341.13	cm ³	0.0120	ft ³	Dry Densi	ty 100.8	
Specific Gra	vity	2.700	(Assumed	d)		B - Value			0.95		Mass	681.60	g	1.50	lb	Vol. of Voi	ds 137.1	
Dry Density		100.1	pcf			Cell Pres	sure		100.0	psi						Vol. of Sol	ids 204.0	0 cm ³
						Back Pre	ssure		90.0	psi						Void Ratio	0.67	
	Mois	ture Cont	ent			Confining	(Effective)	Pressure	10.0	psi		Мо	isture Co	ntent	-	Saturation	95.4	%
Mass of wet	sample &	tare	672.40	g		Max Head	d		78.78	cm	Mass of wet	sample & ta	ire	771.30	g			
Mass of dry	sample &	tare	550.40	g		Min Head	I		78.08	cm	Mass of dry s	sample & ta	re	640.60	g			
Mass of tare)		0.00	g		Maximum	Gradient		10.53		Mass of tare			90.20	g			
% Moisture			22.2			Minimum	Gradient		10.44		% Moisture			23.7				
TIME	FUNCTI	ON	Δt	READING	i I	Head	Gradient	Temp.	PERME	ABILITY	(cm/sec)		Note: Deaired Water Used for Permeability Test.					
DATE	HOUR	MIN	(sec)	(psi)		(cm)		T _x (°C)	@ T _x	R_T	@ 20 °C			DESCRIPT	ION	_		
06/18/12	9	0	-	1.12	7	78.78	10.53	25.0	-	-	-		NA				USCS	
06/18/12	9	10	600	1.11	7	78.08	10.44	25.0	2.93E-08	0.889	2.60E-08					(<i>P</i>	ASTM D2487;248	38)
06/18/12	9	20	600	1.12	7	78.78	10.53	25.0	2.93E-08	0.889	2.60E-08	j					NA	
06/18/12	9	30	600	1.11	7	78.08	10.44	25.0	2.93E-08	0.889	2.60E-08	*			REMARK	(S		
06/18/12	9	40	600	1.12	7	78.78	10.53	25.0	2.93E-08	0.889	2.60E-08	*						
06/18/12	9	50	600	1.12	7	78.78	10.53	25.0	2.91E-08	0.889	2.59E-08	*						
06/18/12	10	0	600	1.12	7	78.78	10.53	25.0	2.91E-08	0.889	2.59E-08	*						
	_			•		Reported	Average H	ydraulic Con	ductivity*		2.6E-08	cm/sec			•			
Flow pump I	D #	2	44		Balance	e ID #	1/6/7		Differential F	Pressure T	ransducer ID	#		263				
Thermomete	er ID #	3	77		Oven II) #	14/15		Board Press	ure Trans	ducer ID#			216				
Syringe ID #	ŧ	2	46						Pore Pressu	re Transd	ucer ID #			28				

Mass of Sample, g

Strain rate, % / min

Machine Speed, in/min

Wet Density, pcf

Dry Density, pcf

TIMELY Engineering

1320.00

123.5

100.2

0.050

0.87

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By Date

EΒ

05/28/12

/ \			AASH O FIS		
	TESTS, LLC	Web: www.test-llc.com		Checked By	18
Client Pr. #	-		Lab. PR. #	1210-01-1	
Pr. Name	Williamsburg Works	Former MGP Site	S. Type	Mold	
Sample ID	13551/(Soi	l 1)-1-1	Depth/Elev.	-	
Subsample	1		Add. Info	Curing Age: 7 Da	ays
CAMPI	F DATA	METHOD B	ONTENT DETERMINA	TION	
SAMPL			ONTENT DETERMINA		1
Initial Height, in	5.766		et Sample and Tare, g		
Initial Diameter, in	2.999	Mass of Dr	ry Sample and Tare, g	1404.20	
Height-to-Diameter R	Ratio 1.92	Mass of Ta	are, g	333.80	
Area, in ²	7.06	Moisture, 9	%	23.1	
Volume, in ³	40.73	3			

TEST DATA

Load Cell ID # 11 Compression Device ID # 10 Balance ID # 1/7

Digital Caliper ID # 16 Readout Device ID# 10 Oven ID# 12/13/14

Failure Code

Note 1: Water content was obtained after shear from partial sample.

Maximum Load at Failure, lbf Specimen Cross-sectional Area, in² Compressive Strength at Failure, psi Conversion Factor for Height to Diameter Ratio Reported Compressive Strength at Failure, psi Note 2: * - A conversion factor based on H/D=1.15 (C.F.-.908 as 100% and add. correction per ASTM C42)

1734 7.06 245 1.00 245

3

Failure Sketch

DESCRIPTION Failure Type: Cone and Shear

USCS (ASTM D2487: D2488)

REMARKS

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Æ

Tested By

RI

Web: www.test-llc.com

Date

Checked By

06/04/12

Client Pr. #	-		Lab. PR. #	1210-01-1
Pr. Name	Williamsburg Works Former MGP	Site	S. Type	Mold
Sample ID	13551/(Soil 1)-1-1		Depth/Elev.	-
Subsample	2		Add. Info	Curing Age: 14 Days
	ASTM D 1633: Standard Test Methods for	Compressive Strength	of Molded Soil-	Cement Cylinders
			-	·
	METHO	DD B]	
	SAMPLE DATA	WATER CONTE		
Initial Height		Mass of Wet Sa	•	·
Initial Diame	ameter Ratio 1.93	Mass of Dry Sar	ripie and Tare, (g 1493.10 419.90
Area, in ²		Mass of Tare, g		
	7.08	Moisture, %		23.2
Volume, in ³	40.92	A 14/ .		
Mass of Sam		Note 1: Water con	itent was obtained	l after shear from partial sample.
Wet Density, Dry Density,	·			
Machine Spe				
Strain rate, %				
- · · · · · · · · · · · · · · · · · · ·				
	Т	EST DATA		
	Load Cell ID # 11		Digital C	aliper ID # 16
	Compression Device ID # 10			Device ID # 10
	Balance ID # 1/7			Oven ID # 12/13/14
Maximum Lo	pad at Failure, lbf	2509		
0			Fa	ilure Code 3
•	ross-sectional Area, in ²	7.08	4	
•	e Strength at Failure, psi	354		
	Factor for Height to Diameter Ratio	1.00		
-	ompressive Strength at Failure, psi	354	J	Failure Sketch
Note 2: * - A c	onversion factor based on H/D=1.15 (C.F908 as 100		per ASTM C42)	
	DESCRIPTION			
			Fa	ilure Type:
				Cone and Shear
	USCS (ASTM D2487:	D2488)		
	REMARKS			

Timely Engineering Soil

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

AND RES

Tested By

Date

RI 06/18/12

18

Tests, llc

Web: www.test-llc.com

Checked By

Failure Type:

Cone and Shear

Client Pr. #		-		Lab. PR. #	1210-01-1
Pr. Name	Williamsbu	rg Works Former Mo	GP Site	S. Type	Mold
Sample ID	1	3551/(Soil 1)-1-1		Depth/Elev.	-
Subsample		3		Add. Info	Curing Age: 28 Days
	ASTM D 1633: Standa	ard Test Methods f	or Compressive Strengt	th of Molded Soil-Ce	ement Cylinders
		MET	гнор В	٦	
		IVIC	пор в		
	SAMPLE DATA		WATER CONT	ENT DETERMINAT	TION
Initial Heigh		5.893		ample and Tare, g	1556.00
Initial Diame	*	3.000	•	ample and Tare, g	1305.30
	iameter Ratio	1.96	Mass of Tare, of	g	206.50
Area, in ²		7.07	Moisture, %		22.8
Volume, in ³		41.66			
Mass of Sar		1351.00	Note 1: Water co	ontent was obtained a	fter shear from partial sample.
Wet Density	• •	123.6			
Dry Density,		100.6			
Machine Sp		0.050			
Strain rate, 6	% / MIN	0.85			
			TEST DATA		
	Load Cell ID #	11		Digital Cali	iper ID # 16
	Compression Device ID #	10		Readout Dev	vice ID # 10
	Balance ID #	1/7		0	ven ID # 12/13/14
Maximum Lo	oad at Failure, lbf		3235		
Specimen C	Cross-sectional Area, in ²		7.07	Failu	re Code 3
Compressive	e Strength at Failure, psi		458	7	
	Factor for Height to Diamete	er Ratio	1.00		
	Compressive Strength at Fa		458		Failure Sketch
Note 2: * - A (conversion factor based on H/D=	=1.15 (C.F908 as	100% and add. correction	n per ASTM C42)	
		DESCRIPTION		, /	

USCS (ASTM D2487: D2488)

REMARKS

Timely Engineering Soil

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

Tested By

Date

EB/KP 05/28/12

	TESTS, LLC Web: www.test-llc.com		Checked By
Client Pr. #	-	Lab. PR. #	1210-01-1
Pr. Name	Williamsburg Works Former MGP Site	S. Type	Mold
Sample ID	13551/(Soil 1)-2-1	Depth/Elev.	•
Subsample	4	Add. Info	Curing Age: 7 Days

ASTM D 5084; Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter (Method D, Constant Rate of Flow)

Ir	nitial Sar	nple Dat	a (Before	e Test)			Test Data	a		Final Data (After Test)			
Height		2.880	in	7.32 cı	m Speed			13					
Diameter		3.006	in	7.64 cı	m Board Nu	ımber		2		Average Heig	ght of Sample	2.886 in	7.33 cm
Area		7.10	in ²	45.79 CI	m ² Cell Num	ber		12		Average Diar	meter of Sampl	le 3.005 in	7.63 cm
Volume		334.94	cm ³	0.0118 ft	Flow Pum	np Number		1B		Area	7.09 in	² 45.76 cm ²	
Mass		661.30	g	1.46 lb	Flow Pum	np Rate		2.80E-05	cm ³ /sec	Volume	335.41 cr	m ³ 0.0118 ft ³	Dry Density 100.4 pcf
Specific Gra	avity	2.700	(Assumed	d)	B - Value			0.95		Mass	673.60 g	1.49 lb	Vol. of Voids 135.45 cm ³
Dry Density		100.6	pcf		Cell Pres	sure		100.0	psi				Vol. of Solids 199.96 cm ³
					Back Pre	ssure		90.0	psi				Void Ratio 0.68
					Confining	(Effective)	Pressure	10.0	psi		Moistu	ure Content	Saturation 98.7 %
· — •				Max Head	d		148.42	cm	Mass of wet	sample & tare	767.30 g		
Mass of dry	sample &	tare	539.80	g	Min Head	-		147.71	cm	-	sample & tare	633.60 g	
Mass of tare	9		0.00	g	Maximum	Gradient		20.25		Mass of tare		93.80 g	
% Moisture			22.5		Minimum	Gradient		20.15		% Moisture		24.8	
TIME	FUNCTI	ON	Δt	READING	Head	Gradient	Temp.	PERME	ABILITY	(cm/sec)	N	ote: Deaired Water Used	for Permeability Test.
DATE	HOUR	MIN	(sec)	(psi)	(cm)		T _x (°C)	@ T _x	R_T	@ 20 °C		DESCRIPTION	
05/28/12	8	5	-	2.10	147.71	20.15	25.1	-	-	-	N	A	uscs
05/28/12	8	15	600	2.11	148.42	20.25	25.1	3.03E-08	0.887	2.69E-08			(ASTM D2487;2488)
05/28/12	8	25	600	2.10	147.71	20.15	25.1	3.03E-08	0.887	2.69E-08			NA
05/28/12	8	35	600	2.11	148.42	20.25	25.1	3.03E-08	0.887	2.69E-08	*	RE	MARKS
05/28/12	8	45	600	2.10	147.71	20.15	25.1	3.03E-08	0.887	2.69E-08	*		
05/28/12	8	55	600	2.10	147.71	20.15	25.1	3.04E-08	0.887	2.69E-08	*		
05/28/12	9	5	600	2.10	147.71	20.15	25.1	3.04E-08	0.887	2.69E-08	*		
					Reported	Average H	lydraulic Con	ductivity*		2.7E-08	cm/sec		
Flow pump I	D #	2	22	В	alance ID #	1/6/7	,		Pressure T	ransducer ID	#	70/68	
Thermomete	er ID #	37	77	0	ven ID#	14/15		Board Press	ure Transo	ducer ID#		64	
Syringe ID # 141				I	Pore Pressu	re Transdi	ucer ID #		26/27				
, <u>g</u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												

Client Pr. #

Timely
Engineering
Soil
Tests, llc

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

Tested By

Date

EB 06/18/12

Web: www.test-llc.com

Pr. Name		Williamsburg Works Former MGP Site								S. Type	Mold		
Sample ID					13551/(So	il 1)-2-1				Depth/Elev.	-		
Subsample					5					Add. Info	Curing Age: 28 Days		
				ASTM D	5084; Star	dard Test M	lethod for I	Measureme	nt of Hy	draulic Con	ductivity of Saturated Porous		
					Material	s Using a Fl	exible Wall	Permeame	eter (Met	hod D, Con	stant Rate of Flow)		
Ir	nitial San	nple Dat	a (Befor	e Test)			Test Dat	a	_	Final Data (After Test)			
Height		2.907	in	7.38	m Spee	d		14					
Diameter			in			d Number		16		Average Hei	ght of Sample 2.905 in 7.38 cm		
Area			in ²			Number		10		Average Dia	meter of Sample 3.010 in 7.65 cm		
Volume		340.33	cm ³	0.0120 f	t ³ Flow	Pump Number		2A]	Area	7.12 in ² 45.91 cm ²		
Mass		667.00	g	1.47 l	b Flow	Pump Rate		1.40E-05	cm ³ /sec	Volume	338.74 cm ³ 0.0120 ft ³ Dry Density 100.3 pcf		
Specific Gra	vity	2.700	(Assume	d)	B - V	alue		0.95		Mass	674.70 g 1.49 lb Vol. of Voids 137.10 cm ³		
Dry Density		99.8	pcf		Cell F	Pressure		100.0	psi		Vol. of Solids 201.65 cm ³		
						Pressure		90.0	psi		Void Ratio 0.68		
	Mois	ture Con	tent	7	Conf	ning (Effective) Pressure	10.0	psi		Moisture Content Saturation 95.0 %		
Mass of wet	sample &	tare	667.00	g	Max	Head		90.04	cm		sample & tare 772.90 g		
Mass of dry	•	tare	544.20	g	Min H			89.33	cm		sample & tare 642.70 g		
Mass of tare)		0.00	g		Maximum Gradient		12.20		Mass of tare	3		
% Moisture			22.6		Minin	Minimum Gradient 12.11		% Moisture	23.9				
	FUNCTI	ON	Δt	READING	Head	Gradient	Temp.		1	(cm/sec)	Note: Deaired Water Used for Permeability Test.		
DATE	HOUR	MIN	(sec)	(psi)	(cm)		T _x (°C)	@ T _x	R _T	@ 20 °C	DESCRIPTION		
06/18/12	7	30	-	1.28	90.04	12.20	25.0	-	-	-	NA uscs		
06/18/12	7	40	600	1.27	89.33	12.11	25.0	2.51E-08	0.889	2.23E-08	(ASTM D2487;2488)		
06/18/12	7	50	600	1.27	89.33	12.11	25.0	2.52E-08	0.889	2.24E-08	NA NA		
06/18/12	8	0	600	1.28	90.04	12.20	25.0	2.51E-08	0.889	2.23E-08	* REMARKS		
06/18/12	8	10	600	1.28	90.04	12.20	25.0	2.50E-08	0.889	2.22E-08	*		
06/18/12	8	20	600	1.27	89.33	12.11	25.0	2.51E-08	0.889	2.23E-08	*		
06/18/12	8	30	600	1.28	90.04	12.20	25.0	2.51E-08	0.889	2.23E-08] *		
				_	Repo	rted Average F	Hydraulic Con	ductivity*		2.2E-08	cm/sec		
Flow pump I	D #	2	44	Į l	Balance ID #	e ID # 1/6/7 Differential Pressure Tr			Pressure T	ransducer ID	# 262		
Thermomete	er ID #	3	77	(Oven ID#	D# 14/15 Board Pressure Transc			ure Trans	ducer ID#	216		
Syringe ID #	ŧ	2	45]				Pore Pressu	ire Transd	ucer ID #	28		

TIMELY ENGINEERING Phone: 770-938-8233

1874 Forge Street Tucker, GA 30084

Tested By

ЕВ

		Soil	Fax: 770-923	-8973	MISHO BIS	Date	05/28/12
L		TESTS, LLC	Web: www.te	est-llc.com	South Service	Checked By	18
Client Pr. #		-			Lab. PR. #	1210-01-1	•
		Williamsburg Works Form	ner MGP Site		S. Type	Mold	
		13551/(Soil 1)-2	2-1		Depth/Elev.	-	
Subsample		1			Add. Info	Curing Age: 7 Da	ıys
TESTS, LLC Web: www.test-llc.com Checked By Checked							
			METHOD	В	1		
	SAMPLE DA	TA		WATER CONTE	- ENT DETERMIN	ATION	
Initial Height						_	
				•	mple and Tare,		
-	ameter Ratio			~			
				Moisture, %		23.2	
	anlo a	<u> </u>		Note 1: Water con	stant was abtained	l ofter cheer from partial a	omplo
				Note 1. Water con	iterit was obtained	ranter snear nom pantars	атріе.
		<u> </u>					
Strain rate, 9	% / min	0.86					
			TEST	DATA			
	Load Cell ID	# 11			Digital C	aliper ID # 16	
	•	Device ID # 10			Readout D	evice ID # 10	
	Balance ID #	1/7				Oven ID # 12/13/14	
Maximum Lo	oad at Failure,	lbf		3109]		•
Specimen C	ross-sectional	Area, in ²		7.07	Fa	ilure Code 3	
Compressive	e Strength at F	ailure, psi		440]		
Conversion I	Factor for Hei	ght to Diameter Ratio	ſ	1.00			
Reported C	ompressive S	Strength at Failure, psi		440		Failure Sket	ch
Note 2: * - A c	conversion facto			nd add. correction p	per ASTM C42)		
	_	DESCF	RIPTION				
						ilura Turas	l
					l a		Shear
		USCS (ASTM	D2487: D24	88)			
		REM	ARKS				

TIMELY Engineering Soil Tests. Llc

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By

RI 06/04/12

Date

L	TESTS, LLC	Web: www.test-llc.com	Checked By	18
Client Pr. #	-	Lab. PR.	# 1210-01-1	
Pr. Name	Williamsburg Works Form	er MGP Site S. Typ	e Mold	
Sample ID	13551/(Soil 1)-2	-1 Depth/Ele	·	
Subsample	2	Add. Inf	Curing Age: 14 Day	/S

Sample ID	1:	3551/(Soil 1)-2-1	Depth/Elev.	-		
Subsample		2	Add. Info	Curing Age: 14 Days		
	ASTM D 1633: Standa	rd Test Methods for Con	pressive Strength	of Molded So	oil-Cement Cylinders	
				İ	•	
		METHOD	В			
	OAMBI E BATA		WATER CONTE	NT DETERM	IINIA TIONI	
Initial Haigh		5 922				
-				•		
			•	ipic and rais		
-					 1	
•			Note 1: Water con	tent was obtaii	ned after shear from partial sample.	
	. •	123.7			, ,	
Dry Density	, pcf	100.4				
		0.050				
Strain rate,	% / min	0.86				
		TES	Γ DATA			
	-			Readou		
	Balance ID #	1//			Oven ID # 12/13/14	
Maximum I	oad at Failure Ihf		3803			
Maximum L	odd at i allaro, ibi		3000		Failure Code 3	
Specimen (Cross-sectional Area, in ²		7.06			
Compressiv	e Strength at Failure, psi		538			
Conversion	Factor for Height to Diamete	r Ratio	1.00			
Reported C	Compressive Strength at Fa	ilure, psi	538		Failure Sketch	
Note 2: * - A	conversion factor based on H/D=	:1.15 (C.F908 as 100% a	nd add. correction p	er ASTM C42)	
		DESCRIPTION				
					Cone and Shear	
	US	SCS (ASTM <u>D2487: D2</u> 4	188) T			
			1			
Add. Info Curing Age: 14 De						
		112111111111111111111111111111111111111				

TIMELY Engineering

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Tested By

RI

		SOIL	Fax: 770-923	3-8973		ASHTO RIE		Date	06/18/12	
L		TESTS, LLC	Web: www.te	est-llc.com				Checked By	18	
Client Pr. #		-	•			Lab. PR. #		1210-01-1		
Pr. Name		Williamsburg Works F	ormer MGP Site			S. Type Mold				
Sample ID		13551/(Soil	1)-2-1			Depth/Elev				
Subsample		3				Add. Info	Cu	ring Age: 28 Da	ays	
	ASTM 1	D 1633: Standard Test M	lethods for Con	npressive St	rength	of Molded So	il-Cement Cy	linders		
Initial Height Initial Diame Height-to-Dia Area, in ² Volume, in ³ Mass of San Wet Density Dry Density, Machine Spo	eter, in ameter Ratio nple, g , pcf pcf eed, in/min	5.902 3.031 1.95 7.22 42.59 1349.6 120.7 98.2 0.050 0.85	0	Mass of W Mass of D Mass of T Moisture,	Vet Sar Ory Sam are, g %	NT DETERM mple and Tare nple and Tare tent was obtain	re, g e, g	1555.10 1303.50 207.10 22.9 r from partial sa	ample.	
			TEST	Γ DATA						
	Load Cell ID a Compression Balance ID #					•	I Caliper ID # t Device ID # Oven ID #	10		
Maximum Lo	oad at Failure,	lbf		4708	3		5 -11 O-1-		1	
Specimen C	ross-sectional	Area, in ²		7.22	2		Failure Code	3		
-	e Strength at F			652					l	
-	-	ght to Diameter Ratio		1.00						
	-	Strength at Failure, psi		652				Failure Sket	ch	
-	-	r based on H/D=1.15 (C.F.		nd add. corn	ection p) Failure Type:			
								Cone and S	Shear	
	•	USCS (AST	M D2487: D24	188)						
				1						

REMARKS

TIMELY Engineering Soil Tests, LLC

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

Tested By Dat

EB/KP

)	
te	05/28/12
od By	12

				TESTS	, LLC	Web: www	w.test-llc.com						Checked By	18
Client Pr. #					-					Lab. PR. # 1210-01-1				
Pr. Name				Williams	burg Works For	mer MGP S	Site			S. Type Mold				
Sample ID					13551/(Soil 1)	-3-1				Depth/Elev.		-		
Subsample					4					Add. Info		Curing Age: 7	Days	
				ASTM D	=				-		ductivity of S	Saturated Porous Flow)		
Ir	nitial Sar	nple Dat	ta (Before	e Test)			Test Dat	a	•			Final Data (After Tes	st)	
Height		2.858	in	7.26	m Speed			13						
Diameter		3.013	in	7.65	m Board N	umber		1		Average Heig	ght of Sample	2.855 in	7.25 cm	
Area		7.13	in ²	46.00	m ² Cell Nun	nber		2		Average Diar	meter of Sample	3.014 in	7.66 cm	
Volume		333.93	cm ³	0.0118 f	Flow Pu	mp Number		1B		Area	7.13 in ²	46.03 cm ²	<u> </u>	
Mass		656.60	g	1.45 II	Flow Pu	mp Rate		2.80E-05	cm ³ /sec	Volume	333.80 cm ³	³ 0.0118 ft ³	Dry Density	100.4 pcf
Specific Gra	avity	2.700	(Assumed	d)	B - Value	е		0.95		Mass	666.30 g	1.47 lb	Vol. of Voids	134.87 cm ³
Dry Density		100.4	pcf		Cell Pres	ssure		100.0	psi				Vol. of Solids	198.93 cm ³
					Back Pre	essure		90.0	psi				Void Ratio	0.68
	Mois	ture Cont	tent	•	Confinin	g (Effective)) Pressure	10.0	psi		Moistur	e Content	Saturation	95.8 %
Mass of wet	sample &	tare	656.60	g	Max Hea	ad		208.91	cm	Mass of wet	sample & tare	774.90 g		
Mass of dry	•	tare		g	Min Hea	Min Head		207.50	cm	-	sample & tare	645.70 g		
Mass of tare	9		0.00	g	Maximur	m Gradient		28.81		Mass of tare		108.60 g		
% Moisture			22.2		Minimum Gradient		28.61		% Moisture		24.1			
TIME	FUNCTI	ON	Δt	READING	Head	Gradient	Temp.	PERME	ABILITY	(cm/sec)	Not	te: Deaired Water Used for F	Permeability Test.	
DATE	HOUR	MIN	(sec)	(psi)	(cm)		T _x (°C)	@ T _x	R_T	@ 20 °C	<u></u>	DESCRIPTION		
05/28/12	9	30	-	2.95	207.50	28.61	25.1	-	-	-	NA	•	ι	ISCS
05/28/12	9	40	600	2.97	208.91	28.81	25.1	2.12E-08	0.887	1.88E-08]		(ASTM	D2487;2488)
05/28/12	9	50	600	2.95	207.50	28.61	25.1	2.12E-08	0.887	1.88E-08				NA
05/28/12	10	0	600	2.96	208.21	28.71	25.1	2.12E-08	0.887	1.88E-08	*	REMAR	RKS	<u>.</u>
05/28/12	10	10	600	2.96	208.21	28.71	25.1	2.12E-08	0.887	1.88E-08	*			
05/28/12	10	20	600	2.95	207.50	28.61	25.1	2.12E-08	0.887	1.88E-08	*			
05/28/12	10	30	600	2.95	207.50	28.61	25.1	2.13E-08	0.887	1.89E-08	*			
					Reported	d Average H	lydraulic Con	ductivity*		1.9E-08	cm/sec	<u> </u>		
Flow pump I	D #	2	22] E	Balance ID #	1/6/7		Differential F	Pressure T	ransducer ID	#	70/68		
Thermomete	er ID #	3.	77		Oven ID #	14/15		Board Press	ure Trans	ducer ID#		64		
Syringe ID #	#	1.	41				-	Pore Pressu	re Transd	ucer ID #		26/27		

Client Pr. #

TIMELY
ENGINEERING
SOIL
TESTS. LLC

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

Tested By
Date

EB 06/18/12

Web: www.test-llc.com

Pr. Name Williamsburg Works Former MGP Site Sample ID 13551/(Soil 1)-3-1 Depth/Elev Subsample Add. Info Curing Age: 28 Days 5 ASTM D 5084: Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter (Method D, Constant Rate of Flow) **Initial Sample Data (Before Test) Test Data** Final Data (After Test) 2.903 Height 7.37 cm Speed 14 Diameter 3.006 7.64 cm **Board Number** 15 Average Height of Sample 2.895 7.35 cm cm² 7.10 45.79 Cell Number 12 Average Diameter of Sample 2.995 7.61 cm Area cm³ cm² Volume 337.61 0.0119 Flow Pump Number 2B 7.05 45.45 Area Flow Pump Rate 1.40E-05 cm³/sec Volume 334.22 cm³ 0.0118 101.2 Mass 663.30 1.46 Dry Density pcf 133.45 Specific Gravity 2.700 (Assumed) B - Value 0.95 Mass 669.50 1.48 Vol. of Voids 100.1 Cell Pressure 100.0 Vol. of Solids 200.77 cm³ Dry Density psi Back Pressure Void Ratio 0.66 90.0 psi **Moisture Content Moisture Content** Saturation Confining (Effective) Pressure 10.0 psi 95.5 Mass of wet sample & tare 663.30 Max Head 131.54 Mass of wet sample & tare 781.40 cm Min Head Mass of dry sample & tare 541.50 128.72 Mass of dry sample & tare 654.10 Mass of tare Maximum Gradient Mass of tare 112.60 0.00 17.89 22.5 % Moisture Minimum Gradient 17.51 % Moisture 23.5 TIME FUNCTION Δt PERMEABILITY (cm/sec) READING Head Gradient Temp. Note: Deaired Water Used for Permeability Test. T_x(°C) @ T. R_{T} @ 20 °C DATE **HOUR** (sec) MIN (psi) (cm) DESCRIPTION NA 06/18/12 7 30 1.84 129.43 17.60 25.0 **USCS** 06/18/12 7 40 600 1.83 128.72 17.51 25.0 1.75E-08 0.889 1.56E-08 (ASTM D2487;2488) 7 50 600 1.84 129.43 17.60 25.0 1.75E-08 0.889 1.56E-08 06/18/12 NA 8 0 600 130.13 17.70 25.0 1.75E-08 0.889 1.55E-08 06/18/12 1.85 REMARKS 06/18/12 8 10 600 1.86 130.83 17.79 25.0 1.74E-08 0.889 1.54E-08 20 600 1.87 131.54 17.89 25.0 1.73E-08 0.889 1.54E-08 06/18/12 1.73E-08 06/18/12 8 30 600 1.86 130.83 17.79 25.0 0.889 1.54E-08 Reported Average Hydraulic Conductivity* 1.5E-08 cm/sec Flow pump ID # 244 Balance ID # 1/6/7 Differential Pressure Transducer ID # 263 Thermometer ID # 377 Oven ID# 14/15 Board Pressure Transducer ID # 216 Syringe ID # 246 Pore Pressure Transducer ID # 28

TIMELY Engineering

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By Date

EΒ 05/28/12

L	TESTS, LLC	Web: www.test-llc.com		Checked By	18
Client Pr. #	-		Lab. PR. #	1210-01-1	
Pr. Name	Williamsburg Works Forr	ner MGP Site S. Type		Mold	
Sample ID	13551/(Soil 1)-	-1 Depth/Elev.		-	
Subsample	1	Add. Info		Curing Age: 7 Days	
	ASTM D 1633: Standard Test Met	hods for Compressive Stre	ength of Molded Soil	l-Cement Cylinders	

Sample ID	13551/(Soil 1)	Depth/Elev.	-				
Subsample	1			Add. Info Curing Age: 7 Days			
	ASTM D 1633: Standard Test Me	thods for Con	pressive Strength	of Molded Soil-Ce	ement Cylinders		
		METHOD	В				
		WETHOD	В				
	SAMPLE DATA		WATER CONTE	NT DETERMINA	TION		
Initial Heigh	t, in 5.810		Mass of Wet Sar		1663.40		
Initial Diame			Mass of Dry Sam	nple and Tare, g	1413.70		
-	ameter Ratio 1.93		Mass of Tare, g		333.40		
Area, in ²	7.10	_	Moisture, %		23.1		
Volume, in ³	41.23	4					
Mass of Sar		_	Note 1: Water cont	tent was obtained a	fter shear from partial sample.		
Wet Density Dry Density,	•						
Machine Sp		1					
Strain rate,							
		IES	T DATA				
	Load Cell ID # 11	7		Digital Cal	iper ID # 16		
	Compression Device ID # 10			Readout Dev			
	Balance ID # 1/7			0	ven ID # 12/13/14		
				I			
Maximum Lo	oad at Failure, lbf		4055	F-9.	on Cada Ca		
Specimen C	cross-sectional Area, in ²		Failure Code 3				
Compressive	e Strength at Failure, psi		571				
Conversion	Factor for Height to Diameter Ratio		1.00				
Reported C	compressive Strength at Failure, psi		571		Failure Sketch		
Note 2: * - A	conversion factor based on H/D=1.15 (C.F9	908 as 100% a	nd add. correction p	per ASTM C42)			
	DESC	RIPTION					
				Failu	ire Type:		
	LI202 (ACT)	1 D0 407 D0	100)		Cone and Shear		
	USCS (ASTM	1 02487: 024	188) I				
			I				
	REM	MARKS					

TIMELY Engineering Soil

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By Date

RI 06/04/12

Tests, llc

Web: www.test-llc.com

L	TESTS, LLC	Web: www.te	est-llc.com		Checked By
Client Pr. #		-		Lab. PR. #	1210-01-1
Pr. Name	Williamsburg Wo	rks Former MGP Site		S. Type	Mold
Sample ID	13551/			Depth/Elev.	-
Subsample		2		Add. Info	Curing Age: 14 Days
	ASTM D 1633: Standard To	est Methods for Com	pressive Strength	of Molded Soil-C	ement Cylinders
				1	
		METHOD	В		
	0.4451 5 5.474		WATER CONTE	DETERMINA	- 10.1
Initial Heigh	SAMPLE DATA	878			
Initial Diam	•				
			•	inpio una raio, g	
Area, in ²			-		
Volume, in ³			Wiolotaro, 70		20.0
Mass of Sa			Note 1: Water con	ntent was obtained a	ofter shear from partial sample
Wet Density			TVOID 1. VVOID CON	nom was obtamos c	attor oriour from partial cample.
Dry Density					
	•				
Strain rate,					
			DATA		
		Lab. PR. # 1210-01-1 Williamsburg Works Former MGP Site 13551/(Soil 1)-3-1 2			
	Load Cell ID #	11		Digital Ca	liper ID # 16
	Compression Device ID #	10		•	·
	Balance ID #	1/7		C	Oven ID # 12/13/14
				_	
Maximum L	oad at Failure, lbf		4711		
Snaciman (Pross-sectional Area in ²		7.00	Failu	ure Code 3
•				1	
-		io		1	
	· ·	i			Failure Sketch
-	•	<u>-</u>	nd add. correction i	ner ASTM C42)	
71			ra ada. oorrootiorr	50, 7,67m 6 12)	
				1	
				Faile	Ire Type:
				l' and	
	USCS	(ASTM D2487: D24	.88)		
		`			
		<u> </u>	ı		
		REMARKS			

TIMELY Engineering SoilTests, Llc

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By

RI

06/18/12

Date	l
Checked By	I

		Tests, llc	Web: www.teet lle eem	AASH10 FIE	Charled Du	18		
Cliant Dr. #	T	1 ES15, LLC	Web: www.test-llc.com	Lab DD #	Checked By	10		
Client Pr. # Pr. Name		- Williamsburg Works For	mor MCD Sito	Lab. PR. # S. Type	1210-01-1 Mold			
Sample ID		13551/(Soil 1)		Depth/Elev.	- IVIOIG			
Subsample		3	0 1	Add. Info	Curing Age: 28 Da	avs		
	L			_		a, e		
	ASTM 1	D 1633: Standard Test Me	thods for Compressive Strength	h of Molded Soil-	Cement Cylinders			
			METHOD B	7				
			WETHOD B	_				
	SAMPLE DA	ТΔ	WATER CONTI	ENT DETERMIN	ΙΔΤΙΩΝ			
Initial Heigh		5.915	_	ample and Tare,				
Initial Diame		3.007		mple and Tare,				
	iameter Ratio	1.97	Mass of Tare, g					
Area, in ²		7.10	Moisture, %		23.0			
Volume, in ³		42.01	1					
Mass of Sar	mple, g	1362.30	Note 1: Water co	ntent was obtained	d after shear from partial s	ample.		
Wet Density	, pcf	123.5						
Dry Density		100.4						
Machine Sp		0.050						
Strain rate,	% / min	0.85						
			TEST DATA					
			7			Ī		
	Load Cell ID	-	4		caliper ID # 16			
	Compression Balance ID #		-	Readout L	Device ID # 10			
	balance ID #	1/7	_		Oven ID # 12/13/14			
Maximum L	oad at Failure,	lbf	6163	1				
			- 40	Fa	ilure Code 3			
	Pross-sectional		7.10	4				
•	e Strength at F	•	868	4				
		ght to Diameter Ratio	1.00	_				
Reported C	Compressive S	Strength at Failure, psi	868	J	Failure Sket	ch		
Note 2: * - A	conversion facto	· · · · · · · · · · · · · · · · · · ·	908 as 100% and add. correction	per ASTM C42)				
		DESC	RIPTION					
				Fa	ilure Type:	•		
					Cone and S	Shear		
		USCS (ASTM	1 D2487: D2488)					
ı		REN	MARKS					
ı								
1								

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

AN

Tested By

Date

05/29/12

Checked By

	TESTS, LLC	Web: www.test-llc.com
Client Pr. #	-	
r. Name	Williamsburg Works Forn	ner MGP Site
Sample ID	13552/(Soil 2)-	1-1
Subsample	4	

 Lab. PR. #
 1210-01-1

 S. Type
 Mold

 Depth/Elev.

 Add. Info
 Curing Age: 7 Days

ASTM D 5084; Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter (Method D, Constant Rate of Flow)

	waterials using a Flexible wall Fernleameter (Method D, Constant Nate of Flow)																
lı lı	nitial Sar	nple Dat	ta (Before	e Test)				Test Data	a	-			F	inal Data (After Test)	
Height		2.821	in	7.17	cm	Speed			13						•		
Diameter		2.997	in	7.61	cm	Board Nu	mber		3		Average Hei	ght of Samp	ole	2.833	in	7.20 cm	
Area		7.05	in ²	45.51	cm ²	Cell Numl	ber		4		Average Diar	meter of Sai	<u>m</u> ple	3.001	in	7.62 cm	
Volume		326.11	cm ³	0.0115	ft ³	Flow Pum	np Number		2A		Area	7.07	in ²	45.63	cm ²		
Mass		642.50	g	1.42	lb	Flow Pum	np Rate		2.80E-05	cm ³ /sec	Volume	328.37	cm ³	0.0116	ft ³	Dry Density	99.5 pcf
Specific Gra	vity	2.700	(Assumed	d)		B - Value			0.95		Mass	656.20	g	1.45	lb	Vol. of Voids	134.42 cm ³
Dry Density		100.1	pcf			Cell Press	sure		100.0	psi						Vol. of Solids	193.96 cm ³
						Back Pres	ssure		90.0	psi						Void Ratio	0.69
	Mois	ture Con	tent	•		Confining	(Effective)	Pressure	10.0	psi		Moi	isture Co	ntent	1	Saturation	98.6 %
Mass of wet	sample &	tare	642.50	g		Max Head	b		24.62	cm	Mass of wet	sample & ta	ire	739.30	g		
Mass of dry	sample &	tare	523.20	g		Min Head			23.92	cm	Mass of dry s	sample & ta	re	606.90	g		
Mass of tare)		0.00	g		Maximum	Gradient		3.42		Mass of tare			83.70	g		
% Moisture			22.8			Minimum	Gradient		3.32		% Moisture			25.3			
TIME	FUNCTI	ON	Δt	READING	ŀ	Head	Gradient	Temp.	PERME	ABILITY	(cm/sec)		Note: D	eaired Water	Used for Pe	ermeability Test.	
DATE	HOUR	MIN	(sec)	(psi)	((cm)		$T_x(^{\circ}C)$	@ T _x	R_T	@ 20 °C			DESCRIPTI	ON		
05/29/12	11	0	-	0.35	2	24.62	3.42	26.0	-	-	-		NA] ,	JSCS
05/29/12	11	10	600	0.34	2	23.92	3.32	26.0	1.82E-07	0.869	1.58E-07	1				(ASTM	D2487;2488)
05/29/12	11	20	600	0.34	2	23.92	3.32	26.0	1.85E-07	0.869	1.61E-07	1					NA
05/29/12	11	30	600	0.35	2	24.62	3.42	26.0	1.82E-07	0.869	1.58E-07	*			REMAR	KS	
05/29/12	11	40	600	0.34	2	23.92	3.32	26.0	1.82E-07	0.869	1.58E-07	*					
05/29/12	11	50	600	0.35	2	24.62	3.42	26.0	1.82E-07	0.869	1.58E-07	*					
05/29/12	12	0	600	0.35	2	24.62	3.42	26.0	1.79E-07	0.869	1.56E-07	*					
			-	-	-	Reported	Average H	ydraulic Con	ductivity*	-	1.6E-07	cm/sec					
Flow pump	D#	2	44		Balance		1/6/7		-	Pressure T	ransducer ID	#		262			
Thermomete		3	77		Oven ID) #	14/15		Board Press	ure Trans	ducer ID#			29			
Syringe ID #	ŧ	2	45						Pore Pressu	re Transd	ucer ID #			26/27			
				1											1		

TIMELY Engineering Soil

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

Tested By Date

Checked By

EΒ 06/19/12 18

Tests LLC

	Tests, llc	Web: www.test-llc.com	
ient Pr. #	-		l
. Name	Williamsburg Works Forn	ner MGP Site	
ample ID	13552/(Soil 2)-	1-1	ם
ubsample	5		

Lab. PR. # 1210-01-1 S. Type Mold Depth/Elev. Add. Info Curing Age: 28 Days

ASTM D 5084; Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter (Method D, Constant Rate of Flow)

Initi	ial San	nple Dat	a (Before	e Test)				Test Data	a				F	inal Data (After Test	t)	
Height	ſ	2.927	in	7.43	cm	Speed			13								
Diameter	Ī	3.019	in	7.67	cm	Board Nu	mber		1		Average Heig	ght of Samp	ole	2.920	in	7.42 cm	
Area	Ī	7.16	in ²	46.18	cm ²	Cell Numl	ber		2		Average Diar	meter of Sai	mple	3.010	in	7.65 cm	
Volume		343.35	cm ³	0.0121	ft ³	Flow Pum	np Number		1B		Area	7.12	in ²	45.91	cm ²		
Mass		660.40	g	1.46	b	Flow Pum	np Rate		2.80E-05	cm ³ /sec	Volume	340.49	cm ³	0.0120	ft ³	Dry Density	98.5 pcf
Specific Gravity	ty	2.700	(Assumed	d)		B - Value			0.95		Mass	672.10	g	1.48	lb	Vol. of Voids	141.34 cm ³
Dry Density	Į	97.7	pcf			Cell Press	sure		100.0	psi						Vol. of Solids	199.16 cm ³
						Back Pres	ssure		90.0	psi						Void Ratio	0.71
	Mois	ture Con	tent			Confining	(Effective)	Pressure	10.0	psi		Moi	isture Co	ntent	•	Saturation	95.1 %
Mass of wet sa	ample &	tare	660.40	g		Max Head	b		65.42	cm	Mass of wet			744.90	g		
Mass of dry sa	ample &	tare	537.40	g		Min Head			64.71	cm	Mass of dry s	sample & ta	re	610.60	g		
Mass of tare			0.00	g		Maximum	Gradient		8.82		Mass of tare			73.20	g		
% Moisture			22.9			Minimum	Gradient		8.73		% Moisture			25.0			
TIME FU	UNCTI	ON	Δt	READING	l I	Head	Gradient	Temp.	PERME	ABILITY	(cm/sec)		Note: D	eaired Water	Used for Pe	ermeability Tes	t.
DATE H	HOUR	MIN	(sec)	(psi)		(cm)		T _x (°C)	@ T _x	R_T	@ 20 °C			DESCRIPTI	ON	_	
06/19/12	6	30	-	0.93	6	65.42	8.82	25.0	-	-	-		NA				USCS
06/19/12	6	40	600	0.92	6	64.71	8.73	25.0	6.95E-08	0.889	6.18E-08					(AST	M D2487;2488)
06/19/12	6	50	600	0.93	6	55.42	8.82	25.0	6.95E-08	0.889	6.18E-08						NA
06/19/12	7	0	600	0.92	6	64.71	8.73	25.0	6.95E-08	0.889	6.18E-08	*			REMARI	KS	
06/19/12	7	10	600	0.92	6	64.71	8.73	25.0	6.99E-08	0.889	6.22E-08	*					
06/19/12	7	20	600	0.93	6	65.42	8.82	25.0	6.95E-08	0.889	6.18E-08	*					
06/19/12	7	30	600	0.93	6	55.42	8.82	25.0	6.92E-08	0.889	6.15E-08	*					
	<u>.</u>		•	•		Reported	Average H	ydraulic Con	ductivity*	•	6.2E-08	cm/sec					•
Flow pump ID #	#	2	22		Balance	e ID #	1/6/7	-	Differential F	Pressure T	ransducer ID	#		70/68			
Thermometer II	ľ	3	77		Oven II	D #	14/15		Board Press	ure Trans	ducer ID#			64			
Syringe ID #	ľ	1	41						Pore Pressu	re Transd	ucer ID #			26/27			
															•		

Timely
Engineering
Soil

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By

RI

Date

05/29/12

	I ESTS, LLC W	eb: <u>www.test-llc.com</u>		Checked By	16	
Client Pr. #	•		Lab. PR. #	1210-01-1		
Pr. Name	Williamsburg Works Former	MGP Site	S. Type	Mold		
Sample ID	13552/(Soil 2)-1-1		Depth/Elev.	-		
Subsample	1		Add. Info	Curing Age: 7 Da	iys	
-			-			

Sample ID	135	52/(Soil 2)-1-1		Depth/Elev.	-
Subsample		1		Add. Info	Curing Age: 7 Days
	ASTM D 1633: Standard	d Test Methods for Con	pressive Strengtl	n of Molded So	il-Cement Cylinders
				7	
		METHOD	В		
	SAMPLE DATA		WATER CONTE	NT DETERM	INATION
Initial Height		5.816	Mass of Wet Sa		
Initial Diame		3.001	Mass of Dry Sa	•	
Height-to-Dia	· · ·	1.94	Mass of Tare, g	•	418.50
Area, in ²	Г	7.07	Moisture, %		24.2
Volume, in ³		41.14			
Mass of Sam	nple, g	1316.10	Note 1: Water con	ntent was obtain	ned after shear from partial sample.
Wet Density,	pcf	121.9			
Dry Density,		98.1			
Machine Spe		0.050			
Strain rate, %	6 / min	0.86			
		TEST	T DATA		
	L	44		D''(1	0-En ID # 40
	Load Cell ID #	11 10			Caliper ID # 16 Device ID # 10
	Compression Device ID # Balance ID #	1/7		Readou	Oven ID # 12/13/14
	Dalance ID #	1//			Over 10 # 12/13/14
Maximum Lo	ad at Failure, lbf		447	7	
Specimen Ci	ross-sectional Area, in ²		7.07]	Failure Code 3
-	e Strength at Failure, psi		63	-	
· ·	Factor for Height to Diameter	Patio	1.00	-	
	ompressive Strength at Fail		63	4	Failure Sketch
-	onversion factor based on H/D=1.			DOT A STM C42)	
Note 2 A C	onversion ractor based on H/D=1	DESCRIPTION	na add. correction	per ASTIVI C42)	
		DESCRIPTION			
					Failure Type:
					Cone and Shear
	USC	CS (ASTM D2487: D24	l88)		
		,			
		REMARKS			
'					

TIMELY Engineering

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By

RI

06/05/12 Date

	TESTS, LLC	Web: www.test-llc.com		Checked By	18
Client Pr. #	1		Lab. PR. #	1210-01-1	
Pr. Name	Williamsburg Works Forn	ner MGP Site	S. Type	Mold	
Sample ID	13552/(Soil 2)-	I-1	Depth/Elev.	-	
Subsample	2		Add. Info	Curing Age: 14 Da	ays
		_	-		

ri. Naille	Williamsburg Works I	Jillei MGF Sile		S. Type	Molu	
Sample ID	13552/(Soil 2	2)-1-1		Depth/Elev.	-	
Subsample	2			Add. Info	Curing Age: 14 Days	
	ASTM D 1633: Standard Test M	athoda fon Con	muggive Stuangth	of Moldod Co	oil Coment Cylinders	
	ASTWID 1033: Standard Test W	ethous for Con	ipressive strength	of Molded Sc	on-Cement Cynnders	
		METHOD	В			
	SAMPLE DATA		WATER CONTE	NT DETERM	JINATION	
Initial Heigh			Mass of Wet Sar			
Initial Diam			Mass of Dry San	•		
	Diameter Ratio 1.94		Mass of Tare, g		261.80	
Area, in ²	7.07		Moisture, %		23.9	
Volume, in		-	Worstare, 70		20.3	
		\dashv	Mata 4: 14/atau aan	((·	
Mass of Sa		' -	Note 1: Water com	terit was obtail	ined after shear from partial sample.	
Wet Density		_				
Dry Density	peed, in/min 0.050	\dashv				
Strain rate,		-				
Strain rate,	78 / 111111					
		TEST	DATA			
	Lead Call ID #	_		Divis	J. Oalia and ID. #	
	Load Cell ID # 11				al Caliper ID # 16	
	Compression Device ID # 10			Readou	ut Device ID # 10	
	Balance ID # 1/7				Oven ID # 12/13/14	
Maximum L	oad at Failure, lbf		1486	-		
					Failure Code 3	
Specimen (Cross-sectional Area, in ²		7.07			
Compressiv	ve Strength at Failure, psi		210			
Conversion	Factor for Height to Diameter Ratio		1.00	ı		
Reported 0	Compressive Strength at Failure, psi		210		Failure Sketch	
Note 2: * - A	conversion factor based on H/D=1.15 (C.F.	.908 as 100% a	nd add. correction p	er ASTM C42	2)	
	DES	CRIPTION				
					Failure Type:	
					Cone and Shear	
	USCS (AST	M D2487: D24	88)			
	`		ĺ			
		<u></u>	L			
	RE	MARKS				

Timely Engineering Soil

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

AR

Tested By

Date

EB 06/19/12

18

Tests, Llc

Web: www.test-llc.com

Checked By

 Client Pr. #
 Lab. PR. #
 1210-01-1

 Pr. Name
 Williamsburg Works Former MGP Site
 S. Type
 Mold

 Sample ID Subsample
 13552/(Soil 2)-1-1
 Depth/Elev.

 Add. Info
 Curing Age: 28 Days

ASTM D 1633: Standard Test Me	thods for Com	pressive Strength	of Molded Soil-Cement Cy	vlinders
	METHOD	В]	
SAMPLE DATA			INT DETERMINATION	
Initial Height, in Initial Diameter, in Height-to-Diameter Ratio Area, in² Volume, in³ Mass of Sample, g Wet Density, pcf Dry Density, pcf Machine Speed, in/min Strain rate, % / min 5.908 3.011 1.96 7.12		Mass of Dry San Mass of Tare, g Moisture, %	mple and Tare, g nple and Tare, g stent was obtained after shea	1673.00 1418.30 336.40 23.5
	TEST	DATA		
Load Cell ID # 11 Compression Device ID # 10 Balance ID # 1/7			Digital Caliper ID # Readout Device ID # Oven ID #	# 10
Maximum Load at Failure, lbf Specimen Cross-sectional Area, in ² Compressive Strength at Failure, psi		2682 7.12 377	Failure Code	3
Conversion Factor for Height to Diameter Ratio Reported Compressive Strength at Failure, psi		1.00 377		Failure Sketch
Note 2: * - A conversion factor based on H/D=1.15 (C.F	908 as 100% an CRIPTION		per ASTM C42)	T und concern
LIOCO (ACTA	4 D0407 D044	20)	Failure Type	: Cone and Shear
USCS (ASTI	Л D2487: D248	50)		
REI	MARKS			

TIMELY Engineering Soil $Tests, \\ \text{Llc}$

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Web: www.test-llc.com

Fax: 770-923-8973

Tested By Date

EB/KI

Checked By

05/29/12 18

Client Pr. #		-								Lab. PR. #				1210-01-1				
Pr. Name				William			mer MGP S	ite			S. Type				Mold			
Sample ID					1355	52/(Soil 2)-	2-1				Depth/Elev.				-			
Subsample						4					Add. Info			Cui	ring Age: 7 D	ays		
				ASTM D						•	draulic Con hod D, Con	-			us			
Ir	nitial San	nple Dat	a (Before	e Test)	IVIA	eriais O	sing a rie	Test Data		itei (iviet	ilou b, con	Stant Nate		inal Data ((After Test)			
Height		2.868	in	7.28	cm	Speed			13									
Diameter		3.001	in	7.62	cm	Board Nu	ımber		4		Average Heig	ght of Sampl	е	2.880	in	7.32 cm		
Area		7.07	in ²	45.63	cm ²	Cell Num	ber		12		Average Diar	meter of San	nple	3.012	in	7.65 cm		
Volume		332.43	cm ³	0.0117	ft ³	Flow Pum	np Number		2B		Area	7.13	in ²	45.97	cm ²			
Mass		647.10	g	1.43	lb	Flow Pum	np Rate		2.80E-05	cm ³ /sec	Volume	336.27	cm ³	0.0119	ft ³	Dry Density	97.7 pc	
Specific Gra	vity	2.700	(Assumed	d)		B - Value			0.95		Mass	663.10	g	1.46	lb	Vol. of Voids	141.19 cn	
Dry Density		98.8	pcf			Cell Pres	sure		100.0	psi						Vol. of Solids	195.09 cn	n ³
						Back Pre			90.0	psi						Void Ratio	0.72	
	Moisture Content					Confining	(Effective)	Pressure	10.0	psi		Moisture Content Saturation					96.6 %)
	of wet sample & tare 647.10 g					Max Head	d		109.03	cm	Mass of wet	•		-	g			
-	s of dry sample & tare 526.10 g				Min Head			108.32	cm	Mass of dry s		е	623.30	g				
Mass of tare)		0.00	g			Gradient		14.90		Mass of tare				g			
% Moisture			23.0		•	Minimum	Gradient		14.81		% Moisture			25.9				
TIME	FUNCTI	ON	Δt	READING	H	Head	Gradient	Temp.	PERME	ABILITY	<u>` </u>		Note: D	eaired Water	r Used for Pe	rmeability Test.		
DATE	HOUR	MIN	(sec)	(psi)		(cm)		T _x (°C)	@ T _x	R_T	@ 20 °C			DESCRIPTI	ION	-		
05/29/12	11	0	-	1.55	1	09.03	14.90	26.0	-	-	-		NA				USCS	
05/29/12	11	10	600	1.54	1	08.32	14.81	26.0	4.10E-08	0.869	3.56E-08					(ASTM	I D2487;2488)	
05/29/12	11	20	600	1.54	1	08.32	14.81	26.0	4.11E-08	0.869	3.58E-08						NA	
05/29/12	11	30	600	1.55	1	09.03	14.90	26.0	4.10E-08	0.869	3.56E-08	*			REMARK	S		
05/29/12	11	40	600	1.54	1	08.32	14.81	26.0	4.10E-08	0.869	3.56E-08	*						
05/29/12	11	50	600	1.55	1	09.03	14.90	26.0	4.10E-08	0.869	3.56E-08	*						
05/29/12	12	0	600	1.55	1	09.03	14.90	26.0	4.09E-08	0.869	3.55E-08	*						
						Reported	Average H	ydraulic Con	ductivity*		3.6E-08	cm/sec						
Flow pump I	D #	24	44		Balance	e ID #	1/6/7		Differential F	ressure T	ransducer ID	#		263				
Thermomete	er ID #	3	77		Oven II) #	14/15		Board Press	ure Transo	ducer ID#			29				
Syringe ID #					Pore Pressure Transducer ID # 26/27													

TIMELY Engineering Soil Tests, llc

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By Date

Checked By

ΕB 06/19/12

18

Web: www.test-llc.com

Client Pr. #					-						Lab. PR. #				1210-01-1			
Pr. Name				William	sburg Works	Former	r MGP S	ite			S. Type				Mold			
Sample ID					13552/(Sc	oil 2)-2-1	1				Depth/Elev.				-			
Subsample					5	i					Add. Info			Cur	ring Age: 28 D	ays		
				ASTM D	5084: Sta	ndard ¹	Test Mo	ethod for N	Measureme	nt of Hv	draulic Con	ductivity o	of Satur	ated Poro	us			
				7.02	-					-	hod D, Con	-						
lı	nitial Sar	nple Dat	a (Befor	e Test)				Test Data	a	-			F	inal Data ((After Test)	,		
Height		2.955	in	7.51	cm Spee	ed			13]								
Diameter		3.009	in	7.64	cm Boai	rd Numb	oer		2		Average Heig	ght of Sample	е	2.950	in	7.49 cm		
Area		7.11	in ²	45.88	cm ² Cell	Number	r		15	1	Average Diar	meter of San	nple	3.002	in	7.63 cm		
Volume		344.34	cm ³	0.0122	ft ³ Flow	Pump N	Number		1A	1	Area	7.08	in ²	45.66	cm ²			
Mass		666.00	g	1.47	lb Flow	Pump F	Rate		2.80E-05	cm³/sec	Volume	342.16	cm ³	0.0121	ft ³	Dry Density	98.3	pcf
Specific Gra	avity	2.700	(Assumed	d)	B - \	/alue			0.95]	Mass	674.60	g	1.49	lb	Vol. of Voids	s 142.56	
Dry Density	,	97.5	pcf		Cell	Pressur	re		100.0	psi						Vol. of Solid	ls 199.60	cm ³
					Back	k Pressu	ure		90.0	psi						Void Ratio	0.71	
	Mois	ture Cont	tent	•	Conf	fining (E	ffective)	Pressure	10.0	psi		Mois	sture Co	ntent	-	Saturation	95.2	%
Mass of we	t sample &	tare	666.00	g	Max	Head			176.55	cm	Mass of wet	sample & tar	e	750.60	g			
Mass of dry	sample &	tare	538.20	g	Min	Head			175.85	cm	Mass of dry s	sample & tar	е	615.10	g			
Mass of tare	е		0.00	g	Max	imum Gr	radient		23.56		Mass of tare			76.90	g			
% Moisture			23.7		Mini	mum Gr	radient		23.47		% Moisture			25.2				
TIME	FUNCTI	ON	Δt	READING	Head	d Gr	radient	Temp.	PERME	ABILITY	(cm/sec)		Note: D	eaired Wate	r Used for Pe	rmeability Te	st.	
DATE	HOUR	MIN	(sec)	(psi)	(cm)			T _x (°C)	@ T _x	R _T	@ 20 °C			DESCRIPT	ION	_		
06/19/12	6	30	-	2.51	176.5	5 2	23.56	25.0	-	-	-		NA				USCS	
06/19/12	6	40	600	2.50	175.8	5 2	23.47	25.0	2.61E-08	0.889	2.32E-08					(AS	TM D2487;2488	3)
06/19/12	6	50	600	2.50	175.8	5 2	23.47	25.0	2.61E-08	0.889	2.32E-08						NA	
06/19/12	7	0	600	2.51	176.5	5 2	23.56	25.0	2.61E-08	0.889	2.32E-08	*			REMARK	.S		
06/19/12	7	10	600	2.50	175.8	5 2	23.47	25.0	2.61E-08	0.889	2.32E-08	*						
06/19/12	7	20	600	2.51	176.5	5 2	23.56	25.0	2.61E-08	0.889	2.32E-08	*						
06/19/12	7	30	600	2.51	176.5	5 2	23.56	25.0	2.60E-08	0.889	2.31E-08	*						
	ı	-		•	Rep	orted <u>Av</u>	/erage H	ydraulic Con	ductivity*		2.3E-08	cm/sec			_			
Flow pump	ID#	2	22		Balance ID #	#	1/6/7		Differential F	Pressure T	ransducer ID	#		24/25				
Thermomet	er ID #	3	77		Oven ID#		14/15		Board Press	ure Trans	ducer ID#			64				
Syringe ID	#	14	40						Pore Pressu	ire Transd	ucer ID #			26/27				

TIMELY ENGINEERING Phone: 770-938-8233

1874 Forge Street Tucker, GA 30084

Tested By

RI

	X	Soil	Fax: 770-923	-8973	AASHTO ELE	Date	05/29/12
L		TESTS, LLC	Web: www.te	est-llc.com	333	Checked By	18
Client Pr. #		-			Lab. PR. #	1210-01-1	
Pr. Name		Williamsburg Works Forn	ner MGP Site		S. Type	Mold	
Sample ID		13552/(Soil 2)-	2-1		Depth/Elev.	-	
Subsample		11			Add. Info	Curing Age: 7 Da	ays
	ASTM 1	D 1633: Standard Test Met	hods for Com	pressive Strengt	h of Molded Soil-Ce	ment Cylinders	
			METHOD	D	٦		
			METHOD	В			
	SAMPLE DA	TA		WATER CONT	ENT DETERMINAT	ΓΙΟΝ	
Initial Heigh	t, in	5.817		Mass of Wet Sa	ample and Tare, g	1645.70	
Initial Diame		3.004		•	mple and Tare, g	1390.80	
	ameter Ratio	1.94		Mass of Tare, g)	331.60	1
Area, in ²		7.09		Moisture, %		24.1	
Volume, in ³		41.23					
Mass of Sar		1315.40		Note 1: Water co	ntent was obtained a	fter shear from partial s	ample.
Wet Density	•	121.5	-				
Dry Density,		97.9					
Machine Sp Strain rate, ^o		0.050 0.86					
Ottain rate,	70 / 111111	0.00	J				
			TEST	DATA			
	Load Cell ID	# 11	1		Digital Cali	per ID # 16	
	Compression		1		Readout Dev		
	Balance ID #	1/7			0	ven ID # 12/13/14	j
Maximum L	and at Eailura	lhf		1900	٦		
Maximum Lo	oad at Failure,	IDI		1890	_ Failu	re Code 3	l
Specimen C	ross-sectional	Area, in ²		7.09			
•	e Strength at F	-		267	_		
	•	ght to Diameter Ratio	1	1.00	_		
•	•	Strength at Failure, psi		267		Failure Sket	ch 1
Note 2: * - A d	conversion facto	r based on H/D=1.15 (C.F9		nd add. correction	per ASTM C42)		
		DESCI	RIPTION				
						_	
					Failu	re Type: Cone and S	Shoor
		USCS (ASTM	D2487: D24	88)		Cone and S	near
		W10A) 6000	52701. 024				
			<u></u>	•			
		REM	IARKS				
	1				I		

TIMELY TIMELY ENGINEERING Phone: 770-938-8233

1874 Forge Street Tucker, GA 30084

Tested By

RI

		Soil	Fax: 770-923-	8973		Date	06/05/12
L		TESTS, LLC	Web: www.tes	st-llc.com	South of the	Checked By	18
Client Pr. #		-	1		Lab. PR. #	1210-01-1	
Pr. Name		Williamsburg Works For			S. Type	Mold	
Sample ID		13552/(Soil 2)	-2-1		Depth/Elev.		
Subsample		2			Add. Info	Curing Age: 14 D	ays
	ASTM 1	D 1633: Standard Test Me	thods for Comp	pressive Strength	of Molded Soil	-Cement Cylinders	
			METHOD	В	1		
			METHOD	В]		
	SAMPLE DA	TA		WATER CONTE	NT DETERMI	NATION	
Initial Height	t, in	5.817		Mass of Wet Sa	mple and Tare	, g 1729.30	
Initial Diame		3.005		Mass of Dry Sar	mple and Tare,		
-	ameter Ratio	1.94		Mass of Tare, g		416.20	
Area, in ²		7.09	4	Moisture, %		24.1	
Volume, in ³ Mass of Sar	mala a	41.26	4	Note di Materia	tout was abtains	al after about from mortial a	a mam la
Wet Density		1314.30 121.4	1	Note 1. Water Con	nern was oblaine	ed after shear from partial s	атріе.
Dry Density,	•	97.7	1				
Machine Sp		0.050]				
Strain rate, of	% / min	0.86					
			TEST	DATA			
			7		50.00	0 11 12 11	I
	Load Cell ID : Compression		4		•	Caliper ID # 16 Device ID # 10	
	Balance ID #	1/7	1		Readout	Oven ID # 12/13/14	
	Dalarioo ID II	177	_			12/10/14	l
Maximum Lo	oad at Failure,	lbf	[3292]	_	•
Specimen C	ross-sectional	Area, in ²		7.09	F	ailure Code 3	
Compressive	e Strength at F	ailure, psi	Ī	464	1		j.
Conversion	Factor for Heig	ght to Diameter Ratio	ļ	1.00	1		
Reported C	ompressive S	Strength at Failure, psi	Ī	464	Ī	Failure Sket	ch
Note 2: * - A d	conversion facto	r based on H/D=1.15 (C.F9	908 as 100% an	d add. correction	per ASTM C42)		
		DESC	RIPTION				
					F	ailure Type:	
		LICCO (A CTA	D0407, D04	20)		Cone and S	shear
		USCS (ASTM	D2487: D248	38)			
		REM	MARKS				

Timely Engineering Soil

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

AR

Tested By

Date

Cone and Shear

EB 06/19/12

18

Tests, llc

Web: www.test-llc.com

Checked By

Client Pr. #	-		Lab. PR. #	1210-01-1							
Pr. Name	Williamsburg Works	Former MGP Site	S. Type	Mold							
Sample ID	13552/(Soi	l 2)-2-1	Depth/Elev.	-							
Subsample	3		Add. Info	Curing Age: 28 Days							
	ASTM D 1633: Standard Test		gth of Molded Soil	-Cement Cylinders							
		METHOD B									
	SAMPLE DATA	WATER COM	ITENT DETERMII	NATION							
Initial Heigh	nt, in 5.922	2 Mass of Wet	Sample and Tare	, g 1600.30							
Initial Diam	·		Mass of Dry Sample and Tare, g 1340.90								
	iameter Ratio 1.97	Mass of Tare	, g	259.90							
Area, in ²	7.13	Moisture, %		24.0							
Volume, in ³											
Mass of Sa			Note 1: Water content was obtained after shear from partial sample.								
Wet Density											
Dry Density											
	peed, in/min 0.050										
Strain rate,	% / min 0.84										
		TEST DATA									
	Load Cell ID # 11			Caliper ID # 16							
	Compression Device ID # 10		Readout Device ID # 10								
	Balance ID # 1/7			Oven ID # 12/13/14							
Maximum L	oad at Failure, lbf	4335	\neg								
Specimen (Cross-sectional Area, in ²	7.13	F	ailure Code 3							
· ·	ve Strength at Failure, psi	608									
•	Factor for Height to Diameter Ratio	1.00									
	Compressive Strength at Failure, ps			Failure Sketch							
-	•										
Note 2: * - A	conversion factor based on H/D=1.15 (C.F		on per ASTM C42)								
	DE	SCRIPTION									
			lF:	ailure Type:							

USCS (ASTM D2487: D2488)

REMARKS

Client Pr. #

Pr. Name

Sample ID

Subsample

TIMELY Engineering Soil

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

Tested By Date

Checked By

EB/KI 05/29/12

18

Tests, Llc

ESTS, LLC	Web: www.test-llc.com						
-							
Williamsburg Works Former MGP Site							
13552/(Soil 2)-3-1							

Lab. PR. # 1210-01-1 S. Type Mold Depth/Elev. Add. Info Curing Age: 7 Days

ASTM D 5084; Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter (Method D, Constant Rate of Flow)

Materials Using a Flexible Wall Fernleameter (Method D, Constant Nate of Flow)																	
Initial Sample Data (Before Test)						Test Data					Final Data (After Test)						
Height		2.900	in	7.37	7.37 cm Speed			13					ī 				
Diameter		3.002	in	7.63	cm	Board Nu	mber		11		Average Hei	ght of Samp	ole	2.908	in	7.39 cm	
Area		7.08	in ²	45.66	cm ²	Cell Num	ber		2		Average Diar	meter of Sai	<u>m</u> ple	3.005	in	7.63 cm	
Volume		336.36	cm ³	0.0119	ft ³	Flow Pum	np Number		2B		Area	7.09	in ²	45.76	cm ²		
Mass		657.20	g	1.45	lb	Flow Pum	np Rate		2.80E-05	cm ³ /sec	Volume	337.97	cm ³	0.0119	ft ³	Dry Density	98.9 pcf
Specific Gra	vity	2.700	(Assumed	d)		B - Value			0.95		Mass	668.90	g	1.47	lb	Vol. of Voids	139.54 cm ³
Dry Density		99.4	pcf			Cell Press	sure		100.0	psi						Vol. of Solid	s 198.43 cm ³
						Back Pres	ssure		90.0	psi		Void Ratio				Void Ratio	0.70
	Mois	ture Con	tent	•		Confining	(Effective)	Pressure	10.0	psi		Moi	isture Co	ntent		Saturation	95.4 %
Mass of wet sample & tare 657.20 g				Max Head			144.20	cm	Mass of wet	sample & ta	ire	767.40	g				
Mass of dry sample & tare 535.60 g				Min Head			143.49	cm	Mass of dry sample & tare 634.30 g				g				
Mass of tare 0.00 g				Maximum Gradient			19.52		Mass of tare			98.70	g				
% Moisture 22.7				Minimum Gradient			19.43	% Moisture				24.9					
TIME	FUNCTI	ON	Δt	READING	i 1	Head	Gradient	Temp.	PERME	ABILITY	(cm/sec)		Note: D	eaired Water	r Used for Pe	ermeability Tes	st.
DATE	HOUR	MIN	(sec)	(psi)		(cm)		$T_x(^{\circ}C)$	@ T _x	R_T	@ 20 °C			DESCRIPTI	ION		
05/29/12	9	30	-	2.05	1	44.20	19.52	26.0	-	-	-	1	NA			1	USCS
05/29/12	9	40	600	2.04	1	43.49	19.43	26.0	3.14E-08	0.869	2.73E-08	1				(AS	ΓM D2487;2488)
05/29/12	9	50	600	2.04	1	43.49	19.43	26.0	3.15E-08	0.869	2.74E-08	1					NA
05/29/12	10	0	600	2.05	1	44.20	19.52	26.0	3.14E-08	0.869	2.73E-08	*	•		REMARK	(S	<u> </u>
05/29/12	10	10	600	2.04	1	43.49	19.43	26.0	3.14E-08	0.869	2.73E-08	*					
05/29/12	10	20	600	2.05	1	44.20	19.52	26.0	3.14E-08	0.869	2.73E-08	*					
05/29/12	10	30	600	2.05	1	44.20	19.52	26.0	3.13E-08	0.869	2.73E-08	*					
			-		•	Reported	Average H	ydraulic Con	ductivity*	-	2.7E-08	cm/sec					
Flow pump	D#	2	44		Balanc	nce ID # 1/6/7 Differential Pressure To											
Thermomete		3	77		Oven II	D #	14/15		Board Press	ure Trans	ducer ID#			216	1		
Syringe ID # 246							Pore Pressu	re Transd	ucer ID #	ID# 28							
	ļ																

TIMELY Engineering Soil Tests, llc

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By

colca by	LD
Date	06/19/12
necked By	le

	Į.			TEST	S, LLC	Web:	www.test-llc.com	<u>n</u>							Checked By	4	8	
Client Pr. #				-	•		Lab. PR. # 1210-01-1											
Pr. Name				William	sburg Works		P Site	S. Type Mold										
Sample ID					13552/(Sc	il 2)-3-1				1	Depth/Elev.							
Subsample					5					Add. Info			Cur	ring Age: 28 D	ays			
				ASTM D	5084; Star	ndard Tes	t Method for	Measureme	ent of Hy	draulic Con	ductivity	of Satu	rated Poro	us				
					Material	s Using a	Flexible Wal	I Permeam	eter (Met	thod D, Constant Rate of Flow)								
Ir	nitial Sar	nple Dat	a (Befor	e Test)			Test Da	ta		Final Data (After Test)								
Height		2.928	in	7.44	cm Spee	ed		14	7									
Diameter		3.013	in	7.65	cm Boar	d Number		3	1	Average Height of Sample 2.920 in 7.42						2 cm		
Area		7.13	in ²	46.00	cm ² Cell I	Number		16	1	Average Diar	verage Diameter of Sample 3.003 in				7.63 cm			
Volume		342.11	cm ³	0.0121	ft ³ Flow	Pump Num	ber	1A]	Area	7.08	in ²	45.69	cm ²				
Mass		662.70	g	1.46	lb Flow	Pump Rate		1.40E-05	cm ³ /sec	Volume	338.91	cm ³	0.0120	ft ³	Dry Density	99.2	pcf	
Specific Gra	avity	2.700 (Assumed)			B - V	alue	0.95	_	Mass	671.10	g	1.48	lb	Vol. of Voids		cm ³		
Dry Density	Dry Density 98.1 pcf			Cell I	Cell Pressure			psi		Vol. of Sol					199.53	cm ³		
Back								90.0	psi		Void R					0.70		
Moisture Content					Conf	Confining (Effective) Pressure			psi		Moisture Content Saturation					95.0	%	
Mass of wet sample & tare 662.70 g			Max	Head		126.61	cm	Mass of wet	· — •									
Mass of dry sample & tare 538.10 g				Head		125.91 17.07	cm	•	s of dry sample & tare 662.30 g									
Mass of tare	Mass of tare 0.00 g			Maximum Gradient			1	Mass of tare										
% Moisture			23.2		Minir	num Gradie	nt	16.98		% Moisture	•		24.6					
TIME	FUNCTI	ION	Δt	READING	Head	Gradie		PERME	ABILITY						rmeability Test.			
DATE	HOUR	MIN	(sec)	(psi)	(cm)		T _x (°C)	@ T _x	R _T	@ 20 °C			DESCRIPT	ION	•			
06/19/12	10	0	-	1.80	126.6	1 17.0	7 25.0	-	-	-		NA			ι	USCS		
06/19/12	10	10	600	1.79	125.9	16.9	8 25.0	1.80E-08	0.889	1.60E-08					(ASTM	D2487;2488)		
06/19/12	10	20	600	1.79	125.9	16.9	8 25.0	1.80E-08	0.889	1.60E-08						NA		
06/19/12	10	30	600	1.80	126.6	17.0	7 25.0	1.80E-08	0.889	1.60E-08	*	REMARKS						
06/19/12	10	40	600	1.79	125.9	16.9	8 25.0	1.80E-08	0.889	1.60E-08	*							
06/19/12	10	50	600	1.80	126.6	1 17.0	7 25.0	1.80E-08	0.889	1.60E-08	*							
06/19/12	11	0	600	1.80	126.6	1 17.0	7 25.0	1.79E-08	0.889	1.60E-08	*							
Reported Average Hydraulic Conductivity*								1.6E-08	cm/sec									
Flow pump I	ID#	2	22		Balance ID #	1/6/	7	Differential I	Pressure T	ure Transducer ID # 24/25								
Thermomete	er ID #	3	77		Oven ID#	14/1	5	Board Press	Board Pressure Transducer ID # 29									
Syringe ID #	#	1	40]		ucer ID #			26/27									

TIMELY ENGINEERING Phone: 770-938-8233

1874 Forge Street Tucker, GA 30084

Tested By

RI

	X	SOIL	Fax: 770-923-8	8973	AASHTO BIS	X	Date	05/29/12
L		TESTS, LLC	Web: www.tes	st-Ilc.com			Checked By	18
Client Pr. #		-			Lab. PF	R. #	1210-01-1	
Pr. Name		Williamsburg Works Forr	mer MGP Site		S. T	уре	Mold	
Sample ID		13552/(Soil 2)-	3-1		Depth/E	lev.	-	
Subsample		1			Add. I	nfo	Curing Age: 7 Da	ays
	ASTM 1	D 1633: Standard Test Met	hods for Comp	oressive St	rength of Molde	ed Soil-Cement	Cylinders	
			METHOD	В				
			METHOD	В				
	SAMPLE DA		_		ONTENT DETI			_
Initial Heigh		5.841			Vet Sample and	-	1581.90	
Initial Diame		3.003			ry Sample and	Tare, g	1327.60	
-	iameter Ratio	1.95		Mass of Ta	-		261.30	
Area, in ²		7.08	<u> </u>	Moisture, ⁽	%		23.8	
Volume, in ³		41.37	₫ .					
Mass of Sai		1322.20	· /	Note 1: Wa	iter content was o	obtained after she	ear from partial s	ample.
Wet Density	•	121.8 98.3	4					
Dry Density Machine Sp		0.050	1					
Strain rate,		0.86	†					
,			1					
			TEST	DATA				
	Load Cell ID	# 11	1		Di	igital Caliper ID) # 16	
	Compression	Device ID # 10			Rea	dout Device ID	10	
	Balance ID #	1/7]			Oven ID) # 12/13/14	
Maximum I	oad at Failure,	lhf	Г	3720	<u> </u>			
			_	3720	'	Failure Co	de 3	
-	Cross-sectional			7.08				
•	e Strength at F		<u> </u>	525				
		ght to Diameter Ratio		1.00				
-	-	Strength at Failure, psi		525			Failure Sket	ch
Note 2: * - A	conversion facto	r based on H/D=1.15 (C.F9		d add. corre	ection per ASTM	C42)		
		DESCI	RIPTION					
						Failure Typ		.
		LICCC (ACTM	D0407, D040	20)			Cone and S	shear
		USCS (ASTM	D2407: D248	00)				
		REM	IARKS					

TIMELY Engineering

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By Date

RI 06/05/12

Weh: www.test-llc.com

10

	1 ES15, LLC	web. www.test-lic.com		Спескеа Ву	10
Client Pr. #	-		Lab. PR. #	1210-01-1	
Pr. Name	Williamsburg Works Forn	ner MGP Site	S. Type	Mold	
Sample ID	13552/(Soil 2)-	3-1	Depth/Elev.	ı	
Subsample	2		Add. Info	Curing Age: 14 Days	
	ACTION D 1/22 Ct 1 1/D 4 M 4				

ri. Naille	Williamsburg Works For	HEI WIGE SILE		S. Type	Molu
Sample ID	13552/(Soil 2)-	3-1		Depth/Elev.	-
Subsample	2			Add. Info	Curing Age: 14 Days
	ASTM D 1633: Standard Test Met	hada fan Camp	noggiva Ctuanath	of Moldod Co	il Coment Culindons
	ASTWI D 1055: Standard Test Met	nous for Comp	ressive strength	of Molded So	m-cement Cylinders
		METHOD	В		
	SAMPLE DATA	v	VATER CONTE	NT DETERM	IINATION
Initial Heigh		=	lass of Wet Sar		
Initial Diam			lass of Dry Sam	•	
	Diameter Ratio 1.93		lass of Tare, g		261.70
Area, in ²	7.09		loisture, %		24.1
Volume, in		- ''	ioistare, 70		27.1
		٠,	l-(- d: 14/-(-::::		
Mass of Sa		^\	iote 1: vvater cont	ent was obtain	ned after shear from partial sample.
Wet Density	· · ·	4			
Dry Density	y, pcf 98.0 beed, in/min 0.050	1			
Strain rate,		1			
Strain rate,	78 / 111111	<u> </u>			
		TEST D	DATA		
	Local Call ID #	1		Di mita	I Calinar ID #
	Load Cell ID # 11	4			I Caliper ID # 16
	Compression Device ID # 10	-		Readou	t Device ID # 10
	Balance ID # 1/7	J			Oven ID # 12/13/14
Maximum L	oad at Failure, lbf	Г	4815		
	_				Failure Code 3
-	Cross-sectional Area, in ²	<u> </u>	7.09		
-	ve Strength at Failure, psi	_	679		
	Factor for Height to Diameter Ratio		1.00		
-	Compressive Strength at Failure, psi		679		Failure Sketch
Note 2: * - A	conversion factor based on H/D=1.15 (C.F9		add. correction p	er ASTM C42,) /
	DESCI	RIPTION			
					Failure Type:
					Cone and Shear
	USCS (ASTM	D2487: D2488	8)		
	REM	1ARKS			

TIMELY ENGINEERING SOIL TESTS, LLC

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

ALERTO FILE

Tested By

EB 06/19/12

Web: www.test-llc.com

Date 06/19/12
Checked By

Client Pr. #		-		Lab. PR. #	1210-01-1
Pr. Name	Williamsburg V	Vorks Former MGP	Site	S. Type	Mold
Sample ID	1355	52/(Soil 2)-3-1		Depth/Elev.	-
Subsample		3		Add. Info	Curing Age: 28 Days
	ASTM D 1633: Standard	Test Methods for METH		h of Molded Soil-Ce	ment Cylinders
Initial Heigh Initial Diame Height-to-Di Area, in ² Volume, in ³ Mass of Sar Wet Density Dry Density, Machine Sp	eter, in iameter Ratio mple, g /, pcf , pcf	5.889 3.014 1.95 7.13 42.02 1335.00 121.0 97.6 0.050	WATER CONTE Mass of Wet Sa Mass of Dry Sa Mass of Tare, g Moisture, %		1751.10 1493.00 416.20 24.0 fter shear from partial sample.
Strain rate,	% / min	0.85			
		٦	TEST DATA		
	Load Cell ID # Compression Device ID # Balance ID #	11 10 1/7		Digital Cal Readout Dev O	•
	oad at Failure, lbf Cross-sectional Area, in ²		5638 7.13	Failu	ire Code 3

Compressive Strength at Failure, psi
Conversion Factor for Height to Diameter Ratio

Reported Compressive Strength at Failure, psi

7.13 790 1.00 **790**

Failure Sketch

Note 2: * - A conversion factor based on H/D=1.15 (C.F.-.908 as 100% and add. correction per ASTM C42)

DESCRIPTION

Failure Type:

Cone and Shear

REMARKS

Client Pr. # Pr. Name

Sample ID

Subsample

TIMELY
ENGINEERING
SOIL
TESTS, LLC

Williamsburg Works Former MGP Site

13553/(Soil 3)-1-1

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

Tested By

Curing Age: 7 Days

EB 05/30/12

Fax: 770-923-8973			Date	05/30/12
Web: www.test-llc.com			Checked By	18
	Lab. PR. #	1210-01-1		
mer MGP Site	S. Type	Mold		
-1-1	Depth/Elev.	-	_	_

ASTM D 5084; Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous

Materials Using a Flexible Wall Permeameter (Method D. Constant Rate of Flow)

Add. Info

	Materials Using a Flexible Wall Permeameter					eter (Met	Method D, Constant Rate of Flow)									
Init	tial San	nple Dat	a (Before	e Test)			Test Data	a				F	inal Data (A	After Test)	
Height		2.958	in	7.51 c	m Speed			13								
Diameter		2.976	in	7.56 c	m Board Nu	ımber		3		Average Hei	ght of Samp	ole	2.959	in	7.52 cm	
Area		6.96	in ²	44.88 C	m ² Cell Num	ber		12]	Average Diar	meter of Sai	mple	2.977	in	7.56 cm	
Volume		337.17	cm ³	0.0119 ft	Flow Pur	np Number		1A		Area	6.96	in ²	44.91	cm ²		
Mass		653.70	g	1.44 lk	Flow Pur	np Rate		2.80E-05	cm ³ /sec	Volume	337.52	cm ³	0.0119	ft ³	Dry Density	96.6 pcf
Specific Gravi	ity	2.700	(Assumed	d)	B - Value	:		0.95		Mass	667.20	g	1.47	lb	Vol. of Voids	144.03 cm ³
Dry Density		96.5	pcf		Cell Pres	sure		100.0	psi		-		-		Vol. of Solids	193.48 cm ³
					Back Pre	ssure		90.0	psi						Void Ratio	0.74
	Mois	ture Cont	tent	_	Confining	g (Effective)	Pressure	10.0	psi		Moi	isture Co	ntent		Saturation	100.5 %
Mass of wet s	sample &	tare	653.70	g	Max Hea	d		80.89	cm	Mass of wet	sample & ta	ire	769.10	g		
Mass of dry sa	ample &	tare	521.70	g	Min Head	t		80.19	cm	Mass of dry s	sample & ta	re	624.50	g		
Mass of tare			0.00	g	Maximun	n Gradient		10.76		Mass of tare			102.80	g		
% Moisture			25.3		Minimum	Gradient		10.67		% Moisture			27.7			
TIME F	FUNCTI	ON	Δt	READING	Head	Gradient	Temp.	PERME	ABILITY	(cm/sec)		Note: D	eaired Water	Used for Pe	ermeability Test	
DATE I	HOUR	MIN	(sec)	(psi)	(cm)		T _x (°C)	@ T _x	R_T	@ 20 °C			DESCRIPTION	ON	<u></u>	
05/30/12	9	0	-	1.15	80.89	10.76	26.0	-	-	-		NA				USCS
05/30/12	9	10	600	1.14	80.19	10.67	26.0	5.82E-08	0.869	5.06E-08					(ASTI	M D2487;2488)
05/30/12	9	20	600	1.14	80.19	10.67	26.0	5.84E-08	0.869	5.08E-08						NA
05/30/12	9	30	600	1.15	80.89	10.76	26.0	5.82E-08	0.869	5.06E-08	*			REMARK	KS	
05/30/12	9	40	600	1.14	80.19	10.67	26.0	5.82E-08	0.869	5.06E-08	*					
05/30/12	9	50	600	1.15	80.89	10.76	26.0	5.82E-08	0.869	5.06E-08	*					
05/30/12	10	0	600	1.15	80.89	10.76	26.0	5.79E-08	0.869	5.04E-08	*					
					Reported	Average H	ydraulic Con	ductivity*		5.1E-08	cm/sec					
Flow pump ID) #	2	22	В	alance ID #	1/6/7		Differential F	Pressure T	ransducer ID	#		24/25			
Thermometer	ID#	3	77	C	ven ID#	14/15		Board Press	ure Trans	ducer ID#			29			
Syringe ID #		14	40					Pore Pressu	ire Transd	ucer ID #			26/27			
	•															

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

Tested By

Date

EB 06/20/12

Tests, Llc 18 Checked By Web: www.test-llc.com Client Pr. # Lab. PR. # 1210-01-1 Williamsburg Works Former MGP Site S. Type Pr. Name Mold Sample ID 13553/(Soil 3)-1-1 Depth/Elev. Subsample 5 Add. Info Curing Age: 28 Days

ASTM D 5084; Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter (Method D, Constant Rate of Flow) Initial Sample Data (Before Test) Test Data Final Data (After Test)

		(=	,	_			_				,		•		
Height	2.875	in	7.30	cm	Speed	14						_			
Diameter	3.013	in	7.65	cm	Board Number	1		Average Hei	ght of Sampl	е	2.870	in	7.29 cm		
Area	7.13	in ²	46.00	cm ²	Cell Number	9		Average Diar	meter of San	nple	3.010	in	7.65 cm		
Volume	335.91	cm ³	0.0119	ft ³	Flow Pump Number	1B		Area	7.12	in ²	45.91	cm ²			_
Mass	644.80	g	1.42	lb	Flow Pump Rate	1.40E-05	cm ³ /sec	Volume	334.66	cm ³	0.0118	ft ³	Dry Density	96.2	pcf
Specific Gravity	2.700	(Assumed	d)	- "	B - Value	0.95		Mass	652.60	g	1.44	lb	Vol. of Voids	143.63	cm ³
Dry Density	95.7	pcf			Cell Pressure	100.0	psi		•			-	Vol. of Solids	191.04	cm ³
		_			Back Pressure	90.0	psi						Void Ratio	0.75	
Mois	ture Con	tent			Confining (Effective) Pressure	10.0	psi		Mois	sture Co	ntent	_	Saturation	95.3	%
Mass of wet sample &	tare	644.80	g		Max Head	61.90	cm	Mass of wet	sample & tar	·e	721.90	g			
Mass of dry sample &	tare	515.40	g		Min Head	61.20	cm	Mass of dry s	sample & tar	е	585.20	g			
Mass of tare		0.00	g		Maximum Gradient	8.49		Mass of tare			69.80	g			
% Moisture		25.1			Minimum Gradient	8.39		% Moisture			26.5				
% Moisture		25.1			Minimum Gradient	8.39		% Moisture			26.5				

TIME	FUNCTI	ON	Δt	READING	Head	Gradient	Temp.	PERME	ABILITY	(cm/sec)	
DATE	HOUR	MIN	(sec)	(psi)	(cm)		T _x (°C)	@ T _x	R _T	@ 20 °C	
06/20/12	6	30	-	0.88	61.90	8.49	25.0	-	-	-	
06/20/12	6	40	600	0.87	61.20	8.39	25.0	3.61E-08	0.889	3.21E-08	
06/20/12	6	50	600	0.88	61.90	8.49	25.0	3.61E-08	0.889	3.21E-08	
06/20/12	7	0	600	0.87	61.20	8.39	25.0	3.61E-08	0.889	3.21E-08	*
06/20/12	7	10	600	0.88	61.90	8.49	25.0	3.61E-08	0.889	3.21E-08	*
06/20/12	7	20	600	0.87	61.20	8.39	25.0	3.61E-08	0.889	3.21E-08	*
06/20/12	7	30	600	0.88	61.90	8.49	25.0	3.61E-08	0.889	3.21E-08	*
								•			T

NA		USCS
		(ASTM D2487;2488)
		NA
	REMARKS	

Note: Deaired Water Used for Permeability Test.

DESCRIPTION

Flow pump ID # 22
Thermometer ID # 377
Syringe ID # 141

Reported Average Hydraulic Conductivity*

Balance ID # 1/6/7 Different

Oven ID # 14/15 Board P

Differential Pressure Transducer ID #
Board Pressure Transducer ID #
Pore Pressure Transducer ID #

3.2E-08 cm/sec

70/68 64 26/27

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

ALEH O FIE

Tested By

RI

Date

05	5/30/12
	10

L		Tests, llc	Web: www.test-llc.com	AASH O FIE	Checked By	18
Client Pr. #		-		Lab. PR. #	1210-01-1	
Pr. Name		Williamsburg Works Forr	ner MGP Site	S. Type	Mold	
Sample ID		13553/(Soil 3)-	1-1	Depth/Elev.	-	
Subsample		1		Add. Info	Curing Age: 7 Da	iys
	ASTM	D 1633: Standard Test Met	hods for Compressive Strengtl METHOD B	n of Molded Soi	l-Cement Cylinders	
	SAMPLE DA	ТΔ	WATER CONTE	NT DETERMI	ΝΔΤΙΩΝ	
Initial Heigh Initial Diam Height-to-D Area, in ² Volume, in ³ Mass of Sa Wet Density Dry Density Machine Sp Strain rate,	et, in eter, in iameter Ratio mple, g /, pcf , pcf peed, in/min	5.799 3.002 1.93 7.08 41.05 1304.10 121.0 96.0 0.050 0.86	Mass of Wet Sa Mass of Dry Sa Mass of Tare, g Moisture, %	ample and Tare	e, g 1507.70	ample.
Januari Tato,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.00	TEST DATA			
			LOIDAIA			
	Load Cell ID Compression Balance ID #	Device ID # 10			Caliper ID # 16 Device ID # 10 Oven ID # 12/13/14	
Maximum L	oad at Failure,	lbf	1369] _		1
Specimen (Cross-sectional	Area, in ²	7.08		Failure Code 3	ı
Compressiv	e Strength at F		193 1.00	<u> </u>		
Reported C	Compressive S	Strength at Failure, psi	193	1	Failure Sket	ch
-	-	r based on H/D=1.15 (C.F9	08 as 100% and add. correction	per ASTM C42)		l
				F	Failure Type:	
					Cone and S	hear
		USCS (ASTM	D2487: D2488)			
		REM	IARKS			

TIMELY Engineering Soil

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Tested By Date

RI 06/06/12

Tests, llc

Fax: 770-923-8973 Web: www.test-llc.com

18 Checked By

	,		,
Client Pr. #	-	Lab. PR. #	1210-01-1
Pr. Name	Williamsburg Works Former MGP Site	S. Type	Mold
Sample ID	13553/(Soil 3)-1-1	Depth/Elev.	-
Subsample	2	Add. Info	Curing Age: 14 Days

Sample ID	1	3553/(Soil 3)-1-1	Depth/Elev.	-	
Subsample		2		Add. Info	Curing Age: 14 Days
	ASTM D 1633: Stand	ard Test Methods for Con	npressive Strength	of Molded Soil-C	ement Cylinders
		METHOD	В		
	SAMPLE DATA		WATER CONTE	NT DETERMINA	ATION
Initial Heigh		5.786	Mass of Wet Sar		
Initial Diame		2.998	Mass of Dry Sam	•	
	iameter Ratio	1.93	Mass of Tare, g	. , ,	206.60
Area, in ²		7.06	Moisture, %		25.7
Volume, in ³		40.84			<u></u>
Mass of Sar		1299.50	Note 1: Water cont	tent was obtained a	after shear from partial sample.
Wet Density	-	121.2			
Dry Density		96.4			
Machine Sp Strain rate,		0.050 0.86			
Strain rate,	/0 / 111111	0.00			
		TES	Γ DATA		
	Load Cell ID #	11		Digital Ca	liper ID # 16
	Compression Device ID #	10		Readout De	
	Balance ID #	1/7			Oven ID # 12/13/14
Maximum L	oad at Failure, lbf		2366		·
Specimen C	Cross-sectional Area, in ²		7.06	Fail	ure Code 3
•	e Strength at Failure, psi		335		
-	Factor for Height to Diamete	er Ratio	1.00		
	Compressive Strength at Fa		335		Failure Sketch
-	conversion factor based on H/D	· ·		l per ASTM C42)	
71010 2. 71	oonvereien ladeel badea en lijb	DESCRIPTION	ma add. com collon p) () () () () () () () () () (
				Fail	ure Type:
					Cone and Shear
	U	SCS (ASTM <u>D2487: D2</u> 4	<u>4</u> 88)	<u> </u>	
		•			
		REMARKS			

TIMELY Engineering SoilTests, llc

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By

ΕB

Web: www.test-llc.com

Date

Checked By

06/20/12 18

Client Pr. #		-		Lab. PR. #	1210-01-1
Pr. Name	Williamsburg	Works Former MGP Site		S. Type	Mold
Sample ID	135	53/(Soil 3)-1-1		Depth/Elev.	<u>-</u>
Subsample 3				Add. Info	Curing Age: 28 Days
	ASTM D 1633: Standard	l Test Methods for Con	pressive Strength	of Molded So	oil-Cement Cylinders
				•	•
		METHOD	В		
	SAMPLE DATA		WATER CONTE	NT DETERM	IINATION
Initial Height	, in	5.889	Mass of Wet Sar	mple and Tai	re, g 1654.90
Initial Diame	· · · · · · · · · · · · · · · · · · ·	3.009	Mass of Dry San	nple and Tar	~
Height-to-Dia	ameter Ratio	1.96	Mass of Tare, g		333.90
Area, in ²		7.11	Moisture, %		25.7
Volume, in ³		41.88			
Mass of San		1321.80	Note 1: Water con	tent was obtaii	ned after shear from partial sample.
Wet Density,		120.2			
Dry Density,	·	95.6			
Machine Spe		0.050			
Strain rate, %	% / min	0.85			
		TES	Γ DATA		
	Load Cell ID #	11		Digita	l Caliper ID # 16
	Compression Device ID #	10			it Device ID # 10
	Balance ID #	1/7			Oven ID # 12/13/14
				Ī	
Maximum Lo	oad at Failure, lbf		3054		Failure Cada
Specimen C	ross-sectional Area, in ²		7.11		Failure Code 3
	e Strength at Failure, psi		429		
-	Factor for Height to Diameter I	Ratio	1.00		
	ompressive Strength at Failu		429		Failure Sketch
Note 2: * - A c	onversion factor based on H/D=1.	15 (C.F908 as 100% a	nd add. correction p	i Der ASTM C42)
		DESCRIPTION	·		
					Failure Type:
					Cone and Shear
	USC	CS (ASTM <u>D2487: D2</u> 4	<u>1</u> 88)		
		REMARKS			

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

Tested By

Date

EB 05/30/12

	TESTS, LLC Web: www.test-ll	c.com	Checked By	18
Client Pr. #	-	Lab. PR. #	1210-01-1	
Pr. Name	Williamsburg Works Former MGP Site	S. Type	Mold	
Sample ID	13553/(Soil 3)-2-1	Depth/Elev.	-	
Subsample	4	Add. Info	Curing Age: 7 Days	

ASTM D 5084; Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter (Method D, Constant Rate of Flow)

Initial Sample Data (Before Test)						Test Data	a		Final Data (After Test)					
Height		2.876	in	7.31 cr	n Speed			13						
Diameter		3.009	in	7.64 cr	n Board Nu	ımber		4		Average Heig	ght of Sample	2.872 ii	n	7.29 cm
Area		7.11	in ²	45.88 cr	m ² Cell Num	ber		2		Average Diar	meter of Sampl	le 3.008 ii	n	7.64 cm
Volume		335.14	cm ³	0.0118 ft ³	Flow Pun	np Number		1B		Area	7.11 in	45.85	cm ²	<u> </u>
Mass		637.70	g	1.41 lb	Flow Pun	np Rate		2.80E-05	cm ³ /sec	Volume	334.45 cr	m ³ 0.0118 f	t ³	Dry Density 94.5 pc
Specific Gra	avity	2.650	(Assumed	<u>d)</u>	B - Value			0.95		Mass	648.00 g	1.43	b	Vol. of Voids 143.33 cm
Dry Density		94.2	pcf		Cell Pres	sure		100.0	psi			<u> </u>		Vol. of Solids 191.12 cm
	•		=		Back Pre	ssure		90.0	psi					Void Ratio 0.75
	Mois	ture Con	tent	_	Confining	(Effective)	Pressure	10.0	psi		Moistu	ure Content		Saturation 98.7 %
Mass of wet	sample &	tare	637.70	g	Max Hea	d		101.29	cm	Mass of wet	sample & tare	788.00	9	
Mass of dry	sample &	tare	506.00	g	Min Head	i		100.59	cm	Mass of dry s	sample & tare	646.60	9	
Mass of tare	9		0.00	g	Maximum	Gradient		13.89		Mass of tare		140.60	9	
% Moisture			26.0		Minimum	Gradient		13.79		% Moisture		27.9		
TIME	FUNCTI	ON	Δt	READING	Head	Gradient	Temp.	PERME	ABILITY	(cm/sec)	N	ote: Deaired Water l	Used for Per	rmeability Test.
DATE	HOUR	MIN	(sec)	(psi)	(cm)		T _x (°C)	@ T _x	R_T	@ 20 °C		DESCRIPTIO	N	
05/30/12	9	0	-	1.44	101.29	13.89	26.0	-	-	-	N.	A		USCS
05/30/12	9	10	600	1.43	100.59	13.79	26.0	4.41E-08	0.869	3.84E-08				(ASTM D2487;2488)
05/30/12	9	20	600	1.43	100.59	13.79	26.0	4.43E-08	0.869	3.85E-08				NA
05/30/12	9	30	600	1.44	101.29	13.89	26.0	4.41E-08	0.869	3.84E-08	*		REMARKS	s
05/30/12	9	40	600	1.44	101.29	13.89	26.0	4.40E-08	0.869	3.82E-08	*			
05/30/12	9	50	600	1.43	100.59	13.79	26.0	4.41E-08	0.869	3.84E-08	*			
05/30/12	10	0	600	1.44	101.29	13.89	26.0	4.41E-08	0.869	3.84E-08	*			
		•	•	•	Reported	Average H	ydraulic Con	ductivity*	•	3.8E-08	cm/sec			
Flow pump I	D#	2	22	В	alance ID #	1/6/7	·-	-	Pressure T	ransducer ID	#	70/68		
Thermomete		3	77	0	ven ID #	14/15		Board Press	ure Transo	ducer ID#		29		
Syringe ID #	#	1-	41					Pore Pressu	re Transd	ucer ID #		26/27		
	!			1										

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

Tested By
Date

EB 06/20/12

	TESTS, LLC Web: www.test-llc.com		Checked By	
Client Pr. #	-	Lab. PR. #	1210-01-1	
Pr. Name	Williamsburg Works Former MGP Site	S. Type	Mold	
Sample ID	13553/(Soil 3)-2-1	Depth/Elev.	-	
Subsample	5	Add. Info	Curing Age: 28 Days	

ASTM D 5084; Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter (Method D, Constant Rate of Flow)

Initial Sample Data (Before Test)						Test Data	a		Final Data (After Test)			st)	
Height		2.725	in	6.92 cr	n Speed			13					
Diameter		3.023	in	7.68 cr	n Board Nu	ımber		3		Average Heig	ght of Sample	2.733 in	6.94 cm
Area		7.18	in ²	46.31 cr	m ² Cell Num	ber		12		Average Diar	meter of Sample	3.010 in	7.65 cm
Volume		320.50	cm ³	0.0113 ft ³	Flow Pun	np Number		1A		Area	7.12 in ²	45.91 cm ²	
Mass		605.60	g	1.34 lb	Flow Pun	np Rate		2.80E-05	cm ³ /sec	Volume	318.69 cm ³	0.0113 ft ³	Dry Density 94.4 pcf
Specific Grav	vity	2.650	(Assumed	d)	B - Value			0.95		Mass	612.10 g	1.35 lb	Vol. of Voids 136.80 cm ³
Dry Density		93.8	pcf		Cell Pres	sure		100.0	psi				Vol. of Solids 181.88 cm ³
	,		-		Back Pre	ssure		90.0	psi				Void Ratio 0.75
	Mois	ture Cont	ent	_	Confining	(Effective)	Pressure	10.0	psi		Moisture	Content	Saturation 95.1 %
Mass of wet	sample &	tare	605.60	g	Max Hea	d		172.33	cm	Mass of wet	sample & tare	690.90 g	
Mass of dry	sample &	tare	481.60	g	Min Head	i		171.63	cm	Mass of dry s	sample & tare	560.90 g	
Mass of tare			0.00	g	Maximum	Gradient		24.83		Mass of tare		79.30 g	
% Moisture			25.7		Minimum	Gradient		24.72		% Moisture		27.0	
TIME	FUNCTI	ON	Δt	READING	Head	Gradient	Temp.	PERME	ABILITY	(cm/sec)	Note	e: Deaired Water Used for	Permeability Test.
DATE	HOUR	MIN	(sec)	(psi)	(cm)		T _x (°C)	@ T _x	R_T	@ 20 °C		DESCRIPTION	
06/20/12	8	30	-	2.45	172.33	24.83	25.0	-	-	-	NA		USCS
06/20/12	8	40	600	2.44	171.63	24.72	25.0	2.46E-08	0.889	2.19E-08			(ASTM D2487;2488)
06/20/12	8	50	600	2.45	172.33	24.83	25.0	2.46E-08	0.889	2.19E-08	1		NA
06/20/12	9	0	600	2.44	171.63	24.72	25.0	2.46E-08	0.889	2.19E-08	*	REMA	RKS
06/20/12	9	10	600	2.45	172.33	24.83	25.0	2.46E-08	0.889	2.19E-08	*		
06/20/12	9	20	600	2.44	171.63	24.72	25.0	2.46E-08	0.889	2.19E-08	*		
06/20/12	9	30	600	2.45	172.33	24.83	25.0	2.46E-08	0.889	2.19E-08	*		
					Reported	Average H	ydraulic Con	ductivity*		2.2E-08	cm/sec		
Flow pump II	D#	2	22	Ва	alance ID #	1/6/7			Pressure T	ransducer ID	#	24/25	
Thermomete		3	77	1	ven ID #	14/15		Board Press	ure Transo	ducer ID#		29	
Syringe ID #	:		40			<u>. </u>		Pore Pressu	re Transdi	ucer ID #		26/27	
, 3				1									

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

Tested By

Date

Checked By

RI

05/30/12

TESTS, LLC

Client Pr. #
Pr. Name
Sample ID

Williamsburg Wo
13553/

 Lab. PR. #
 1210-01-1

 S. Type
 Mold

 Depth/Elev.

 Add_Info
 Curing Age: 7 D

Subsample	1			Add. Info	Curing Age: 7 Days
	ASTM D 1633: Standard Test I	Methods for Cor	npressive Strength	of Molded So	il-Cement Cylinders
		METHOD	В		
Initial Heigh: Initial Diame Height-to-Di Area, in ² Volume, in ³ Mass of Sar Wet Density Dry Density, Machine Sp Strain rate, ⁶	eter, in 3.008 ameter Ratio 1.93 7.11 41.26 mple, g 1297.8 7, pcf 119.8 pcf 94.3 eed, in/min 0.050	3 3 30 3	WATER CONTEL Mass of Wet Sar Mass of Dry Sar Mass of Tare, g Moisture, % Note 1: Water conte	mple and Tar	e, g 1500.30
		TES	T DATA		
	Load Cell ID # 11 Compression Device ID # 10 Balance ID # 1/7				Caliper ID # 16 t Device ID # 10 Oven ID # 12/13/14
Specimen C	cross-sectional Area, in ² e Strength at Failure, psi		7.11 345 1.00	ı	Failure Code 3
	Factor for Height to Diameter Ratio compressive Strength at Failure, ps		345		Failure Sketch
-	conversion factor based on H/D=1.15 (C.F				
					Cone and Shear
		TM D2487: D24	488)		
	r	CANAIVI			

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

AR

Tested By

Date

RI

necked By

06/06/12

	TESTS, LLC Web: www.test-llc.com		Checked By
Client Pr. #	•	Lab. PR. #	1210-01-1
Pr. Name	Williamsburg Works Former MGP Site	S. Type	Mold
Sample ID	13553/(Soil 3)-2-1	Depth/Elev.	-
Subsample	2	Add. Info	Curing Age: 14 Days
		•	

Sample ID	13553/(Soil 3)	Depth/Elev.	<u>-</u>		
Subsample	2			Add. Info	Curing Age: 14 Days
	ASTM D 1633: Standard Test Me	thods for Cor	mpressive Strength	of Molded Soil-C	ement Cylinders
				1	
		METHOD	В		
	SAMPLE DATA		WATER CONTE	NT DETERMINA	TION
Initial Height		7	Mass of Wet Sar		
Initial Diame	*		Mass of Dry San		1231.50
	ameter Ratio 1.94		Mass of Tare, g		204.90
Area, in ²	7.05		Moisture, %		26.4
Volume, in ³	41.04				
Mass of San	nple, g 1301.10		Note 1: Water con	tent was obtained a	after shear from partial sample.
Wet Density,	· · · · · · · · · · · · · · · · · · ·				
Dry Density,					
Machine Spe					
Strain rate, %	% / min 0.86				
		TES	T DATA		
		_			
	Load Cell ID # 11	4		Digital Ca	
	Compression Device ID # 10			Readout De	
	Balance ID # 1/7			C	Oven ID # 12/13/14
Maximum I c	oad at Failure, lbf		3287		
IVIANIIIUIII LC	ad at i alidie, ibi		3201	Failı	ure Code 3
Specimen C	ross-sectional Area, in ²		7.05	. and	
Compressive	e Strength at Failure, psi		466		
Conversion I	Factor for Height to Diameter Ratio		1.00		
Reported Co	ompressive Strength at Failure, psi		466		Failure Sketch
Note 2: * - A c	conversion factor based on H/D=1.15 (C.F9	908 as 100% a	and add. correction p	per ASTM C42)	
	DESC	RIPTION			
				Failu	ure Type:
					Cone and Shear
	USCS (ASTM	1 D2487: D24	488)		
	DEA	44 DI/O			
1	KEN	MARKS			

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

AR

Tested By

Date

Cone and Shear

EB 06/20/12

18

Tests, llc

Web: www.test-llc.com

Checked By

Client Pr. #		-		Lab. PR. # 1210-01-1				
Pr. Name	Williamsburg	Works Former MGP Si	te	S. Type	Mold			
Sample ID	135	53/(Soil 3)-2-1		Depth/Elev.	-			
Subsample		3		Add. Info	Curing Age: 28 Days			
Area, in ² Volume, in ³	eter, in liameter Ratio	5.939 3.017 1.97 7.15 42.46	WATER CONTE Mass of Wet Sa Mass of Dry Sa Mass of Tare, g Moisture, %	ENT DETERMINAT Imple and Tare, g mple and Tare, g	1581.80 1305.80 261.30 26.4			
Mass of Sample, g 1320.80 Wet Density, pcf 118.5 Dry Density, pcf 93.7 Machine Speed, in/min 0.050 Strain rate, % / min 0.84			Note 1: Water content was obtained after shear from partial sample.					
		TES	ST DATA					
	Load Cell ID # Compression Device ID # Balance ID #	11 10 1/7		Digital Cali Readout Dev O				
Maximum L	oad at Failure, lbf		3768	Foilu	re Code 3			
Specimen (Cross-sectional Area, in ²		7.15	Fallu	Te Code 3			
Compressiv	e Strength at Failure, psi		527	1				
•	Factor for Height to Diameter	Ratio	1.00	1				
	Compressive Strength at Fail		527	1	Failure Sketch			
Note 2: * - A	conversion factor based on H/D=1.	15 (C.F908 as 100% DESCRIPTION	and add. correction		re Type:			

USCS (ASTM D2487: D2488)

REMARKS

TIMELY Engineering Soil TESTS, LLC

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Web: www.test-llc.com

Fax: 770-923-8973

Tested By Date

FR

Checked By

,	
	05/30/12
Rv	LR

Client Pr. # Lab. PR. # 1210-01-1 Pr. Name Williamsburg Works Former MGP Site S. Type Mold Sample ID 13553/(Soil 3)-3-1 Depth/Elev Subsample Add. Info Curing Age: 7 Days ASTM D 5084; Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter (Method D, Constant Rate of Flow) **Initial Sample Data (Before Test) Test Data** Final Data (After Test) 2.891 Height 7.34 cm Speed 13 Diameter 3.000 7.62 cm **Board Number** 11 Average Height of Sample 2.888 7.34 cm cm² 7.07 45.60 Cell Number 4 Average Diameter of Sample 2.999 7.62 cm Area cm³ cm² Volume 334.87 0.0118 Flow Pump Number 1B 7.06 45.57 Area Flow Pump Rate 2.80E-05 cm³/sec Volume 334.30 cm³ 0.0118 96.3 Mass 644.60 1.42 Dry Density pcf 139.67 Specific Gravity 2.650 (Assumed) B - Value 0.95 Mass 652.10 1.44 Vol. of Voids 96.0 Cell Pressure 100.0 Vol. of Solids 194.64 cm³ Dry Density psi Back Pressure Void Ratio 0.72 90.0 psi **Moisture Content Moisture Content** Confining (Effective) Pressure 10.0 psi Saturation 97.6 Mass of wet sample & tare 644.60 Max Head 161.08 Mass of wet sample & tare 736.50 cm Min Head Mass of dry sample & tare 515.00 160.38 Mass of dry sample & tare 600.40 Mass of tare Maximum Gradient 21.96 Mass of tare 85.40 0.00 % Moisture 25.2 Minimum Gradient 21.86 % Moisture 26.4 TIME FUNCTION Δt READING Head Gradient Temp. PERMEABILITY (cm/sec) Note: Deaired Water Used for Permeability Test. T_x(°C) @ T. R_{T} @ 20 °C DATE **HOUR** MIN (sec) (psi) (cm) DESCRIPTION NA 05/30/12 10 30 2.29 161.08 21.96 26.0 **USCS** 05/30/12 10 40 600 2.28 160.38 21.86 26.0 2.80E-08 0.869 2.44E-08 (ASTM D2487;2488) 10 50 600 2.28 160.38 21.86 26.0 2.81E-08 0.869 2.44E-08 05/30/12 NA 0 600 2.29 21.96 26.0 2.80E-08 0.869 2.44E-08 05/30/12 11 161.08 REMARKS 11 10 600 2.28 160.38 21.86 26.0 2.80E-08 0.869 2.44E-08 05/30/12 05/30/12 11 20 600 2.29 161.08 21.96 26.0 2.80E-08 0.869 2.44E-08 05/30/12 11 30 600 2.29 161.08 21.96 26.0 2.80E-08 0.869 2.43E-08 Reported Average Hydraulic Conductivity* 2.4E-08 cm/sec Flow pump ID # 22 Balance ID # 1/6/7 Differential Pressure Transducer ID # 70/68 Thermometer ID # 377 Oven ID# 14/15 Board Pressure Transducer ID # 216 Syringe ID # 141 Pore Pressure Transducer ID # 28

TIMELY Engineering Soil TESTS, LLC

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

Tested By Date

FB 06/20/12

Web: www.test-llc.com

48 Checked By Lab. PR. # 1210-01-1 S. Type Mold Depth/Elev

Client Pr. # Pr. Name Williamsburg Works Former MGP Site Sample ID 13553/(Soil 3)-3-1 Subsample Add. Info Curing Age: 28 Days 5 ASTM D 5084: Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter (Method D, Constant Rate of Flow) **Initial Sample Data (Before Test) Test Data** Final Data (After Test) 2.797 Height 7.10 cm Speed 14 3.022 2 Diameter 7.68 cm **Board Number** Average Height of Sample 2.787 7.08 cm cm² 7.17 46.27 Cell Number 15 Average Diameter of Sample 3.008 7.64 cm Area 328.75 cm³ cm² Volume 0.0116 Flow Pump Number 1A 7.11 45.85 Area 621.00 1.40E-05 cm³/sec Volume cm³ 0.0115 95.5 Mass 1.37 Flow Pump Rate 324.55 Dry Density pcf 137.02 cm³ Specific Gravity 2.650 (Assumed) B - Value 0.95 Mass 627.80 1.38 Vol. of Voids 94.2 Cell Pressure 100.0 Vol. of Solids 187.53 cm³ Dry Density psi Back Pressure Void Ratio 0.73 90.0 psi **Moisture Content Moisture Content** Saturation Confining (Effective) Pressure 10.0 psi 95.5 Mass of wet sample & tare 621.00 Max Head 128.72 Mass of wet sample & tare 709.80 cm Min Head Mass of dry sample & tare 496.40 128.02 Mass of dry sample & tare 579.10 Mass of tare Maximum Gradient Mass of tare 82.70 0.00 18.18 % Moisture 25.1 Minimum Gradient 18.08 % Moisture 26.3 TIME FUNCTION Δt READING Head Gradient Temp. PERMEABILITY (cm/sec) Note: Deaired Water Used for Permeability Test. T_x(°C) @ T. R_{T} @ 20 °C DATE **HOUR** MIN (sec) (psi) (cm) DESCRIPTION NA 06/20/12 6 30 1.83 128.72 18.18 25.0 **USCS** 06/20/12 6 40 600 1.82 128.02 18.08 25.0 1.68E-08 0.889 1.50E-08 (ASTM D2487;2488) 6 50 600 1.83 128.72 18.18 25.0 1.68E-08 0.889 1.50E-08 06/20/12 NA 7 0 600 128.02 18.08 25.0 1.68E-08 0.889 1.50E-08 06/20/12 1.82 REMARKS 7 10 600 1.82 128.02 18.08 25.0 1.69E-08 0.889 1.50E-08 06/20/12 06/20/12 7 20 600 1.83 128.72 18.18 25.0 1.68E-08 0.889 1.50E-08 06/20/12 30 600 1.83 128.72 18.18 25.0 1.68E-08 0.889 1.49E-08 Reported Average Hydraulic Conductivity* 1.5E-08 cm/sec Flow pump ID # 22 Balance ID # 1/6/7 Differential Pressure Transducer ID # 24/25 Thermometer ID # 377 Oven ID# 14/15 Board Pressure Transducer ID # 64 Syringe ID # 140 Pore Pressure Transducer ID # 26/27

TIMELY Engineering

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By Date

RI

05/30/12

_	TESTS, LLC	Web: www.test-llc.com		Checked By
Client Pr. #	•	Lab. PR. #	1210-01-1	
Pr. Name	Williamsburg Works Forn	S. Type	Mold	
Sample ID	13553/(Soil 3)-3	3-1	Depth/Elev.	•
Subsample	le 1			Curing Age: 7 Days

Committee	42F52/(Scil 2)	Danth/Flav	514		
Sample ID	13553/(Soil 3)	-J-T		Depth/Elev. Add. Info	Curing Age: 7 Days
Subsample	1			Auu. IIII0	Curing Age: 7 Days
	ASTM D 1633: Standard Test Me	thods for Com	pressive Strength	of Molded Soil-O	Cement Cylinders
		METHOD	В		
		WILTHOD			
Initial Heigh Initial Diame Height-to-D Area, in ² Volume, in ³ Mass of Sar Wet Density Dry Density	eter, in 2.999 iameter Ratio 1.94 7.06 41.20 mple, g 1308.00 y, pcf 121.0		WATER CONTE Mass of Wet Sar Mass of Dry San Mass of Tare, g Moisture, % Note 1: Water con	mple and Tare, nple and Tare, ς	g 1514.10
Machine Sp Strain rate,	•				
Than rate,	0.00		DATA		
		IESI	DATA		
	Load Cell ID # 11 Compression Device ID # 10 Balance ID # 1/7			Readout D	aliper ID # 16 evice ID # 10 Oven ID # 12/13/14
Maximum L	oad at Failure, lbf		3870		
Specimen (Cross-sectional Area, in ²		7.06	Fai	lure Code 3
-	e Strength at Failure, psi		548		
	Factor for Height to Diameter Ratio	ı	1.00	ı	
Reported C	Compressive Strength at Failure, psi		548		Failure Sketch
Note 2: * - A	conversion factor based on H/D=1.15 (C.F DESC	908 as 100% ai CRIPTION	nd add. correction p		lure Type: Cone and Shear
	LISCS (ASTN	л D2487: D24	.88)		Cone and Shear
	REI	MARKS			

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By
Date

RI 06/06/12

Web: www.test-llc.com

ate	06/06/
	11

	1 ESTS, LLC	Web. www.test-lic.com		Спескеа ву	10		
Client Pr. #	-	-	Lab. PR. #	1210-01-1			
Pr. Name	Williamsburg Works For	mer MGP Site	S. Type	Mold			
Sample ID	13553/(Soil 3)		Depth/Elev.	-			
Subsample	2		Add. Info	Curing Age: 14 Da	ays		
•							
	ASTM D 1633: Standard Test Me	thods for Compressive Strength	of Molded Soil-Ce	nent Cylinders			
		METHOD	1				
		METHOD B]				
	SAMPLE DATA		NT DETERMINAT				
Initial Heigh			mple and Tare, g	1636.30			
Initial Diame			mple and Tare, g	1369.00			
	ameter Ratio 1.94	Mass of Tare, g		333.40			
Area, in ²	7.06	Moisture, %		25.8			
Volume, in ³	41.20						
Mass of Sar		Note 1: Water cor	ntent was obtained af	ter shear from partial sa	ample.		
Wet Density	·						
Dry Density,		4					
Machine Sp Strain rate, ⁶		_					
Strain rate,	% / min 0.86	_					
		TEST DATA					
	Load Cell ID #	7	District Call	ID # 40			
	Load Cell ID # 11 Compression Device ID # 10	_	Digital Calip				
	-	-					
	Balance ID # 1/7	_	O.	/en ID # 12/13/14			
Marzaria	and at Eathern III.	4000	7				
Maximum Lo	oad at Failure, lbf	4600	Faller	0. 4.			
Specimen C	Cross-sectional Area, in ²	7.06	Fallur	re Code 3			
	e Strength at Failure, psi	651	1				
-	Factor for Height to Diameter Ratio	1.00	-				
	· ·			Fallows Ollist	. I.		
-	ompressive Strength at Failure, psi	651	J	Failure Sketo	cn		
Note 2: * - A (conversion factor based on H/D=1.15 (C.F9		per ASTM C42)				
	DESC	RIPTION					
			Failur	re Type:			
				Cone and S	hear		
	USCS (ASTM	1 <u>D2487: D24</u> 88)					
							
	REM	MARKS					

TIMELY Engineering

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

Tested By Date

ЕВ

L		Γ ESTS, LLC	Web: www.test	-llc.com		C	hecked By	18	
Client Pr. #		-			Lab. PR. #	1:	210-01-1		
Pr. Name		Williamsburg Works F	ormer MGP Site	1		Mold			
Sample ID		13553/(Soil	3)-3-1		Depth/Elev.		-		
Subsample		3			Add. Info	Curing	Age: 28 Day	ys	
	ASTM D 1	633: Standard Test M	METHOD	ressive Strength	n of Molded Soil-0	Cement Cylind	ders		
	SAMPLE DATA		v	VATER CONTE	ENT DETERMIN	ATION			
Initial Heigh		5.874			imple and Tare,		1575.80		
Initial Diame	eter, in	3.013	N	lass of Dry Sar	mple and Tare, o	j	1305.30		
-	ameter Ratio	1.95		lass of Tare, g			258.00		
Area, in ²		7.13	N	loisture, %			25.8		
Volume, in ³ Mass of Sample, g Wet Density, pcf Dry Density, pcf Machine Speed, in/min Strain rate, % / min 41.88 1318.00 41.89 1318.00 0.050 0.050				Note 1: Water content was obtained after shear from partial sample.					
			TEST [DATA					
	Load Cell ID # Compression De Balance ID #	11 10 1/7		Digital Caliper ID # 16 Readout Device ID # 10 Oven ID # 12/13/14					
Maximum Lo	oad at Failure, Ibi	:	F	5068]	O. J. T			
Specimen C	ross-sectional Ar	ea. in²		7.13	Fai	lure Code	3		
•	e Strength at Fail			711		<u> </u>			
-	-	to Diameter Ratio	-	1.00					
	_	ength at Failure, psi		711	1	Fa	ilure Sketc	h	
-	-	ased on H/D=1.15 (C.F.			per ASTM C42)				
					Fai	lure Type:			
		11000 /: 0=	TA DO 407 DO 12	2)		C	one and Sh	near	
		USCS (AST	M D2487: D248	8)					
		RI	EMARKS						

APPENDIX J SLUG TEST RESULTS

Williamsburg Works Former MGP- Slug Tests Well Construction Details

Well	Formation		n Length		Radii		Aquifer	Depth from	Aquifer Top
ID		Total	Submerged	Screen (*)		sing	Thickness	•	to Bottom
					Actual	Equivalent		Screen	of Screen
		L_e	L_{e-sub}	$r_{\rm w}$	r_c	r _{c-eq} (**)	Н	d	L_{w}
		[ft]	[ft]	[in]	[in]	[in]	[ft]	[ft]	[ft]
WW-MW-02	Overburden	10.0	5.7	3.00	1.00	1.84	7.65	-4.35	5.65
WW-MW-03	Overburden	10.0	6.5	3.00	1.00	1.84	8.52	-3.48	6.52
WW-MW-04	Overburden	10.0	10.0	3.00	1.00	1.00	16.10	4.10	14.10
WW-MW-05	Overburden	10.0	9.2	3.00	1.00	1.84	11.15	-0.85	9.15
WW-MW-06	Overburden	10.0	N/A	3.00	1.00	N/A	NM	NM	NM
WW-MW-07	Overburden	10.0	7.9	3.00	1.00	1.84	9.85	-2.15	7.85
WW-MW-08	Overburden	10.0	6.5	3.00	1.00	1.84	8.50	-3.50	6.50
WW-MW-10	Overburden	10.0	9.6	3.00	1.00	1.84	11.64	-0.36	9.64
WW-MW-11	Overburden	10.0	7.7	3.00	1.00	1.84	9.73	-2.27	7.73
WW-MW-12	Overburden	10.0	9.9	3.00	1.00	1.84	11.90	-0.10	9.90
WW-MW-13	Overburden	10.0	9.2	3.00	1.00	1.84	11.15	-0.85	9.15
WW-MW-16	Overburden	10.0	9.7	3.00	1.00	1.84	11.71	-0.29	9.71
WW-MW-17	Overburden	10.0	9.3	3.00	1.00	1.84	11.30	-0.70	9.30
WW-MW-100I	Overburden	10.0	10.0	4.00	1.00	1.00	50.45	38.45	48.45
WW-MW-102D	Overburden	10.0	10.0	4.00	1.00	1.00	93.50	81.50	91.50
WW-MW-102I	Overburden	10.0	10.0	4.00	1.00	1.00	54.10	42.10	52.10

Notes:

(*) - sand pack (overburden wells)

$$(**)$$
 - $r_{c-eq} = [(1 - n) r_c^2 + n r_w^2]^{1/2}$ if $L_{e-sub} < L_e$
 $r_{c-eq} = r_c$ if $L_{e-sub} = L_e$

NM - not measured N/A - not applicable

Assumptions:

- (1) AQTESOLV ver. 3.50 was used for slug test analyses.
- (2) Sandpack porosity of 0.3 was used for wells that were not fully submerged during testing.
- (3) Bouwer and Rice (1976) solution was used for unconfined aquifers.
- (4) Formulas and parameters used for this slug test analysis can be found in:

Bouwer, H., 1989. The Bouwer and Rice slug test--an update, Ground Water, vol. 27, no. 3, pp. 304-309.

Table 3-3 Summary of Results Williamsburg Works Former MGP Slug Tests

Well	8/28/201	2 Hydraulic	Formation		
ID	FH	RH	N(**)	Mean (***)	Mean K (cm/sec)
WW-MW-04	1.57E-04	3.11E-04	2	2.21E-04	
WW-MW-05	2.38E-04	1.63E-04	2	1.97E-04	
WW-MW-07	2.06E-03	1.95E-03	2	2.00E-03	4.34E-04
WW-MW-08	5.78E-04	2.47E-04	2	3.78E-04	
WW-MW-17	4.30E-04	5.01E-04	2	4.64E-04	
WW-MW-100I	4.61E-06	6.33E-05	2	1.71E-05	7.11E-05
WW-MW-102I	3.44E-04	2.54E-04	2	2.96E-04	7.11E-05
WW-MW-102D	5.26E-04	6.56E-04	2	5.87E-04	5.87E-04

(**) - number of vlid tests

(***) - geometric mean

FH - Falling Head test

RH - Rising Head test

Note:

-For all graphs, normalized head is defined as H(t)/Ho, where H(t) is the displacement measured at time t and Ho is the initial displacement at time t=0.

-Results that are bold and italicized are considered invalid (see Data Useability sheet).

-While the geometric mean for both the falling and rising head tests are given, it is understood that the rising head tests more accurately describe the overall hydraulic characteristics of the aquifer.

(See attached reference, The Bouwer and Rice Slug Test - An Update)

Williamsburg Works Former MGP Slug Tests Useability of Data

Well	Remarks				
ID	FH	RH			
	8/28	/2012			
WW-MW-02					
WW-MW-03					
WW-MW-04	OK	OK			
WW-MW-05	4	4			
WW-MW-06					
WW-MW-07	OK	3			
WW-MW-08	OK	OK			
WW-MW-10					
WW-MW-11					
WW-MW-12					
WW-MW-13					
WW-MW-16					
WW-MW-17	OK	OK			
WW-MW-100I	OK	OK			
WW-MW-102D	OK	OK			
WW-MW-102I	OK	OK			

Notes:

- 1: Water level was not allowed to fully recover to static level. Tests were analyzed, but are considered invalid.
- **2:** A constant static level was not established prior to the start of test. Tests were analyzed, but are considered invalid.
- **3:** A constant static level was not established prior to the start of test. Noise in data. Test analyzed.
- 4: Water level was not allowed to fully recover to static level. Tests analyzed,

APPENDIX K GROUNDWATER FLOW MODELING REPORT

Appendix K

Groundwater Modeling

To Support Dewatering Design for Soil Excavation

at Williamsburg Former MGP Site

1. Site Hydrogeological Conditions

The Williamsburg Works former MGP site (the "MGP Site") is located in the Williamsburg neighborhood of Brooklyn, New York (Figures 5 and 6 of GEI (2011) (Attachment). The site consists of four parcels located along North 12th and North 11th Streets, Kent Avenue, and the East River. The 50 Kent Avenue parcel, the IRM Site, also labeled as 22 North 12th Street, is at Block 2287, Lot 1 and was the location for purifying operations, condensers and three gas holders. The 50 Kent Avenue parcel is bordered by North 12th Street to the northeast, Kent Avenue to the southeast, North 11th Street to the southwest, and Block 2287, Lot 16 to the northwest. The 50 Kent Avenue parcel is herein referred to as the "Site".

In order to evaluate potential dewatering scenarios for soil excavation, the site conditions that may affect dewatering were reviewed based on the previous site investigation results and summarized below.

1.1. Hydrology

The surrounding area of the Site is an industrial area (Figures 5 and 6 of GEI (2010). The East River is to the west and Bushwick Inlet is to the north.

The annual precipitation in New York averages to 47.25 inches or 1,200 mm per year. The seasonal variation of precipitation appears minor as shown in the following table.

	Average Precipitation												
	Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
in.	47.25	3.42	3.27	4.08	4.2	4.42	3.67	4.35	4.01	3.89	3.56	4.47	3.91
mm	1200	86	83	103	106	112	93	110	101	98	90	113	99

As the ground surface in the industrial area is paved by either concrete or asphalt (although with numerous cracks) surface water runoff is expected to be high. Groundwater recharge as result of direct precipitation is expected to be relatively low.

1.2. Geology

As shown on geological cross-sections on Plates 1 and 2 and Figure 1 of GEI (2010) and further defined in the IRM Pre-Design Investigation (PDI), the subsurface geological materials underlying the Site consist of fill material and glacial deposits. The artificial fill material consists of sand and silty sand with crushed stone, wood, concrete, ash, cinders, coal, and brick. The fill material thickness ranges from 0 to 42 feet, with thicknesses increasing to the north and west beneath the Site. Below the fill material the lithology predominantly consists of poorly sorted sand with layers of silty sand and silt (i.e., glacial material). A clay layer (i.e., glacial material) is present beneath the site and is encountered at a depth ranging from 32 to 90 feet bgs, with a thickness ranging from 10 to 31 feet. Beneath the Site this clay layer is continuous based on GEI (2010) and URS boring logs from the IDI. The glacial materials underlying this area are stratified drift and till materials with variable fractions of clay, silt, sand, and gravel that are usually poorly sorted with relatively impermeable zones (i.e., the clay and silt zones).

1.3. Hydrogeology

The groundwater level contour lines are represented on Figures 5 and 6 of GEI (2010) and Figure 3-5 of the PDI report. Groundwater flows to the west and northwest towards East River and Bushwick Inlet. The upgradient groundwater levels were at 6.37 to 6.40 ft amsl (WW-MW-01). The downgradient groundwater levels were around sea level at the East River.

Groundwater elevations measured at high tide (Figure 5, GEI, 2010) and at low tide (Figure 6, GEI, 2010) are not significantly different at the Site. The tidal influence on groundwater levels appears extended approximately 300 feet away from East River (near WW-MW-08 on Figures 5 and 6 of GEI (2010)), and is not in the vicinity of the Site.

At the site, groundwater has been encountered between 1 to 16 feet below the ground surface (bgs) historically. As shown in Figures 5 and 6 of GEI (2010) and Figure 3-5 of the IDI report, groundwater mounding has been observed near the three gas holder tanks at the Site.

Based on the preliminary results from the URS slug tests, the hydraulic conductivity of saturated geological materials ranges from 0.181 to 2.68 feet per day (feet/day) at the Site. These slug tests are currently being repeated to obtain more accurate values.

1.4. Gas Holder Foundations

There are three foundations of former gas holders on the Site. These foundations remain underground. The bottom of the gas holder foundations are assumed to be concrete, and are approximately 28 feet below ground surface. The walls of the foundations are brick and in some cases contain rings of metal that were part of the former tanks. These foundations are filled with saturated soils.

Groundwater mounding is observed in the vicinity of the gas holder foundations at WW-MW-05, WW-MW-06, WW-MW-01, and WW-MW-07 (7.34 to 9.58 feet amsl, Figures 5 and 6 of GEI, 2010), which

were elevated about 1 to 3 feet higher than the upgradient water levels (WW-MW-01 (6.37 – 6.40 feet amsl In addition, the observed groundwater elevations at wells screened in the lower portion of the soil but above the clay layer (WW-MW-100I,2.23 feet amsl and WW-MW-102I,3.84 feet amsl) are substantially lower than the groundwater elevations in the upper portion. These observations indicate that the foundation floor and walls act as a vertical barrier and as a horizontal barrier to the groundwater flow.

2. Groundwater Flow Model Development

A groundwater flow model was developed based on the available data at the Site, for the purpose of evaluating potential dewatering scenarios for soil excavation. The USGS three-dimensional groundwater flow model code MODFLOW (McDonald and Harbaugh, 1988) is used and Groundwater Vistas Version 5 is used as graphic processing utility (Rumbaugh and Rumbaugh, 1996 – 2007).

2.1. Model Domain

The model domain covers a large area (1,550 feet by 2,100 feet) as shown in Figure K-1. The model domain includes much larger area than the Site, to avoid any potential boundary effect to proposed dewatering.

The model origin is at x = 640,600 feet and y = 688,850 feet with rotation of -39 degrees in state plane coordinates.

The model domain includes 150 rows and 210 columns. Model cell is 10 feet by 10 feet uniformly over the entire model domain.

2.2. Model Layers

The hydrostratigraphy beneath the Site includes three layers: fill/glacial deposits, clay, and native glacial deposits. Due to presence of the three gas holders and their impact to groundwater flow as well as their impact to dewatering/soil excavation, the layer above the clay is further divided into two layers: the top one includes gas holders and the lower one includes the portion above clay and beneath the gas holders.

The model includes four layers (Figure K-2):

- Layer 1 Filled materials and/or glacial deposits as well as gas holders
- Layer 2 Silty sand and silt
- Layer 3 Clay
- Layer 4 Sandy silt, silt, and silty sand

The top of Layer 3, the clay layer, is specified following the clay contour map (Figure 4 of GEI, 2010) with limited modification based on URS boring logs in the IDI report. Outside of the area where clay contours are not available, the top of Layer 3 was specified based on extrapolation.

The bottom elevations of layer 1 were specified to be 20 feet higher than top of Layer 3, which leaves the gas holders to be completely in Layer 1. The thickness of Layer 3 (clay layer) is assumed to be five feet. The bottom of Layer 4 was assumed to be at -90 feet amsl uniformly for entire model domain.

2.3. External Boundary Conditions

As shown in Figure K-1, the East River and Bushwick Inlet were specified as MODFLOW River Boundary condition; the east, south, and northeast boundaries were specified as General Head Boundary condition, for model Layer 1. The river stage was assumed to be at the average level of high tide and low tide (Figures 5 and 6 of GEI, 2010) to be 1.42 feet amsl. The hydraulic heads along the General Head Boundaries were extrapolated following the interpreted groundwater contour lines on Figures 5 and 6 of GEI (2010).

No-flow boundary was assumed for model Layer 3 (clay layer), as it is considered as an aquitard. The general head boundaries were specified for model Layers 2 and 4, similar to Layer 1.

2.4. Gas Holder Foundation Effect

The gas holder foundations were simulated for their hydrogeological effects to the groundwater flow in the model calibration (Section 3). As shown in Figure K-1, the wall of each gas holder is simulated as horizontal hydraulic barrier using MODFLOW horizontal flow barrier package or "wall" in the model. The depth of the wall is set at bottom of Layer 1 (Figure K-2). The thickness of the wall is assumed to be one foot and the hydraulic conductivity of the wall was estimated to be 0.0001 feet/day during model calibration (Section 3).

The hydraulic effect of the gas holder bottom (concrete) was estimated using a very small leakance value (Section 3) in each of the gas holders between model Layers 1 and 2.

2.5. Groundwater Recharge

Groundwater recharge was estimated to be 3 inches/year, which is approximately 6.5% of the long-term annual precipitation (Section 1.1). This recharge rate is considered reasonable based on the paved ground surface condition (concrete or asphalt with cracks) in this area.

3. Groundwater Flow Model Calibration

Quasi-steady state flow model was conducted to adjust the hydraulic parameters for the geologic materials at the Site and in the area. The slug test results (Appendix J) were used as general guidance for estimation of hydraulic conductivity values.

The model calibrated groundwater level contour lines are presented in Figure K-3. The calibration residuals between simulated and observed hydraulic heads are posted on Figure K-3 and shown in Table K-1.

The calibration statistics are shown in the lower portion of Table K-1. The residual mean = -0.02 feet and the scaled root mean square (RMS) = 4.3%. The calibration statistics are considered very good for the objective of modeling, and in comparison to the general rule of thumb that calibration statistics should have the RMS within 10% to 15%.

The hydraulic conductivity of the filled material within the gas holders is estimated to be 5 feet/day. The hydraulic conductivity of Layer 1 is estimated to be 0.12 feet/day within Williamsburg and to be 1.9 feet/day in the rest of the model domain (geometric mean of slug tests in the shallow zone = 1.25

feet/day). The hydraulic conductivity of Layer 2 is estimated to be 0.44 feet/day (average of slug tests of 0.048 feet/day at MW-100I and = 0.84 feet/day at MW-102I) beneath the gas holders. The hydraulic conductivity of Layer 2 for the rest of model domain was assumed to be 1.9 ft/day. The clay layer hydraulic conductivity is assumed to be 0.001 feet/day (3.5E-07 cm/s) for the entire model domain assuming unweathered marine clay ranging from 1.0E-10 cm/s to 1.0E-07 cm/s (Freeze and Cherry, 1979). The hydraulic conductivity of Layer 4 is assumed to be 1.6 feet/day (slug test = 1.66 feet/day at MW-102D) for the entire model domain.

The vertical anisotropic ratios of horizontal and vertical hydraulic conductivities were estimated to be 10:1 for most layers in most areas. The vertical ratios were modified to be 100:1 in the vicinity of the Site in Layer 1, and to be 10,000:1 in the gas holders of Layer 1. The very high vertical anisotropy ratio in the gas holder significantly limits the leakage from the gas holder to the soil below.

4. Dewatering Scenario Evaluation

Transient flow model simulations were conducted based on the calibrated steady state flow model to test and simulate several proposed dewatering scenarios. It was assumed the specific yield is 0.05 and the storage coefficient is 0.001, to be relatively conservative for estimation of dewatering rate.

4.1. Scenario 1 - Single Well Pumping

One single well pumping was initially proposed to support dewatering for soil excavation within an L-shaped area encompassing the holder foundations.

Model Assumptions for Scenario 1

- Sheet pile or slurry wall is installed to top of clay through model layers 1 and 2, surrounding the L-shaped area (Figure K-4).
- The walls of the gas holder foundations and the concrete bottom of the gas holders remained in subsurface (Figure K-4).
- The sheet pile wall was simulated with a thickness of 0.01 feet and hydraulic conductivity of 2.8E-06 feet/day (1.0E-09 cm/s).
- A single pumping well is screened in the middle of the block in model Layer 2 (Figure K-5) and is continuously pumped for 11 days.

Model Results of Scenario 1

- The pumping rate at the single well was tested and estimated to be 1 gpm to be sustainable for 11 days. After 11 days of pumping, the water level in the model cell with the extraction well drops to – 27 feet amsl, and the water level drops to – 14 feet amsl at monitoring well MW-100I.
- The simulated groundwater levels in Layer 2 by end of 11 days beneath the gas holders range from -- 27 feet amsl in the vicinity of the pumping well to 9 feet amsl near the sheet pile wall (Figure K-5). The simulated groundwater level drawdown within the sheet pile wall range from

- 14 feet to 32 feet. The simulated groundwater level drawdown outside of the sheet pile wall by end of 11 days is less than 1.5 feet.
- However, the dewatering beneath the gas holders has limited impact to the groundwater levels in Layer 1. By end of 11 days the water levels in the gas holder foundations do not change. The only change of water level is in the northeast corner within the L-shape sheet-pile wall (Figure K-4). The limited effect of deep well pumping to the upper portion within the block is due to the presence of the concrete bottom of the gas holder foundations and the gas holder wall.
- There are uncertainties in the model results, in terms of dewatering rate and duration. The actual dewatering rate and duration are dependent on the field hydraulic conductivity distribution and aquifer storativity within the dewatering block.

4.2 Scenario 2 – Multiple Sumps

Dewatering scenario using multiple sumps was tested and simulated using the transient flow model.

Model Assumptions for Scenario 2:

- Sheet pile wall is installed to clay layer through Layers 1 and 2 around one of the gas holder foundations (100 feet by 100 feet) before dewatering (Figure K-6). The sheet pile is simulated as a wall with thickness of 0.01 feet and hydraulic conductivity of 2.8E-06 feet/day (1.0E-09 cm/s).
- Nine sumps (trenches) are simulated using MODFLOW Drain cells located within the block as shown in Figure K-6.
- The soil excavation process is assumed to proceed at a vertical rate of 2.7 feet/day for 9 days until reaching the bottom of the foundation and then continue for 2 more days to reach 30 feet deep.
- The bottom elevation of each sump is lowered daily at the same rate as soil excavation (approximately 2.7 feet/day).
- During soil excavation, it is assumed the wall of the gas holder foundation is removed along with excavation, thus, in model simulation of the wall for the foundation is removed.

Modeling Results of Scenario 2

The simulated groundwater elevations in Layer 1 inside and outside of the sheet pile wall by end of nine days before excavation of the concrete bottom of gas holder is presented in Figure K-6. Inside of the sheet pile the groundwater level drops to – 16 feet amsl. Outside of the sheet pile the change of water level is less than 0.5 feet.

The simulated dewatering rate of nine sumps ranges from 4 gpm to 16 gpm. For each day, the sump dewatering rate is relatively high at the beginning of each step-down of 2.7 feet, and then gradually decreases to a relatively stable rate of 4 gpm.

The simulated total volume of dewatering in nine days is 11,300 ft³. The average dewatering rate over nine days is approximately 6.5 gpm.

Sensitivity Analysis for Scenario 2

- Assume the hydraulic conductivity of sheet pile is increased by one order of magnitude to 2.8E-05 feet/day (1.0E-08 cm/s) to represent the potential leakage through the sheet pile.
- The simulated dewatering rate of the nine sumps increases to range from 5 gpm to 16 gpm, and water level drawdown outside of the sheet pile wall increases to approximately 2 feet.
- Total volume of dewatering over nine days is 12,166 feet³, which is increased by approximately by 8% in comparison to the base case of Scenario 2. The average dewatering rate is approximately 7.4 gpm.
- There are uncertainties in the model results, in terms of dewater rate and dewatering duration. The actual dewatering rate and duration are dependent on the field hydraulic conductivity distribution and aquifer storativity within the dewatering block.

5. References

- Freeze, R. Allan and John A. Cherry, 1979, Groundwater, 604 pages, Prentice Hall, Inc. Englewood Cliffs, New Jersey 07632.
- GEI, 2010, Draft Remedial Investigation Interim Data Summary, Williamsburg Works Former

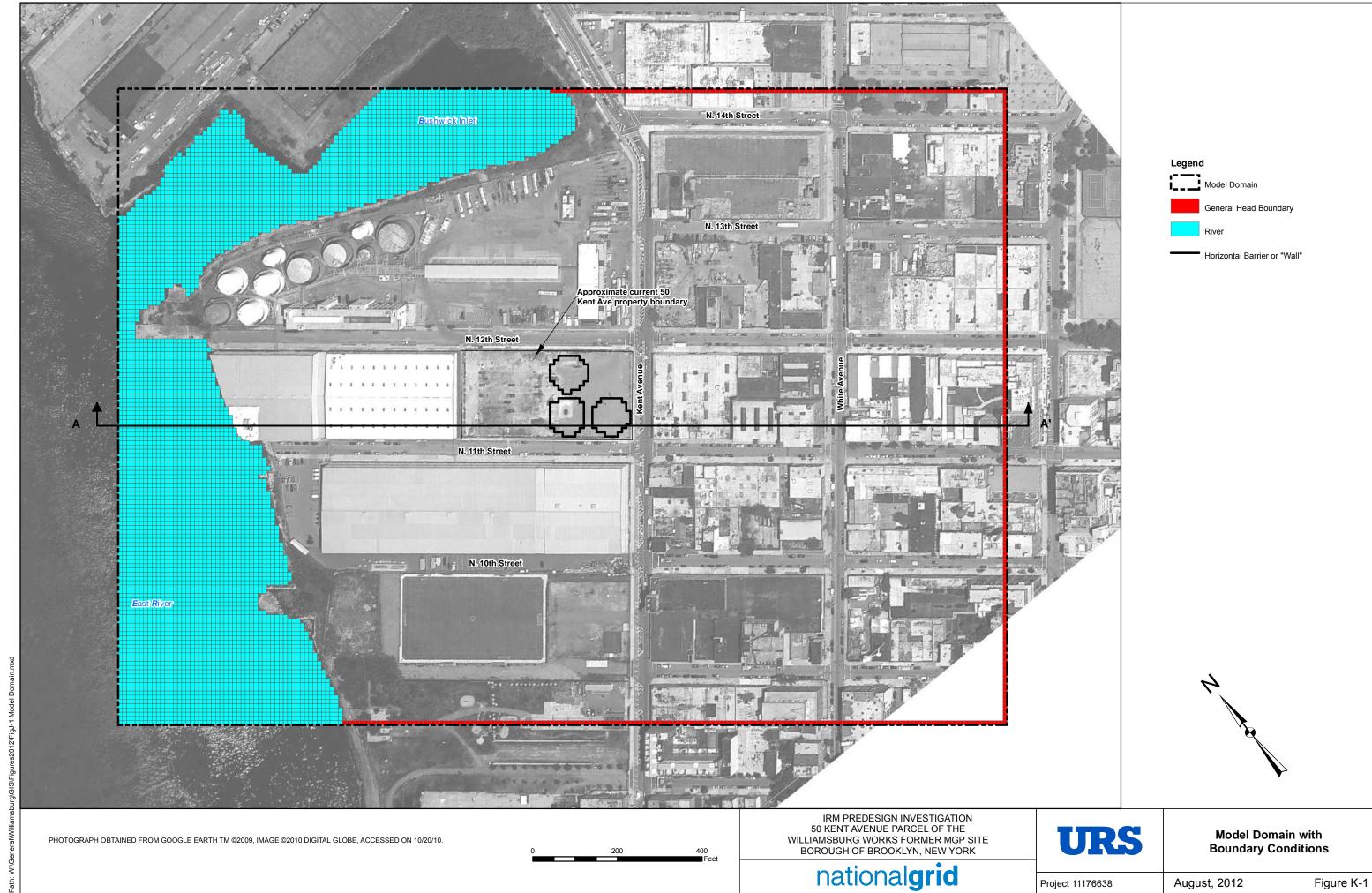
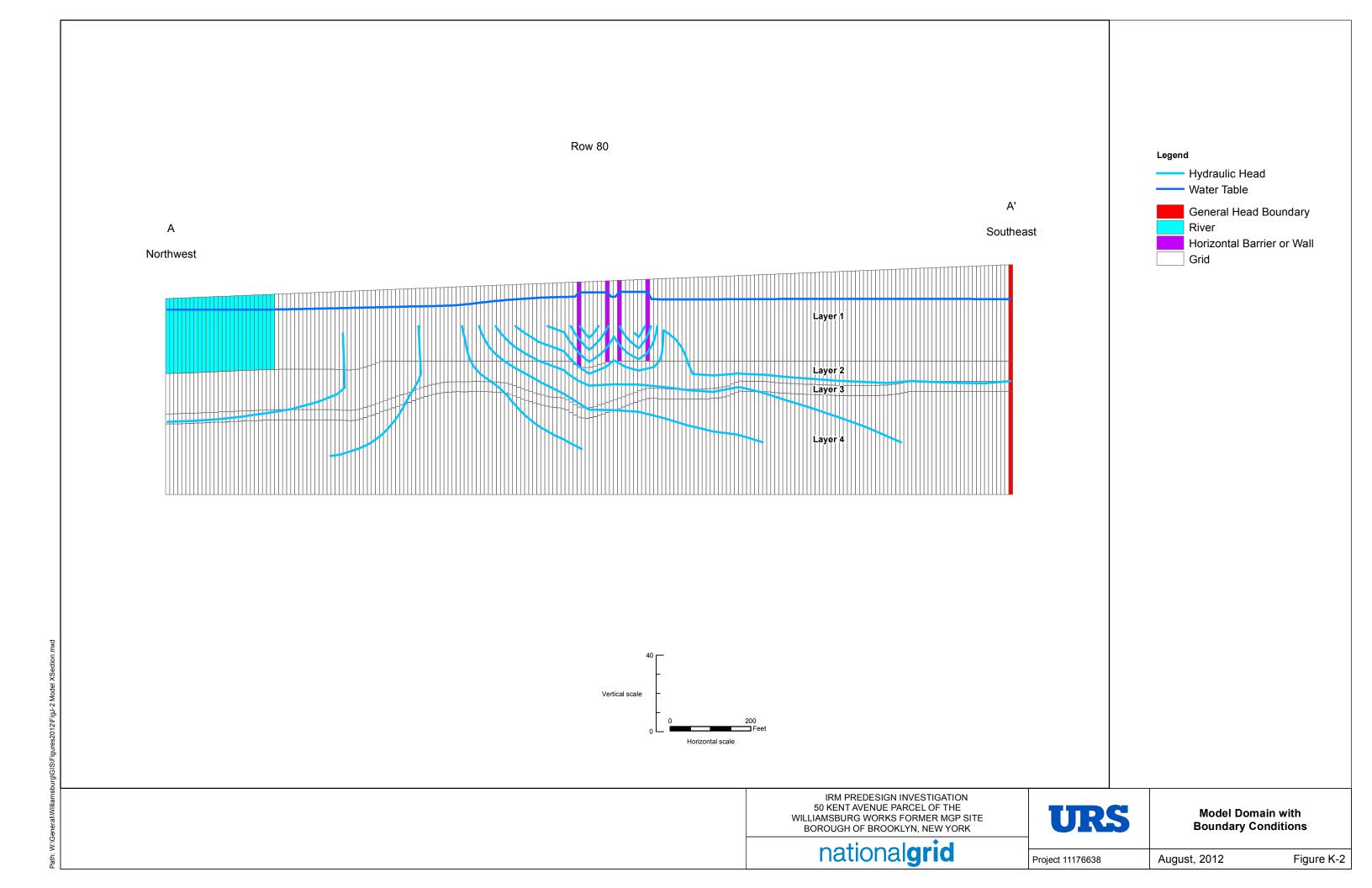
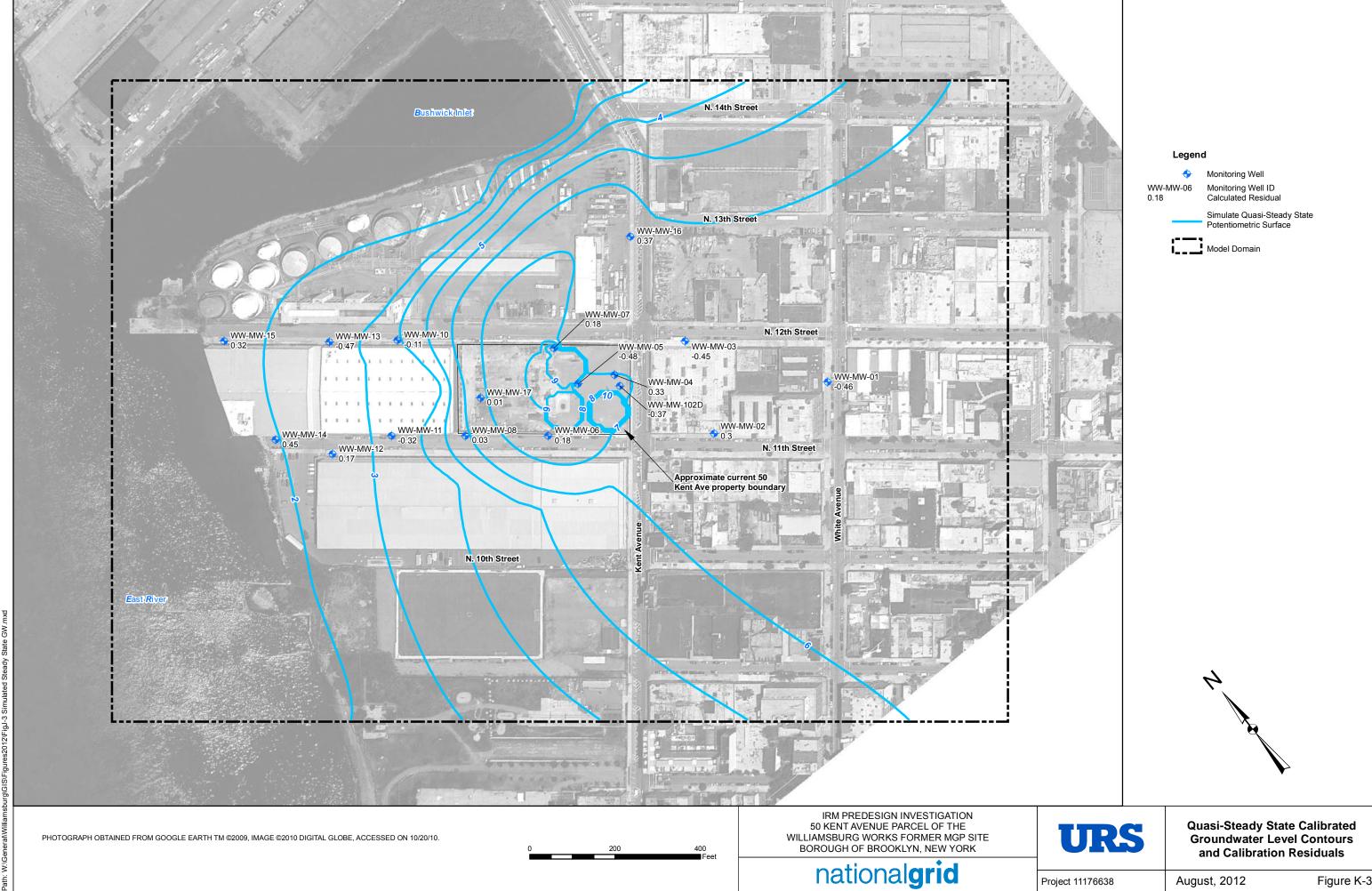

 Manufactured Gas Plant (MGP) Site, Brooklyn, New York 11211, Index No. A2-055-0606, Site No. 224055, August.
- McDonald, M.G. and A.W. Harbaugh, 1988, A Modular Three-Dimensional Finite Difference Groundwater Flow Model, Techniques of Water Resources Investigations of the United States Geological Survey, Washington, D.C.

Table K-1. Comparison of Simulated and Observed Hydraulic Heads


			Model	Observed	Computed	Residual
Name	X (feet)	Y (feet)	Layer	Head (feet)	Head (feet)	(feet)
WW-MW-01	642403.22	688410.81	1	6.39	6.84	-0.46
WW-MW-02	642121.16	688485.59	1	6.92	6.62	0.30
WW-MW-03	642204.01	688696.09	1	6.16	6.61	-0.45
WW-MW-04	642026.31	688738.93	1	7.35	7.02	0.33
WW-MW-05	641946.37	688775.73	1	7.49	7.97	-0.48
WW-MW-06	641815.59	688725.95	1	7.78	7.59	0.18
WW-MW-07	641955.10	688876.98	1	9.56	9.38	0.18
WW-MW-08	641665.21	688848.45	1	5.86	5.82	0.03
WW-MW-10	641681.77	689122.16	1	3.78	3.89	-0.11
WW-MW-11	641529.95	688957.02	1	2.86	3.18	-0.32
WW-MW-12	641395.18	689010.95	1	2.74	2.57	0.17
WW-MW-13	641554.99	689219.44	1	1.93	2.39	-0.47
WW-MW-14	641312.56	689120.85	1	2.40	1.94	0.45
WW-MW-15	641364.63	689376.89	1	2.04	1.72	0.32
WW-MW-16	642258.45	688966.97	1	6.72	6.35	0.37
WW-MW-17	641747.92	688894.20	1	6.75	6.74	0.01
WW-MW-102D	642019.18	688710.05	4	3.74	4.11	-0.37


Model Calibration Statistics

-0.02
0.29
0.33
1.85
0.33
-0.48
0.45
17.00
7.64
0.04
0.04
0.04

August, 2012 Project 11176638

Project 11176638

August, 2012

Figure K-3

APPENDIX L AMBIENT SOUND AND VIBRATION STUDIES

Ambient Sound Level Study
Williamsburg Works
Former MGP Site
50 Kent Avenue Parcel
Brooklyn, New York

Prepared for:

Mr. Colin Wasteneys URS Corporation 77 Goodell Street Buffalo, New York 14203

Prepared by:

Vibra-Tech Engineers, Inc. 109 E. First Street Hazleton, Pennsylvania 18201 (800) 233-6181 Ambient Sound Level Study
Williamsburg Works
Former MGP Site
50 Kent Avenue Parcel
Brooklyn, New York

May 10, 2012

Introduction

An ambient sound level study was carried out by Vibra-Tech Engineers, Inc. in the area surrounding the former MGP site at 50 Kent Avenue, Brooklyn, New York. The study was authorized by Mr. Colin Wasteneys of URS Corporation for the purpose of measuring ambient sound levels around the perimeter of the 50 Kent Avenue Parcel prior to the start of the project. Sound measurements were taken from April 23 to April 29, 2012.

Scope and Conditions of Study

Instrumentation

Six (6) Larson Davis System 820 sound level monitoring systems were used to conduct unattended monitoring during this ambient study. In addition, two Larson Davis 824 Systems were used to conduct spot check - attended monitoring at each location. The data collected by all systems contains various sound level quantities, including Exceedance Levels, $L_{\rm eq}$, and other noise measurements, all measured simultaneously. The sound level systems were laboratory calibrated by the manufacturer prior to the study. The systems were also field calibrated immediately after installation and removal. All sound level system calibration information for all six unattended systems is located in Appendix A.

Field Procedure

For the study conducted from April 23 to April 29, 2012, a total of 6 unattended sound level stations were deployed at locations surrounding the project site. The table below provides the location number, sound level meter serial number, a brief description, and GPS coordinate for each location. A map showing monitoring locations is located in Appendix B.

Table 1. Monitoring lo	ocations for	r the sound st	udy conducted	from A	pril 23-29, 2012
------------------------	--------------	----------------	---------------	--------	------------------

Location	SLM Serial Number	Description	GPS
1	1816	20 N. 12 th Street Block 2287 - South Corner	N 40° 43′ 24.02″
	1010	20 N. 12 Street block 2207 South Comer	W 73° 57′ 38.02″
2	1817	Block 2294 Lot 1 - North Side of Building	N 40° 43′ 22.24″
2	1017	Block 2294 Lot 1 - North Side of Building	W 73° 57′ 36.30″
3	1861	51 Kent Avenue - North Corner	N 40° 43′ 20.67″
3	1001	51 Kent Avenue - North Comer	W 73° 57′ 33.76″
4	1821	35 Kent Avenue Block 2288 Lot 1 - North Corner	N 40° 43′ 22.62″
4	1021	55 Kent Avenue Block 2288 Lot 1 - North Corner	W 73° 57′ 31.43″
5	1862	Block 2277 Lot 1 - South of Building	N 40° 43′ 24.27″
5	1002	Block 22// Lot 1 - South of Building	W 73° 57′ 33.02
6	1855	20 N. 12 th Street Block 2287 - Northeast Corner	N 40° 43′ 25.49″
0	1033	20 N. 12 Street block 2287 - Northeast Corner	W 73° 57′ 36.07″

In addition to the six stations deployed, two Larson Davis 824 Systems were used to conduct 1 hour spot checks at each of the six monitoring locations. The sound level system was mounted on a tripod approximately five feet above the ground and the microphone was equipped with a wind screen. During these spot check tests, specific information regarding singular events which occurred near the monitoring location or were evident during each sound level test period were noted. Weather conditions during the testing are also recorded. A copy of all field notes for each of the six spot checks is included in Appendix C.

Sound Level Measurements

The measurement of noise involves quantifying both its rate (frequency in Hz) and intensity (pressure) relative to normal atmospheric pressure. People do not perceive all frequencies with equal sensitivity, rather they respond to higher frequencies more than lower frequencies. The following discussion of sound levels measurements describes the types of measurements collected for these studies.

dBA

A dBA sound level measurement weighs the various frequency components of a sound as perceived by the human ear in order to yield a single number indicator of its relative loudness. All measurements used in this study are dBA.

Ln – Exceedance Levels

Exceedance Level measurements are taken for a pre-determined period of time, which is variable. The results of these measurements are expressed as a dBA value and the percentage of time of the total measurement period that the level was exceeded. For example, if L_{10} = 50 dBA, for 10 percent of the test period, the sound level present was 50 dBA or above.

L_{eq} – Equivalent Sound Level

 L_{eq} is a measurement over a period of time and is the steady state sound level, which contains the same acoustic energy as the measured time varying sound level for the time period of the measurement.

The sound level meters used for this project directly calculate and output a L_{eq} value in dB. The sound level meters use the following equation to calculate the L_{eq} values:

$$L_{eq} = 10 \log \left[\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \frac{p_A^2}{p_0^2} dt \right]$$

- Leq = equivalent continuous sound pressure level [dB]
- p0 = reference pressure level = 20μ Pa
- pA= acquired sound pressure in Pa
- t1 = start time of measurement
- t2 = end time of measurement

Results of the Study

Daily Summary for Each Location

The tables below contain the daily measurement summary for each site including maximum, minimum, and Leq levels recorded at each location. Please note that this summary is for data collection from April 23 at 00:00 to April 29 at 23:59. A copy of all sound level data for the six monitoring locations is included on the CD attached to this report titled "Ambient Sound Monitoring - Williamsburg Works - 04-23-2012." During the study, the microphone element was stolen from location five on April 25. Sound level meters at locations 3 and 4 failed to save data from April 25 to to April 29 due to corrupted memory.

Monitoring Location 1

Date	4/23/12	4/24/12	4/25/12	4/26/12	4/27/12	4/28/12	4/29/12
Daily Maximum dBA	83.5	82.9	88.2	85.9	85.5	81.3	77.3
Daily Minimum dBA	43.1	40.1	39.8	42.7	43.0	42.0	41.7
Daily L _{eq} dBA	56.7	57.3	55.7	57.9	56.9	51.3	50.5

Monitoring Location 2

Date	4/23/12	4/24/12	4/25/12	4/26/12	4/27/12	4/28/12	4/29/12
Daily Maximum dBA	91.8	92.5	91.5	92.1	92.9	91.9	83.4
Daily Minimum dBA	43.7	40.2	41.2	44.1	43.9	42.3	42.1
Daily L _{eq} dBA	63.8	57.4	58.6	62.3	59.5	55.2	53.9

Monitoring Location 3

Date	4/23/12	4/24/12	4/25/12	4/26/12	4/27/12	4/28/12	4/29/12
Daily Maximum dBA	102	97.6	92.8	-	-	-	-
Daily Minimum dBA	47.6	43.8	50.9	1	-	1	-
Daily L _{eq} dBA	70.2	69.8	73.2	-	-	ı	-

Monitoring Location 4

<u> </u>									
Date	4/23/12	4/24/12	4/25/12	4/26/12	4/27/12	4/28/12	4/29/12		
Daily Maximum dBA	115.8	94.6	88.8	-	-	-	-		
Daily Minimum dBA	47.2	43.5	46.5	-	-	1	-		
Daily L _{eq} dBA	72.3	67.7	65.8	-	-	-	-		

Monitoring Location 5

Date	4/23/12	4/24/12	4/25/12	4/26/12	4/27/12	4/28/12	4/29/12
Daily Maximum dBA	107.9	89.4	-	-	-	-	-
Daily Minimum dBA	48.4	45	-	ı	1	ı	-
Daily L _{eq} dBA	69.6	62.4	-	ı	ı	ı	-

Monitoring Location 6

•								
Date	4/23/12	4/24/12	4/25/12	4/26/12	4/27/12	4/28/12	4/29/12	
Daily Maximum dBA	97.2	94.7	95.3	97.3	96.3	88.5	91.9	
Daily Minimum dBA	45	42.1	39.4	41.3	43.8	42.1	41	
Daily L _{eg} dBA	66.5	61.1	61.1	61.9	62.3	58.7	58.6	

Overall Summary for each Location

The tables below contain the overall noise level summary including overall maximum, minimum, Leq, and LN Exceedance levels recorded at each location. Please note that this data included readings from date and time of installation (April 22) to time of removal on April 30.

Location	1	2	3	4	*5	6
Overall Maximum dBA	88.2	92.9	124.1	115.8	107	103.9
Overall Minimum dBA	39.6	40.2	41.7	42.6	40.5	39.3
Overall Leq	56.4	60.4	71.8	69.4	63.5	63.4
Ln 10	58.7	63.2	72.4	71.8	64.2	61.6
Ln 20	55.9	59.7	68.9	68.8	61.3	57.9
Ln 30	50.5	57.0	65.9	66.3	59.6	55.5
Ln 50	50.5	53.4	60.6	61.6	57.1	52.1
Ln 90	45.2	47.2	49.1	51.2	53.1	45.5
Ln 95	44.2	45.8	47.4	49.2	52.4	44.2

^{*} Data up to time of microphone theft.

On Site Readings

The tables below contain the noise level summary including overall maximum, minimum, Leq, and LN Exceedance levels recorded for the one hour spot checks conducted at each location. Please note that this data was collected on April 23, 2012. A copy of all sound level data for these spot checks is included in Appendix D along with the calibration certificates for the two sound level meters used to collect the on site data.

Location	1	2	3	4	5	6
Time	08:21:18	08:21:33	09:40:35	09:40:49	11:08:06	11:08:19
Spot Check Maximum dBA	72.7	75.9	93.6	95.4	84.1	83.2
Spot Check Minimum dBA	47.5	47.7	53.9	52.3	51.9	49.2
Spot Check Leq	55.3	58.0	72.6	73.2	61.9	59.1
Ln 10	57.5	61.1	75.1	74.6	63.9	60.5
Ln 20	55.1	58.5	71.7	71.5	61.4	57.2
Ln 30	53.9	56.8	69.4	69.2	59.8	55.6
Ln 50	52.2	54.3	65.5	65.1	57.7	53.8
Ln 90	49.7	50.5	56.8	57.2	53.8	51.4
Ln 95	49.2	50.0	56.0	56.1	53.2	51.0

Comparison of one hour spot check and sound level station

Location	Time	Leq dBA	Lmax dBA	Lmin dBA
Location 1	09:00:00	55.3	72.7	47.5
Spot check	08:21:18	55.7	74.6	47.7
Location 2	09:00:00	58.0	75.9	47.7
Spot check	08:21:33	58.7	77.3	48.5
				_
Location 3	10:00:00	72.6	93.6	53.9
Spot check	09:40:35	72.5	92.7	53.9
Location 4	10:00:00	74.1	95.5	54.9
Spot check	09:40:49	73.2	95.4	52.3
Location 5	11:00:00	62.7	84.9	53.4
Spot check	11:08:06	61.9	84.1	51.9
				_
Location 6	11:00:00	61.2	87.8	46.3
Spot check	11:08:19	59.1	83.2	49.2

If you have any questions or comments regarding the ambient sound monitoring at the Williamsburg Works Former MGP site please contact our office.

Respectfully submitted,

VIBRA-TECH ENGINEERS, INC.

Mark Edwards

Vibration and Sound Analyst

Jonathan A. Ferdinand

Vibration and Noise Specialist

APPENDIX A

Certificate Number 2012-154935

Instrument Model 820, Serial Number 1816, was calibrated on 09FEB2012. The instrument meets factory specifications per Procedure D0001.8160, ANSI S1.4 1983, IEC 651-Type 1 1979, and IEC 804-Type 1 1985.

Instrument found to be in calibration as received: YES

Date Calibrated: 09FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Larson Davis	LDSigGn/2209	0589 / 0103	12 Months	08DEC2012	2011-152462

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 23 ° Centigrade

Relative Humidity: 32 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As Received" data is the same as shipped data. Tested with PRM828 S/N 2806.

Signed:

Technician: Nick Rasmussen

Certificate Number 2012-154980

Microphone Model 377B20, Serial Number 127516, was calibrated on 10FEB2012. The microphone meets factory specifications per Test Procedure D0001.8167.

New Instrument

Date Calibrated: 10FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO
Larson Davis	2559	2506	12 Months	24MAY2012	18309-1
Larson Davis	2900	0575	12 Months	14JUN2012	2011-144882
Larson Davis	PRM915	0102	12 Months	16AUG2012	2011-147581
Larson Davis	PRM902	0206	12 Months	16AUG2012	2011-147576
Larson Davis	MTS1000 / 2201	1000 / 0100	12 Months	09SEP2012	SM090911-3
Hewlett Packard	34401A	3146A62099	12 Months	15NOV2012	5436054
Larson Davis	PRM916	0102	12 Months	22DEC2012	2011-153087
Larson Davis	CAL250	42630	12 Months	04JAN2013	2012-153336

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Environmental test conditions as printed on microphone calibration chart.

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

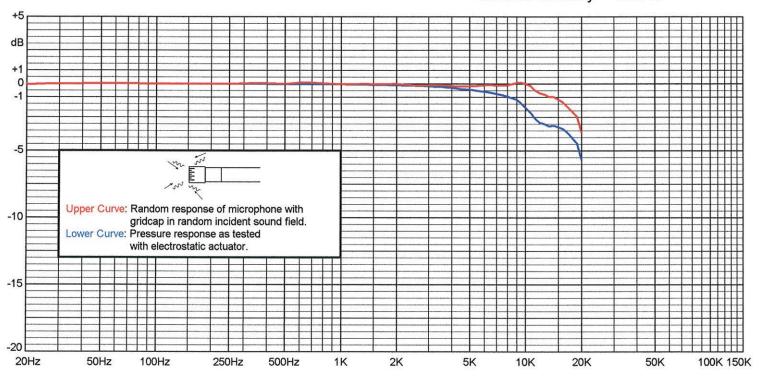
This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

Signed: Almolamma artigo

Technician: Abraham Ortega

PCB 1/2" Microphone Calibration Chart Model: 377B20 Serial Number: 127516


Open Circuit Sensitivity @ 1014.8 mbar & 251.19 Hz -26.61 dB re 1V/Pascal 46.74 mV/Pascal

+0.59 K₀(-dB re 50 mV/Pascal)

Expanded Uncertainty @ ~95% confidence level 0.19 dB

Capacitance @ 251.2 Hz 10.0 pF Lower Limiting Frequency -3 dB @ 1.41 Hz Test Conditions:

Polarization Voltage 0 V Ambient Pressure 1014.8 mbar Temperature 23.6 °C Relative Humidity 35.2 %

Frequency Response (0 dB @ 251.19 Hz)
Random and actuator response with reference to level at 251.19 Hz

Freq	Upper	Lower	Freq	Upper	Lower	Freq	Upper	Lower	Freq	Upper	Lower	Freq	Upper	Lower
(Hz)	(dB)	(dB)	(Hz)	(dB)	(dB)	(Hz)	(dB)	(dB)	(Hz)	(dB)	(dB)	(Hz)	(dB)	(dB)
19.95	-0.04	-0.04	501.19	0.01	-0.01	1883.65	0.00	-0.08	4216.97	-0.20	-0.34	9440.61	0.09	-1.42
25.12	-0.01	-0.01	630.96	0.12	-0.02	1995.26	0.00	-0.09	4466.84	-0.20	-0.37	10000.00	-0.01	-1.78
31.62	0.01	0.01	794.33	0.05	-0.02	2113.49	-0.03	-0.11	4731.51	-0.19	-0.40	10592.54	-0.14	-2.12
39.81	0.02	0.02	1000.00	-0.01	-0.03	2238.72	-0.06	-0.11	5011.87	-0.18	-0.44	11220.19	-0.47	-2.60
50.12	0.02	0.02	1059.25	-0.04	-0.04	2371.37	-0.08	-0.10	5308.84	-0.16	-0.48	11885.02	-0.69	-2.90
63.10	0.02	0.02	1122.02	-0.03	-0.04	2511.89	-0.12	-0.12	5623.41	-0.13	-0.52	12589.25	-0.77	-3.00
79.43	0.01	0.01	1188.50	-0.02	-0.04	2660.73	-0.12	-0.13	5956.62	-0.09	-0.56	13335.21	-0.95	-3.16
100.00	0.01	0.01	1258.93	-0.01	-0.05	2818.38	-0.12	-0.15	6309.57	-0.09	-0.62	14125.38	-0.98	-3.13
125.89	0.01	0.01	1333.52	0.00	-0.05	2985.38	-0.11	-0.18	6683.44	-0.10	-0.69	14962.36	-1.18	-3.25
158.49	0.01	0.01	1412.54	0.00	-0.05	3162.28	-0.09	-0.19	7079.46	-0.11	-0.75	15848.93	-1.39	-3.39
199.53	0.00	0.00	1496.24	-0.02	-0.06	3349.65	-0.08	-0.21	7498.94	-0.12	-0.83	16788.04	-1.71	-3.68
251.19	0.00	0.00	1584.89	-0.02	-0.06	3548.13	-0.10	-0.23	7943.28	-0.10	-0.93	17782.80	-2.07	-4.04
316.23	0.06	-0.00	1678.80	-0.02	-0.07	3758.37	-0.13	-0.26	8413.95	-0.03	-1.04	18836.49	-2.46	-4.46
398.11	0.05	-0.01	1778.28	-0.02	-0.08	3981.07	-0.15	-0.28	8912.51	0.08	-1.16	19952.62	-3.62	-5.67

Certificate Number 2012-154936

Instrument Model 820, Serial Number 1817, was calibrated on 09FEB2012. The instrument meets factory specifications per Procedure D0001.8160, ANSI S1.4 1983, IEC 651-Type 1 1979, and IEC 804-Type 1 1985.

Instrument found to be in calibration as received: YES

Date Calibrated: 09FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Larson Davis	LDSigGn/2209	0445 / 0111	12 Months	15NOV2012	2011-151712

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 23 ° Centigrade

Relative Humidity: 32 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As Received" data is the same as shipped data. Tested with PRM828 S/N 2807.

Signed:

Technician: Nick Rasmussen

Certificate Number 2012-154807

Microphone Model 377B20, Serial Number 122748, was calibrated on 07FEB2012. The microphone meets factory specifications per Test Procedure D0001.8167.

Instrument found to be in calibration as received: YES

Date Calibrated: 07FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO
Larson Davis	2559	2506	12 Months	24MAY2012	18309-1
Larson Davis	2900	0575	12 Months	14JUN2012	2011-144882
Larson Davis	PRM915	0102	12 Months	16AUG2012	2011-147581
Larson Davis	PRM902	0206	12 Months	16AUG2012	2011-147576
Larson Davis	MTS1000 / 2201	1000 / 0100	12 Months	09SEP2012	SM090911-3
Hewlett Packard	34401A	3146A62099	12 Months	15NOV2012	5436054
Larson Davis	PRM916	0102	12 Months	22DEC2012	2011-153087
Larson Davis	CAL250	42630	12 Months	04JAN2013	2012-153336

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Environmental test conditions as printed on microphone calibration chart.

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"AS RECEIVED" data is the same as shipped data.

Signed: Alendamm artiga

Technician: Abraham Ortega

Page 1 of 1

Certificate Number 2012-154939

Instrument Model PRM828, Serial Number 2807, was calibrated on 09FEB2012. The instrument meets factory specifications per Procedure D0001.8135.

Instrument found to be in calibration as received: YES

Date Calibrated: 09FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO
Agilent Technologies	34401A	MY47030867	12 Months	03MAY2012	5194985
Larson Davis	LDSigGn/2209	0612 / 0102	12 Months	06JAN2013	2012-153446

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 23 ° Centigrade

Relative Humidity: 32 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As Received" data is the same as shipped data.

Signed:

Technician: Nick Rasmussen

ISO 9001-2008 Certified

Certificate Number 2012-154365

Instrument Model 820, Serial Number 1861, was calibrated on 31JAN2012. The instrument meets factory specifications per Procedure D0001.8160, ANSI S1.4 1983, IEC 651-Type 1 1979, and IEC 804-Type 1 1985.

New Instrument

Date Calibrated: 31JAN2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Larson Davis	LDSigGn / 2209	0666 / 0123	12 Months	08DEC2012	2011-152463

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 22 ° Centigrade

Relative Humidity: 26 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

Tested with PRM828-2874

Signed:

Technician: David Jensen

Page 1 of 1

~ Certificate of Calibration and Compliance ~

Microphone Model: 377B20

Serial Number: 128363

Manufacturer: PCB

Calibration Environmental Conditions

Environmental test conditions as printed on microphone calibration chart.

Reference Equipment

Manufacturer	Model#	Serial #	PCB Control#	Cal Date	Due Date
Larson Davis	GPRM902	4163	CA-1089	4/12/11	4/12/12
Hewlett Packard	34401A	MY41045214	LD-001	3/14/11	3/14/12
Bruel & Kjaer	4192	2657834	LD-028	9/23/11	9/21/12
Newport	BTH-W/N	8410668	CA1187	not required	not required
Larson Davis	PRM915	131	CA-1205	4/22/11	4/20/12
Larson Davis	PRM902	4186	CA-1083	2/3/11	2/3/12
Larson Davis	2559LF	3216 .	CA-883	not required	not required
Larson Davis	ADP005	1	LD-017	not required	not required
Larson Davis	PRM916	128	CA-1553	6/23/11	6/22/12
Larson Davis	CAL250	4118	TA-463	4/11/11	4/11/12
Larson Davis	2201	140	CA890	8/18/11	8/17/12
Larson Davis	2900	1079	CA-521A	6/10/11	6/10/12
Larson Davis	PRA951-4	241	CA1449	9/16/11	9/14/12
0	0	0	0	not required	not required

Frequency sweep performed with B&K UA0033 electrostatic actuator.

1	3343000	of Un	34
4 . 11 1711	111111111	611 6 1 M	ır

As Found: N/A

As Left: New unit in tolerance

Notes

- 1. Calibration of reference microphone is traceable through PTB.
- 2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc.
- 3. Calibration is performed in compliance with ISO 9001, ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025.
- 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications.
- 5. Open circuit sensitivity is measured using the insertion voltage method following procedure AT603-5.
- 6. Measurement uncertainty (95% confidence level with coverage factor of 2) for sensitivity is +/-0.20 dB.
- 7. Unit calibrated per ACS-20.

Technician: Lenard Lukasik

Date: December 27, 2011

PCB PIEZOTRONICS VIBRATION DIVISION

3425 Walden Avenue, Depew, New York, 14043

TEL: 888-684-0013

FAX: 716-685-3886

www.pcb.com

D;CAL80-3407857086 275

Certificate Number 2012-154123

Instrument Model PRM828, Serial Number 2874, was calibrated on 23JAN2012. The instrument meets factory specifications per Procedure D0001.8135.

New Instrument

Date Calibrated: 23JAN2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Hewlett Packard	34401A	MY41044529	12 Months	26JAN2012	5056765
Larson Davis	LDSigGn/2209	0277 / 0109	12 Months	21MAR2012	2011-141059

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 22 ° Centigrade

Relative Humidity: 26 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

ISO 9001-2008 Certified

Certificate Number 2012-154937

Instrument Model 820, Serial Number 1821, was calibrated on 09FEB2012. The instrument meets factory specifications per Procedure D0001.8160, ANSI S1.4 1983, IEC 651-Type 1 1979, and IEC 804-Type 1 1985.

Instrument found to be in calibration as received: YES

Date Calibrated: 09FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Larson Davis	LDSigGn/2209	0612 / 0102	12 Months	06JAN2013	2012-153446

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 23 ° Centigrade

Relative Humidity: 32 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As Received" data is the same as shipped data. Tested with PRM828 S/N 2811.

Signed

Technician: Nick Rasmussen

Certificate Number 2012-154806

Microphone Model 377B20, Serial Number 119015, was calibrated on 07FEB2012. The microphone meets factory specifications per Test Procedure D0001.8167.

Instrument found to be in calibration as received: YES

Date Calibrated: 07FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO
Larson Davis	2559	2506	12 Months	24MAY2012	18309-1
Larson Davis	2900	0575	12 Months	14JUN2012	2011-144882
Larson Davis	PRM915	0102	12 Months	16AUG2012	2011-147581
Larson Davis	PRM902	0206	12 Months	16AUG2012	2011-147576
Larson Davis	MTS1000 / 2201	1000 / 0100	12 Months	09SEP2012	SM090911-3
Hewlett Packard	34401A	3146A62099	12 Months	15NOV2012	5436054
Larson Davis	PRM916	0102	12 Months	22DEC2012	2011-153087
Larson Davis	CAL250	42630	12 Months	04JAN2013	2012-153336

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Environmental test conditions as printed on microphone calibration chart.

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"AS RECEIVED" data is the same as shipped data.

Signed: Almolamm artiga

Technician: Abraham Ortega

Certificate Number 2012-154940

Instrument Model PRM828, Serial Number 2811, was calibrated on 09FEB2012. The instrument meets factory specifications per Procedure D0001.8135.

Instrument found to be in calibration as received: YES

Date Calibrated: 09FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Agilent Technologies	34401A	MY47030867	12 Months	03MAY2012	5194985
Larson Davis	LDSigGn/2209	0612 / 0102	12 Months	06JAN2013	2012-153446

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 23 ° Centigrade

Relative Humidity: 32 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As Received" data is the same as shipped data.

Signed

Technician: Nick Rasmussen

ISO 9001-2008 Certified

Certificate Number 2012-156796

Instrument Model 820, Serial Number 1862, was calibrated on 22MAR2012. The instrument meets factory specifications per Procedure D0001.8160, ANSI S1.4 1983, IEC 651-Type 1 1979, and IEC 804-Type 1 1985.

New Instrument

Date Calibrated: 22MAR2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Larson Davis	LDSigGn / 2209	0249 / 0124	12 Months	02JUN2012	2011-144386

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 23 ° Centigrade

Relative Humidity: 30 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

Tested with PRM828-2889

Signed: A

Technician:

avid Jensen

Page 1 of 1

Certificate Number 2012-156810

Microphone Model 377B20, Serial Number 123393, was calibrated on 22MAR2012. The microphone meets factory specifications per Test Procedure D0001.8167.

New Instrument

Date Calibrated: 22MAR2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO
Larson Davis	2559	2506	12 Months	24MAY2012	18309-1
Larson Davis	2900	0575	12 Months	14JUN2012	2011-144882
Larson Davis	PRM915	0102	12 Months	16AUG2012	2011-147581
Larson Davis	PRM902	0206	12 Months	16AUG2012	2011-147576
Larson Davis	MTS1000 / 2201	1000 / 0100	12 Months	09SEP2012	SM090911-3
Hewlett Packard	34401A	3146A62099	12 Months	15NOV2012	5436054
Larson Davis	PRM916	0102	12 Months	22DEC2012	2011-153087
Larson Davis	CAL250	42630	12 Months	04JAN2013	2012-153336

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Environmental test conditions as printed on microphone calibration chart.

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

Signed: Alendamm artiga

Technician: Abraham Ortega

Page 1 of 1

Certificate Number 2012-155241

Instrument Model PRM828, Serial Number 2889, was calibrated on 17FEB2012. The instrument meets factory specifications per Procedure D0001.8135.

New Instrument

Date Calibrated: 17FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Agilent Technologies	34401A	MY47030867	12 Months	03MAY2012	5194985
Larson Davis	LDSigGn/2209	0248 / 0107	12 Months	06JAN2013	2012-153445

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 23 ° Centigrade

Relative Humidity: 28 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

gned:

echnician: Kimball Olson

Certificate Number 2012-156983

Instrument Model 820, Serial Number 1855, was calibrated on 27MAR2012. The instrument meets factory specifications per Procedure D0001.8160, ANSI S1.4 1983, IEC 651-Type 1 1979, and IEC 804-Type 1 1985.

Instrument found to be in calibration as received: NO

Date Calibrated: 27MAR2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Larson Davis	LDSigGn / 2209	0249 / 0124	12 Months	02JUN2012	2011-144386

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 23 ° Centigrade

Relative Humidity: 30 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

See "As Received" data. Tested with PRM828 S/N 2867

Signed: 🔬

echnician: David Je

Page 1 of 1

Certificate Number 2012-156968

Microphone Model 377B20, Serial Number 127829, was calibrated on 27MAR2012. The microphone meets factory specifications per Test Procedure D0001.8167.

Instrument found to be in calibration as received: YES

Date Calibrated: 27MAR2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO
Larson Davis	2559	2506	12 Months	24MAY2012	18309-1
Larson Davis	2900	0575	12 Months	14JUN2012	2011-144882
Larson Davis	PRM915	0102	12 Months	16AUG2012	2011-147581
Larson Davis	PRM902	0206	12 Months	16AUG2012	2011-147576
Larson Davis	MTS1000 / 2201	1000 / 0100	12 Months	09SEP2012	SM090911-3
Hewlett Packard	34401A	3146A62099	12 Months	15NOV2012	5436054
Larson Davis	PRM916	0102	12 Months	22DEC2012	2011-153087
Larson Davis	CAL250	42630	12 Months	04JAN2013	2012-153336

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Environmental test conditions as printed on microphone calibration chart.

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"AS RECEIVED" data is the same as shipped data.

Signed: Almolamm arliga-

Technician: Abraham Ortega

Certificate Number 2012-156967

Instrument Model PRM828, Serial Number 2867, was calibrated on 27MAR2012. The instrument meets factory specifications per Procedure D0001.8135.

Instrument found to be in calibration as received: YES

Date Calibrated: 27MAR2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Hewlett Packard	34401A	MY41044529	12 Months	26JAN2013	5522640
Larson Davis	LDSigGn/2209	0277 / 0109	12 Months	20MAR2013	2012-156690

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 23 ° Centigrade

Relative Humidity: 30 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As Received" data is the same as shipped data.

igned: //

echnician: Ron Harri

APPENDIX B

APPENDIX C

SOUND LEVEL MEASUREMENTS	URS Corporation Date 04/23/12	Williamsburg Works Former MGP Site 8:21:00	Stop Time 9:21:00	ocations 1 and 2	Brooklyn, NY Wind Speed/Direction 0-2 mph NW	Temperature 53F	Larson Davis Model 824 S/N 1595 (Loc 1), 1515 (Loc 2) Calibrated Prior to Test YES		Pedestrian	Construction activity occurring at another site, backhoe hitting ground occasionally near monitoring location # 4	Backup alarm at other construction site	Truck on 11th Street	Hammering near monitoring location # 3 (removing plywood)	Car on 11th Street	Car on 11th Street	Seagulls	Truck on Kent Avenue	2 cars on 11th Street	Truck on Kent Avenue near monitoring location # 4	Truck at Premier Tank and Truck	Horn	Truck and horn at Premier Tank and Truck	Car on 11th Street	"Storage" personnel cleaning up outside (broom & pan)	Car door slamming near location # 2	Car on 11th Street	Car on 11th Street	Car on 11th Street and siren at a distance	3 car horns		Car on 11th Street	Car on 11th Street Truck on Kent Avenue
	Client Name	Project Name	7.3	Work Location			Sound Level Meter	Acoustic Calibrator	8:22:37	8:23:45	8:27:05	8:27:05		8:30:15	8:30:31	8:30:07	8:31:37	8:31:50	8:32:52	8:34:37		8:35:39	8:37:09	8:37:55	8:40:00	8:41:00	8:42:29	8:44:00	8:44:37	9.44.53	0.44.00	8:45:12

0.40.40	
8.49.10	I ruck brakes and a car starting
8:49:35	Van on 11th St. and truck on Kent Ave.
8:50:08	Car on 11th St.
8:51:11	Pedestrian near location # 2 and trucks on Kent Ave.
8:51:40	Van on 11th St.
8:52:05	Van on 11th St. and truck on Kent Ave.
8:52:38	Garbage truck near locations # 5 and # 6
8:53:03	Car on 11th St.
8:54:50	2 trucks on Kent Ave.
8:56:15	Truck on Kent Ave.
8:56:39	Truck on Kent Ave.
8:56:54	Car on 11th St. and horn on Kent Ave.
8:57:30	Car on 11th St. pulled over near location # 2
8:58:08	Car on 11th St. stopped near location # 2
8:58:50	Door slam and pedestrian talking
8:59:19	Car alarm
9:01:10	Car on 11th St. and truck on Kent Ave.
9:01:35	Pedestrian near location # 2.
9:02:05	Pedestrian near location # 1
9:02:44	Pedestrians talking near location # 1
9:03:15	Forklift near Location # 1
9:03:20	Car on 11th St.
9:05:10	Truck and car on 11th St.
9:06:45	Car on 11th St.
9:07:20	Truck on Kent Ave.
9:08:35	Car on 11th St.
9:10:15	Truck on Kent Ave.
9:11:00	2 trucks on Kent Ave.
9:12:14	Dog barking
9:12:40	Truck near locations # 5 and # 6
9:13:09	Car on 11th St. and a horn
9:13:30	2 pedestrians
9:14:41	Truck on Kent Ave.
9:18:00	Truck on Kent Ave.
9:18:35	Truck on Kent Ave.
9:19:25	Car on 11th St.
9:20:00	Intercom at storage facility

Client Name	URS Corporation	Date 04/23/12	
Project Name	Williamsburg Works Former MGP Site	Start Time 9:40:00	
		Stop Time 10:40:00	
Work Location	Monitoring Locations 3 and 4	Weather Overcast	
	Brooklyn, NY	Wind Speed/Direction 0-2 mph NW	
		Temperature 51F	
Sound Level Meter	Larson Davis Model 824 S/N 1595 (Loc 3), 1515 (Loc 4)	Calibrated Prior to Test	YES
Acoustic Calibrator	Larson Davis CAL200 S/N 3208		
		Car Count 170	
		Truck Count 53	
9:53:13 - 9:53:40	2 trucks and 5 cars		
9:55:20 - 9:56:03	4 cars and a truck		
9:56:25	Truck		
9:57:28	4 cars		
9:57:58	Tractor trailer		
9:59:50	Truck idling at location # 3 until 10:04:06		
10:00:00	Truck on Kent Ave.		
10:02:30	Horns		
10:03:42	Pedestrians talking, 6 cars, 2 trucks		
10:09:17	Motorcycle		
10:10:12	Backup alarm near location # 3		
10:14:00	Truck at location # 4 (read 82 db)		
10:17:35	Horn		
10:21:30 - 10:24:50	Truck idling near location # 4		
10:22:00 - 10:24:50	Sirens at a distance getting closer		
10:26:15	18 wheeled truck and a car		
10:27:55	Firetruck (no siren)		
10:28:51	Airplane		
10:31:00	18 wheeled truck		

	SOOND LEVEL INICASONEINIEN IS	OIN		
Client Name	URS Corporation	Date	04/23/12	
Project Name	Williamsburg Works Former MGP Site	Start Time	11:08:00	
		Stop Time	12:08:00	
Work Location	Monitoring Locations 1 and 2	Weather	Overcast	
	Brooklyn, NY	Wind Speed/Direction 1-2 mph NW	1-2 mph NW	
		Temperature	50F	
Sound Level Meter	Larson Davis Model 824 S/N 1595 (Loc 5), 1515 (Loc 6)	Calibrated Prior to Test	Test	S
Acoustic Calibrator	Larson Davis CAL200 S/N 3208			
	Traffic on Kent Ave. thruoghout			
11:08:10	Truck on "Premier" property			
11:11:08	Car on 12th Street			
11:14:10	Large bang near location 3			
11:15:57	Truck on Kent Avenue			
11:16:33	18 wheeler starting - driving away			==1
11:17:00	Airplane overhead			
11:07:14	Car on 12th Street			
11:17:45	Truck starting on Premier property - driving			
11:17:58	Car on 12th Street			2-7
11:18:20	Car on 12th Street			
11:20:36	Hammering near location 4 - Sher Del Transfer			
11:21:14	Truck on 12th Street			
11:21:35	Pedestrians talking near location 4			
11:22:37	Backup alarm on Premier property			
11:23:09	Car on 12th Street	•		
11:25:50	Car on 12th Street			
11:27:58	Car on 12th Street			
11:28:22	Crash sound near storage facility			
11:29:30	Car on 12th Street			
11:31:15	Car on 12th Street			
11:35:46	Crash sound - ladder - near location 3			
11:37:12	Car on 12th Street			
11.41.05	LOTE			

11:44:48	Car on 12th Street
11:45:30	Car on 12th Street
11:47:08	Car on 12th Street
11:51:55	Truck on 12th Street
11:54:30	Truck entering Premier
11:55:20	Truck on 12th Street
11:55:55	Truck on Premier property
11:59:18	Sirens at a distance
11:09:57	Bang near storage facility
12:01:09	Airplane overhead
12:02:15	Car on 12th Street
12:04:20	Car on 12th Street
12:05:08	Horn
12:06:03	18 wheel truck on 12th Street

APPENDIX D

File Translated:

R:\URS - Williamsburg\23Apr08s.slmdl

```
Model/Serial Number:
                           824 / A1595
                           4.290 / 3.120
 Firmware/Software Revs:
                           VIBRA-TECH, INC.
 Descr1:
                           109 East First Street
 Descr2:
                           Hazleton, PA 18201
 Setup/Setup Descr:
                           urs-ssa.ssa / URS-Williamsburg MGP
 Location:
                          URS-Williamsburg_Location 1
 Note1:
                          Ambient
Note2:
Overall Any Data
Start Time:
                      23-Apr-2012 08:21:18
Elapsed Time:
                      01:00:00
                 A Weight
                                          C Weight
                                                                       Flat
Leq:
                 55.3 dBA
                                           69.7 dBC
                                                                    71.5 dBF
SEL:
                                                                   107.1 dBF
                 90.8 dBA
                                          105.3 dBC
Peak:
                 85.9 dBA
                                           97.2 dBC
                                                                    97.5 dBF
     23-Apr-2012 09:17:31
                              23-Apr-2012 08:52:02
                                                      23-Apr-2012 08:52:01
                 72.7 dBA
Lmax (slow):
                                                                    87.5 dBF
                                           87.3 dBC
                              23-Apr-2012 08:52:03
     23-Apr-2012 08:52:03
                                                     23-Apr-2012 08:52:03
Lmin (slow):
                47.5 dBA
                                           63.6 dBC
                                                                   65.1 dBF
     23-Apr-2012 08:53:44
                              23-Apr-2012 09:04:27
                                                      23-Apr-2012 08:53:35
                                           90.5 dBC
                 74.7 dBA
Lmax (fast):
                                                                    90.7 dBF
     23-Apr-2012 09:03:41
                              23-Apr-2012 08:52:01
                                                      23-Apr-2012 08:52:01
                                           61.9 dBC
Lmin (fast):
                47.1 dBA
                                                                   63.5 dBF
     23-Apr-2012 08:53:54
                              23-Apr-2012 08:53:45
                                                      23-Apr-2012 09:13:46
Lmax (impulse): 75.7 dBA 91.5 ubc 23-Apr-2012 09:03:41 23-Apr-2012 08:52:01 23-Apr-2012 08:50:33 23-Apr-2012 09:04:27
                                          91.5 dBC
                                                                   91.7 dBF
                                                     23-Apr-2012 08:52:01
                                          64.2 dBC
                                                                   65.8 dBF
                                                       23-Apr-2012 08:23:20
Spectra
Date
                Time
                           Run Time
23-Apr-2012 08:21:18
                          01:00:00
     Hz Leq1/3 Leq1/1 Max1/3 Max1/1 Min1/3 Min1/1
                                                   Hz Leq1/3 Leq1/1 Max1/3 Max1/1 Min1/3 Min1/1
   12.5
        63.1
                        60.6
                                      39.7
                                                    630 44.8 59.6
                                                                                       35.7
   16.0
          62.0
                 66.6
                        64.7
                                      39.8
                                             44.9
                                                    800
                                                          45.6
                                                                         60.4
                                                                                       36.9
   20.0
          59.7
                        61.5
                                      40.8
                                                                50.1
                                                    1000
                                                          45.6
                                                                        59.4
                                                                               64.7
                                                                                       37.1
                                                                                              41.4
   25.0
          58.1
                        66.0
                                      41.9
                                                    1250
                                                          44.8
                                                                        59.8
                                                                                       35.6
   31.5
          61.7
                66.3
                        65.8
                               71.8
                                      45.0 50.5 1600
                                                          43.5
                                                                         58.3
                                                                                       34.3
   40.0
          63.3
                        68.6
                                      48.2
                                                    2000
                                                          42.6
                                                                47.3
                                                                        55.9
                                                                               61.2
                                                                                       31.7
                                                                                             36.9
   50.0
          64.1
                        77.6
                                      51.5
                                                    2500
                                                          41.2
                                                                         54.0
                                                                                       28.8
                                           53.8 3150
   63.0
          60.6
                67.0
                        72.3
                              82.2
                                      46.8
                                                          40.1
                                                                         54.0
                                                                                       26.1
   80.0
          61.0
                        79.7
                                      47.2
                                                   4000
                                                          39.2
                                                               43.7
                                                                         52.8
                                                                                57.6
                                                                                       23.6 28.7
    100
          60.9
                        87.6
                                      46.6
                                                   5000
                                                          37.0
                                                                         51.3
                                                                                       20.4
    125
          55.9
                                                          35.0
                        73.1
                              87.8
                                      43.1 49.3 6300
                                                                         49.7
                                                                                       18.7
                                      42.6
    160
          53.6
                        69.6
                                                   8000
                                                                 37.8
                                                                                53.4
                                                                                             23.6
                                                          33.2
                                                                        48.9
                                                                                       18.8
    200
          51.6
                        76.4
                                      40.5
                                                  10000
                                                          29.2
                                                                         46.6
                                                                                       19.1
    250
          49.9
                54.9
                                      39.8 44.2 12500
                              78.4
                        68.1
                                                          24.6
                                                                         40.9
                                                                                       19.3
                                      37.4
    315
          48.2
                        72.9
                                                          22.8
                                                  16000
                                                                 28.3
                                                                         34.0
                                                                                41.9
                                                                                       20.9 25.7
    400
                                                         23.0
         46.3
                        65.5
                                      35.7
                                                  20000
                                                                         27.5
                                                                                       22.1
    500
         45.3
                50.3
                       63.1
                             68.1
                                      35.3 40.3
Ln Start Level:
                         15 dB
L10.00 57.6 dBA
L20.00 55.1 dBA
                                53.8 dBA
52.2 dBA
                                                          49.7 dBA
49.3 dBA
                       L30.00
                        L30.00
                                                L90.00
                                                  L90.00
Detector: Slow Weighting: A
                          85.0 dB
SPL Exceedance Level 1:
                                      Exceeded: 0 times
Exceeded: 0 times
                           120 dB
SPL Exceedance level 2:
                             105 dB Exceeded: 0 times
100 dB Exceeded: 0 times
Peak-1 Exceedance Level:
Peak-2 Exceedance Level:
Hysteresis: 2
            0 time(s)
0 times for 00:00:00.0
Overloaded:
Paused:
```

File Translated: R:\URS - Williamsburg\23Apr08s.slmdl Model/Serial Number: 824 / A1595

Current Any Data

Start Time: 23-Apr-2012 08:21:18

Elapsed Time: 01:00:00

SEL:	: 23-Apr-2012	85.9 dBA	23-Apr-2012	97.2 dBC	: 23-Apr-2012	Flat 71.5 dBF 107.1 dBF 97.5 dBF 08:52:01
Lmax	(slow):	72.7 dBA		87.3 dBC		87.5 dBF
	23-Apr-2012	08:52:03	23-Apr-2012	08:52:03	23-Apr-2012	08:52:03
Lmin	(slow):	47.5 dBA		63.6 dBC		65.1 dBF
	23-Apr-2012	08:53:44	23-Apr-2012	09:04:27	23-Apr-2012	08:53:35
Lmax	(fast):	74.7 dBA		90.5 dBC		90.7 dBF
	23-Apr-2012	09:03:41	23-Apr-2012	08:52:01	23-Apr-2012	08:52:01
Lmin	(fast):	47.1 dBA	MATERIAL CONTRACTOR ASSESSMENT OF THE	61.9 dBC	F. 20.3 15.197 F. 20.007 March 10.000 C. Colon 20.000 C. Colon	63.5 dBF
	23-Apr-2012	08:53:54	23-Apr-2012	08:53:45	23-Apr-2012	09:13:46
Lmax	(impulse):	75.7 dBA		91.5 dBC		91.7 dBF
	23-Apr-2012	09:03:41	23-Apr-2012	08:52:01	23-Apr-2012	08:52:01
Lmin	(impulse):	47.3 dBA		64.2 dBC		
	23-Apr-2012		23-Apr-2012		23-Apr-2012	

Calibrated: Checked: Calibrator

06-Mar-2012 13:12:44 23-Apr-2012 11:06:32

3208

Cal Records Count:

Interval Records:
History Records: Enabled Disabled

Run/Stop Records:

Offset: -46.7 dB Level: 114.0 dB Level: 114.0 dB

Number Interval Records: Number History Records: Number Run/Stop Records:

1

0

File Translated:

```
R:\URS - Williamsburg\23Apr14s.slmdl
 Model/Serial Number:
                                824 / A1515
4.290 / 3.120
 Firmware/Software Revs:
 Name:
                                Vibra-Tech Engineers, Inc.
 Descr1:
                                 109 East First Street
 Descr2:
                                Hazleton, PA 18201
 Setup/Setup Descr:
                                urs-ssa.ssa / URS-Williamsburg MGP
 Location:
                                URS-Williamsburg Location 2
 Note1:
                                Ambient
 Note2:
 Overall Any Data
 Start Time:
                           23-Apr-2012 08:21:33
 Elapsed Time:
                         01:00:00
                    A Weight
                                                   C Weight
                                                                                      Flat
                     58.0 dBA
                                                                                  73.5 dBF
 Lea:
                                                    72.2 dBC
 SEL:
                     93.6 dBA
                                                   107.8 dBC
                                                                                 109.1 dBF
                     95.8 dBA
                                                   101.1 dBC
                                                                                 103.4 dBF
      23-Apr-2012 09:13:13 23-Apr-2012 08:58:49
                                                                 23-Apr-2012 08:58:49
                    75.9 dBA
                                 88.9 dBC 89.5 dBF
23-Apr-2012 09:05:56 23-Apr-2012 09:05:56
63.9 dBC 65.4 dBF
 Lmax (slow):
      23-Apr-2012 09:13:13
                   47.7 dBA
 Lmin (slow):
       23-Apr-2012 09:02:29
                                   23-Apr-2012 08:22:26 23-Apr-2012 08:22:26

      Lmax (fast):
      82.7 dBA
      90.9 dBC
      92.1 dBF

      23-Apr-2012 09:13:13
      23-Apr-2012 09:05:56
      23-Apr-2012 08:58:49

      Lmin (fast):
      47.2 dBA
      61.6 dBC
      63.1 dBF

      23-Apr-2012 09:02:29
      23-Apr-2012 08:22:25
      23-Apr-2012 08:22:25

                                                                  23-Apr-2012 08:22:25
                                    23-Apr-2012 08:22:25

      Lmax (impulse):
      85.8 dBA
      93.5 dBC
      96.1 dBF

      23-Apr-2012 09:13:13
      23-Apr-2012 08:58:49
      23-Apr-2012 08:58:49

      Lmin (impulse):
      47.7 dBA
      65.4 dBC
      66.8 dBF

      23-Apr-2012 09:02:27
      23-Apr-2012 08:22:26
      23-Apr-2012 08:22:23

Spectra
Date
                    Time
                                 Run Time
23-Apr-2012 08:21:33
                                01:00:00
     Hz Leq1/3 Leq1/1 Max1/3 Max1/1 Min1/3 Min1/1
                                                               Hz Leq1/3 Leq1/1 Max1/3 Max1/1 Min1/3 Min1/1
                                              39.4
    12.5 59.7
                           64.5
                                                                630
                                                                     47.3 62.5
                                                                                                          36.5
    16.0
            60.9
                    64.8
                              67.8
                                      71.6
                                                       47.0
                                                                       48.4
                                               44.5
                                                               800
                                                                                         68.5
                                                                                                          37.0
                                                                              52.9
            59.2
                              67.4
    20.0
                                               41.2
                                                               1000
                                                                       48.7
                                                                                        79.3
                                                                                                 79.7
                                                                                                          36.7
                                                                                                                  41.1
                                                                      47.2
    25.0
            59.6
                              66.4
                                               44.5
                                                               1250
                                                                                         62.8
                                                                                                          35.2
                                                                                       72.3
69.7 74.7
    31.5
            65.3
                    69.5
                              65.7
                                     81.3
                                               46.9 51.2 1600
                                                                       46.4
                                                                                                          34.9
                                                                      46.9 50.8
    40.0
            66.6
                             81.0
                                               47.4
                                                               2000
                                                                                                          32.2
                                                                                                                  37.5
    50.0
                                               52.4 2500
48.0 54.4 3150
                                                                       44.2
            66.4
                             84.3
                                                                                        65.2
                                                                                                          29.7
                                   86.3
    63.0
                    70.2
            65.2
                             79.3
                                                                       42.3
                                                                                        58.8
                                                                                                          26.6
    80.0
            64.5
                             78.4
                                               45.6
                                                               4000
                                                                       40.8 45.7
                                                                                        58.6 62.4
                                                                                                          23.8 29.1
     100
                                                                       39.0
            60.4
                              68.1
                                               44.6
                                                               5000
                                                                                        54.0
                                                                                                          20.8
                                               45.1 48.7 6300
     125
            58.1
                    63.2
                                    69.4
                            60.5
                                                                       37.2
                                                                                        48.7
                                                                                                          19.3
                                               41.0
     160
            55.4
                              60.8
                                                                                      48.0 51.9
                                                              8000
                                                                       34.5 39.6
                                                                                                        18.8
                                                                                                                 23.8
                                                                                         42.6
     200
            53.4
                             57.4
                                               39.7
                                                             10000
                                                                       30.1
                                                                                                          19.1
            51.2
                    56.9 65.5
                                    68.5
                                               39.7 44.3 12500
     250
                                                                       24.8
                                                                                        35.3
                                                                                                          19.2
                                               39.1
38.2
                                                                                        30.4 36.8
25.1
                                                                     25.2 29.3
23.5
     315
            51.3
                             64.8
                                                             16000
                                                                                                          20.6 25.6
     400
            50.2
                             71.4
                                                             20000
                                                                                                          22.1
           48.7
                                             36.5 41.9
     500
                   53.7
                            79.7 80.4
Ln Start Level:
                              15 dB
L10.00 61.0 dBA
L20.00 58.4 dBA
                           L30.00 56.8 dBA L90.00 50.5 dBA
L50.00 54.3 dBA L95.00 49.9 dBA
Detector: Slow Weighting: A
SPL Exceedance Level 1: 85.0 dB Exceeded: 0 times SPL Exceedance level 2: 120 dB Exceeded: 0 times Peak-1 Exceedance Level: 105 dB Exceeded: 0 times
Peak-2 Exceedance Level:
                                    100 dB Exceeded: 0 times
Hysteresis: 2
Overloaded: 0 time(s)
Paused: 0 times for 00:00:00.0
```

R:\URS - Williamsburg\23Apr14s.slmdl File Translated:

Model/Serial Number: 824 / A1515

Current Any Data

Start Time:

23-Apr-2012 08:21:33

Elapsed Time: 01:00:00

SEL:	23-Apr-2012	95.8 dBA	23-Apr-2012	101.1 dBC	23-Apr-2012	103.4 dBF
Lmax	(slow):	75.9 dBA		88.9 dBC		89.5 dBF
	23-Apr-2012		23-Apr-2012	09:05:56	23-Apr-2012	09:05:56
Lmin	(slow):	47.7 dBA		63.9 dBC		65.4 dBF
	23-Apr-2012	09:02:29	23-Apr-2012	08:22:26	23-Apr-2012	08:22:26
Lmax	(fast):	82.7 dBA		90.9 dBC		92.1 dBF
	23-Apr-2012	09:13:13	23-Apr-2012	09:05:56	23-Apr-2012	08:58:49
Lmin	(fast):	47.2 dBA		61.6 dBC		63.1 dBF
	23-Apr-2012	09:02:29	23-Apr-2012	08:22:25	23-Apr-2012	08:22:25
Lmax	(impulse):	85.8 dBA		93.5 dBC		96.1 dBF
	23-Apr-2012	09:13:13	23-Apr-2012	08:58:49	23-Apr-2012	08:58:49
Lmin	(impulse):	47.7 dBA		65.4 dBC		66.8 dBF
	23-Apr-2012	09:02:27	23-Apr-2012	08:22:26	23-Apr-2012	08:22:23

Calibrated: Checked:

Calibrator

Cal Records Count:

Interval Records:
History Records:

Run/Stop Records:

01-Jan-2000 00:02:09 23-Apr-2012 11:06:03

not set

Enabled Disabled Offset: -46.2 dB Level: 113.9 dB Level: 114.0 dB

Number Interval Records: Number History Records: Number Run/Stop Records:

1

0

2

R:\URS - Williamsburg\23Apr09s.slmdl

File Translated:

Model/Serial Number: 824 / A1595 Firmware/Software Revs: 4.290 / 3.120 VIBRA-TECH, INC. Descr1: 109 East First Street Descr2: Hazleton, PA 18201 Setup/Setup Descr: urs-ssa.ssa / URS-Williamsburg MGP Location: URS-Williamsburg Location 3 Notel: Ambient Note2: Overall Any Data Start Time: 23-Apr-2012 09:40:35 Elapsed Time: 01:00:00 A Weight C Weight Flat 72.6 dBA 81.5 dBC 82.5 dBF SEL: 108.2 dBA 117.1 dBC 118.1 dBF 112.7 dBA 114.0 dBC 114.2 dBF Peak: 23-Apr-2012 10:36:16 23-Apr-2012 10:13:47 23-Apr-2012 10:13:47 Lmax (slow): 93.6 dBA 103.6 dBC 104.3 dBF 23-Apr-2012 10:36:16 23-Apr-2012 09:59:46 23-Apr-2012 09:59:46 Lmin (slow): 53.9 dBA 68.4 dBC 70.6 dBF 23-Apr-2012 09:41:01 23-Apr-2012 09:46:11 23-Apr-2012 10:05:48 Lmax (fast): 100.0 dBA 106.5 dBC 106.8 dBF 23-Apr-2012 10:36:16 23-Apr-2012 10:13:47 23-Apr-2012 09:59:46 Lmin (fast): 52.9 dBA 66.5 dBC 68.8 dBF 23-Apr-2012 09:40:49 23-Apr-2012 09:55:03 23-Apr-2012 09:55:00 Lmax (impulse): 101.9 dBA 107.5 dBC 107.8 dBF 23-Apr-2012 10:36:16 23-Apr-2012 10:13:47
Lmin (impulse): 53.7 dBA 69.0 dBC 23-Apr-2012 09:41:00 23-Apr-2012 09:46:10 23-Apr-2012 10:13:47 71.2 dBF 23-Apr-2012 10:05:48 Spectra Time Run Time Date 23-Apr-2012 09:40:35 01:00:00 Hz Leq1/3 Leq1/1 Max1/3 Max1/1 Min1/3 Min1/1 Hz Leq1/3 Leq1/1 Max1/3 Max1/1 Min1/3 Min1/1 12.5 69.1 71.4 630 77.8 43.4 63.7 44.4 69.8 16.0 73.5 76.5 56.5 73.3 55.5 800 63.0 74.7 43.0 20.0 66.6 70.0 48.2 1000 62.9 67.6 75.4 80.5 42.9 47.4 25.0 66.2 67.7 47.3 1250 62.6 76.7 41.8 31.5 74.9 75.7 51.6 55.8 1600 71.5 72.4 81.8 39.3 61.6 40.0 71.0 71.3 65.4 80.8 86.2 52.5 2000 60.3 36.2 41.7 50.0 72.7 75.4 54.4 2500 59.6 81.7 33.3 63.0 76.8 79.5 82.3 58.8 3150 80.4 54.8 59.0 87.2 30.9 58.2 63.2 * 87.9 80.0 73.7 74.2 52.5 4000 92.9 29.0 33.5 100 70.8 70.7 89.1 50.8 5000 58.1 23.7 50.4 54.5 6300 125 67.9 73.8 73.1 80.3 57.7 89.7 20.9 47.1 160 67.7 78.7 8000 56.9 89.0 93.4 19.5 24.8 200 66.4 78.8 44.3 10000 54.4 86.4 19.4 48.1 12500 250 64.1 69.4 69.5 79.9 43.7 49.8 82.9 19.3 43.4 50.8 70.8 41.4 16000 84.2 20.9 25.7 315 62.3 77.7 400 61.6 72.2 42.2 20000 36.1 70.7 22.1 76.8 500 81.0 43.1 48.1 62.9 Ln Start Level: 15 dB L10.00 75.0 dBA L20.00 71.7 dBA 69.4 dBA L90.00 56.8 dBA 65.5 dBA L95.00 56.0 dBA L30.00 L50.00 Detector: Slow Weighting: A SPL Exceedance Level 1: 85.0 dB Exceeded: 13 times Exceeded: SPL Exceedance level 2: 120 dB 0 times Peak-1 Exceedance Level: 105 dB Exceeded: 24 times Peak-2 Exceedance Level: 100 dB Exceeded: 17 times Hysteresis: 2 Overloaded: 0 time(s) 0 times for 00:00:00.0 Paused:

File Translated: R:\URS - Williamsburg\23Apr09s.slmdl

Model/Serial Number: 824 / A1595

Current Any Data

Start Time: 23-Apr-2012 09:40:35

Elapsed Time: 01:00:00

Leq: 72 SEL: 108 Peak: 112 23-Apr-2012 10	.6 dBA .2 dBA .7 dBA	81.5 dBC 117.1 dBC 114.0 dBC	Flat 82.5 dBF 118.1 dBF 114.2 dBF 23-Apr-2012 10:13:47
Lmax (slow): 93		103.6 dBC	104.3 dBF
23-Apr-2012 10: Lmin (slow): 53:			23-Apr-2012 09:59:46 70.6 dBF
23-Apr-2012 09			23-Apr-2012 10:05:48
Lmax (fast): 100	.0 dBA	106.5 dBC	106.8 dBF
23-Apr-2012 10:		2 10:13:47	23-Apr-2012 09:59:46
Lmin (fast): 52.		66.5 dBC	68.8 dBF
23-Apr-2012 09:	:40:49 23-Apr-201	2 09:55:03	23-Apr-2012 09:55:00
Lmax (impulse): 101.	.9 dBA	107.5 dBC	107.8 dBF
23-Apr-2012 10:	:36:16 23-Apr-201	2 10:13:47	23-Apr-2012 10:13:47
Lmin (impulse): 53.	.7 dBA	69.0 dBC	71.2 dBF
23-Apr-2012 09:	:41:00 23-Apr-201	2 09:46:10	23-Apr-2012 10:05:48

Calibrated: Checked:

06-Mar-2012 13:12:44 23-Apr-2012 11:06:32

Calibrator

Cal Records Count:

3208

0

Interval Records: History Records: Run/Stop Records:

Enabled Disabled

Offset: -46.7 dB Level: 114.0 dB Level: 114.0 dB

Number Interval Records: Number History Records:

1

0

2

Number Run/Stop Records:

File Translated: R:\URS - Williamsburg\23Apr16s.slmdl Model/Serial Number: 824 / A1515 Firmware/Software Revs: 4.290 / 3.120 Vibra-Tech Engineers, Inc. 109 East First Street Descr1: Hazleton, PA 18201 urs-ssa.ssa / URS-Williamsburg MGP Descr2: Setup/Setup Descr: Location: URS-Williamsburg Location 4 Notel: Ambient. Note2: Overall Any Data 23-Apr-2012 09:40:49 Start Time: 01:00:00 Elapsed Time: A Weight C Weight Flat 73.2 dBA 82.2 dBF 81.0 dBC 116.6 dBC SEL: 108.8 dBA 117.8 dBF 110.8 dBC 111.4 dBF 108.3 dBA Peak: 23-Apr-2012 10:34:15 23-Apr-2012 10:06:48 23-Apr-2012 10:06:48 Lmax (slow): 95.4 dBA 103.2 dBC 104.5 dBF 23-Apr-2012 10:05:05 23-Apr-2012 09:52:13 23-Apr-2012 09:52:13 Lmin (slow): 52.3 dBA 65.4 dBC 66.8 dBF 23-Apr-2012 10:18:33 23-Apr-2012 10:18:02 23-Apr-2012 10:18:02 Lmax (fast): 99.5 dBA 104.9 dBC 106.2 dBF 23-Apr-2012 10:05:05 23-Apr-2012 09:52:13 23-Apr-2012 09:52:13 Lmin (fast): 51.3 dBA 63.9 dBC 65.2 dBF 23-Apr-2012 10:18:31 23-Apr-2012 10:18:30 23-Apr-2012 10:18:01 Lmax (impulse): 100.9 dBA 105.3 dBC 106.5 dBF 23-Apr-2012 10:05:05 23-Apr-2012 09:52:13 23-Apr-2012 09:52:13 23-Apr-2012 09:52:13 23-Apr-2012 10:18:29 23-Apr-2012 10:18:02 Spectra Run Time Date Time 23-Apr-2012 09:40:49 01:00:00 Hz Leq1/3 Leq1/1 Max1/3 Max1/1 Min1/3 Min1/1 Hz Leq1/3 Leq1/1 Max1/3 Max1/1 Min1/3 Min1/1 60.0 68.5 12.5 40.2 68.8 70.0 630 41.4 72.1 72.0 48.0 16.0 67.0 66.4 45.1 800 61.5 70.9 42.3 20.0 70.5 96.9 65.4 61.7 43.2 1000 67.9 95.8 42.5 46.4 25.0 65.0 64.6 90.3 39.7 46.5 1250 65.7 46.9 53.3 1600 70.6 88.3 89.4 78.4 81.1 59.6 31.5 70.8 80.3 38.9 63.2 66.0 40.0 77.3 72.7 50.8 2000 35.6 41.3 50.0 74.5 71.2 52.5 2500 59.9 82.7 33.0 77.6 66.1 63.0 72.7 79.0 79.9 51.1 56.0 3150 55.4 29.4 80.0 70.5 67.1 58.9 68.6 32.1 49.4 4000 53.9 26.8 100 68.2 73.1 48.5 5000 52.8 62.9 24.1 52.0 6300 125 64.9 71.0 75.1 77.7 46.6 53.9 56.5 21.8 160 64.5 68.2 46.3 8000 55.0 58.0 50.9 57.9 19.8 25.3 200 63.0 10000 19.5 66.7 44.5 48.4 46.5 43.5 48.3 12500 62.8 250 67.5 72.3 68.9 45.4 39.1 19.3 42.3 16000 41.6 47.3 31.8 40.1 315 62.2 66.7 20.9 25.7 400 60.9 70.5 41.0 20000 36.1 28.3 22.2 41.3 46.0 500 60.0 65.1 67.8 73.9 15 dB Ln Start Level: L10.00 74.6 dBA L30.00 69.1 dBA L90.00 57.2 dBA L20.00 71.5 dBA L50.00 65.1 dBA L95.00 56.0 dBA Detector: Slow Weighting: A Exceeded: 3 times

SPL Exceedance Level 1: 85.0 dB SPL Exceedance level 2: 120 dB Peak-1 Exceedance Level: 105 dB Exceeded: 0 times Peak-1 Exceedance Level: Exceeded: 11 times Peak-2 Exceedance Level: 100 dB Exceeded: 28 times

Hysteresis: 2
Overloaded: 0 time(s)

Paused: 0 times for 00:00:00.0 File Translated: R:\URS - Williamsburg\23Apr16s.slmdl Model/Serial Number: 824 / A1515

Current Any Data

23-Apr-2012 09:40:49 01:00:00 Start Time:

Elapsed Time:

	A Weight	C Weight 81.0 dBC	Flat 82.2 dBF 117.8 dBF
Leq:	73.2 dBA	81.0 dBC	82.2 dBF
SEL:	108.8 dBA	116.6 dBC	117.8 dBF
	: 108.3 dBA	110.8 dBC	111.4 dBF
	23-Apr-2012 10:34:15	23-Apr-2012 10:06:48	23-Apr-2012 10:06:48
Lmax	(slow): 95.4 dBA	103.2 dBC	104.5 dBF
	23-Apr-2012 10:05:05	23-Apr-2012 09:52:13	23-Apr-2012 09:52:13
Lmin	(slow): 52.3 dBA	65.4 dBC	66.8 dBF
	23-Apr-2012 10:18:33	23-Apr-2012 10:18:02	23-Apr-2012 10:18:02
Lmax	(fast): 99.5 dBA	104.9 dBC	106.2 dBF
	23-Apr-2012 10:05:05	23-Apr-2012 09:52:13	23-Apr-2012 09:52:13
Lmin	(fast): 51.3 dBA	63.9 dBC	65.2 dBF
	23-Apr-2012 10:18:31	23-Apr-2012 10:18:30	23-Apr-2012 10:18:01
Lmax	(impulse): 100.9 dBA	105.3 dBC	106.5 dBF
	23-Apr-2012 10:05:05	23-Apr-2012 09:52:13	23-Apr-2012 09:52:13
Lmin	(impulse): 52.0 dBA	66.5 dBC	67.9 dBF
	23-Apr-2012 10:18:31	23-Apr-2012 10:18:29	23-Apr-2012 10:18:02

Calibrated: 01-Jan-2000 00:02:09 Checked: 23-Apr-2012 11:06:03 Calibrator not set

Cal Records Count:

Interval Records: Enabled Disabled

History Records: Run/Stop Records:

Offset: -46.2 dB Level: 113.9 dB Level: 114.0 dB

Number Interval Records: Number History Records: Number Run/Stop Records:

0 2

R:\URS - Williamsburg\23Apr11s.slmdl

File Translated:

```
Model/Serial Number:
                           824 / A1595
Firmware/Software Revs:
                            4.290 / 3.120
Name:
                           VIBRA-TECH, INC.
Descr1:
                            109 East First Street
Descr2:
                           Hazleton, PA 18201
Setup/Setup Descr:
                           urs-ssa.ssa / URS-Williamsburg MGP
Location:
                           URS-Williamsburg_Location 5
Notel:
                           Ambient
Note2:
Overall Any Data
Start Time:
                       23-Apr-2012 11:08:06
Elapsed Time:
                     01:00:00
                 A Weight
                                            C Weight
                                                                         Flat
Lea:
                  61.9 dBA
                                            72.4 dBC
                                                                     74.2 dBF
                  97.5 dBA
SEL:
                                           108.0 dBC
                                                                     109.8 dBF
Peak:
                  98.5 dBA
                                           103.2 dBC
                                                                     104.4 dBF
     23-Apr-2012 12:05:58
                                                         23-Apr-2012 11:55:08
                               23-Apr-2012 11:55:08
                84.1 dBA
Lmax (slow):
                                            93.0 dBC
                                                                      93.8 dBF
     23-Apr-2012 12:05:58
                               23-Apr-2012 11:55:08
                                                       23-Apr-2012 11:55:08
Lmin (slow):
                 51.9 dBA
                                            63.7 dBC
                                                                      65.2 dBF
     23-Apr-2012 11:13:51
                               23-Apr-2012 11:39:06
                                                         23-Apr-2012 11:51:33
Lmax (fast):
                86.2 dBA
                                            96.2 dBC
                                                                      96.9 dBF
     23-Apr-2012 12:05:57
Lmin (fast): 51.0 dBA
                               23-Apr-2012 11:55:08
                                                         23-Apr-2012 11:55:08
                                            62.1 dBC
                                                                      63.5 dBF
     23-Apr-2012 11:16:06
                               23-Apr-2012 11:50:54
                                                         23-Apr-2012 11:50:54
Lmax (impulse): 86.7 dBA
                                            97.2 dBC
                                                                      97.9 dBF
23-Apr-2012 12:05:57 23-Apr-2012 11:55:08 23-Apr-2012 11:55:08
Lmin (impulse): 51.8 dBA 64.3 dBC 66.0 dBF 23-Apr-2012 11:14:19 23-Apr-2012 11:51:33 23-Apr-2012 11:51:33
Spectra
                 Time
                          Run Time
Date
23-Apr-2012 11:08:06
                            01:00:00
    Hz Leq1/3 Leq1/1 Max1/3 Max1/1 Min1/3 Min1/1
                                                      Hz Leg1/3 Leg1/1 Max1/3 Max1/1 Min1/3 Min1/1
   12.5 64.7
                                                            52.7
                         69.9
                                       40.3
                                                      630
                                                                           72.2
                                                                                          42.4
   16.0
          62.9
                  68.1
                                75.9
                                        41.3 46.1
                         71.3
                                                     800
                                                            52.9
                                                                           72.8
                                                                                          42.3
   20.0
          61.9
                         71.9
                                        42.3
                                                     1000
                                                             52.6
                                                                  57.2
                                                                           73.1
                                                                                          42.0
                                                                                                 46.4
   25.0
          61.7
                         73.1
                                        43.5
                                                     1250
                                                             51.8
                                                                           71.5
                                                                                          40.2
   31.5
          63.7
                 67.8
                         74.5
                               87.3
                                        46.5 51.1 1600
                                                                           70.6
                                                                                          37.3
                                                             50.5
   40.0
                                                             48.9 53.9
                                                                                  76.0
          63.3
                                                                           72.1
                                        47.9
                         86.9
                                                     2000
                                                                                          33.3
                                                                                                 39.3
   50.0
          65.4
                         82.2
                                        47.9
                                                     2500
                                                             47.5
                                                                           70.9
                                                                                          30.0
   63.0
          65.9
                 70.0
                         74.8
                               90.7
                                        48.2
                                                     3150
                                                            47.5
                                                                           72.5
                                                                                          25.9
   80.0
          64.3
                         89.9
                                       47.6
                                                     4000
                                                            46.7
                                                                  51.2
                                                                           76.0
                                                                                  79.1
                                                                                                 28.5
                                                                                          23.2
    100
          60.9
                         82.3
                                                     5000
                                       47.6
                                                            44.8
                                                                           73.7
                                                                                          20.3
                                       45.0 50.1 6300
    125
          58.8
                  63.9
                         77.6
                               84.0
                                                             43.5
                                                                           71.3
                                                                                          18.9
                                                                           71.8
    160
          56.9
                         74.1
                                        41.5
                                                     8000
                                                             43.0 47.0
                                                                                  76.1
                                                                                          19.1
                                                                                                 23.8
    200
          56.3
                         74.8
                                        42.7
                                                    10000
                                                             38.8
                                                                           70.7
                                                                                          19.2
                 60.5
                                       41.4 46.3 12500
    250
          55.4
                         79.4
                               82.3
                                                             30.1
                                                                           60.1
                                                                                          19.2
    315
          55.5
                         77.1
                                       40.0
                                                                           47.1 60.3
                                                    16000
                                                            24.4 31.8
                                                                                          20.9 25.6
    400
          53.3
                         73.2
                                        41.3
                                                    20000
                                                            23.1
                                                                           35.6
                                                                                          22.0
                                      41.9 46.7
    500
         53.2
                57.8
                        71.9
                              77.2
Ln Start Level:
                          15 dB
L10.00 63.8 dBA
L20.00 61.3 dBA
                       L30.00 59.8 dBA L90.00 53.8 dBA
L50.00 57.7 dBA L95.00 53.3 dBA
Detector: Slow Weighting: A
SPL Exceedance Level 1: 85.0 dB Exceeded: 0 times SPL Exceedance level 2: 120 dB Exceeded: 0 times Peak-1 Exceedance Level: 105 dB Exceeded: 0 times
                                       Exceeded: 0 times
Peak-2 Exceedance Level:
                               100 dB Exceeded: 0 times
Hysteresis: 2
            0 time(s)
Overloaded:
Paused:
         0 times for 00:00:00.0
```

File Translated: R:\URS - Williamsburg\23Apr11s.slmdl

Model/Serial Number: 824 / A1595

Current Any Data

23-Apr-2012 11:08:06 01:00:00 Start Time:

Elapsed Time:

SEL:	: 23-Apr-2012	97.5 dBA 98.5 dBA	23-Apr-2012	108.0 dBC 103.2 dBC	23-Apr-2012	109.8 dBF 104.4 dBF
Lmax	(slow):	84.1 dBA				
	23-Apr-2012		23-Apr-2012	11:55:08	23-Apr-2012	11:55:08
Lmin	(slow):	51.9 dBA				65.2 dBF
	23-Apr-2012	11:13:51	23-Apr-2012	11:39:06	23-Apr-2012	11:51:33
Lmax	(fast):	86.2 dBA		96.2 dBC		96.9 dBF
	23-Apr-2012		23-Apr-2012	11:55:08	23-Apr-2012	11:55:08
Lmin	(fast):	51.0 dBA		62.1 dBC		63.5 dBF
	23-Apr-2012	11:16:06	23-Apr-2012	11:50:54	23-Apr-2012	11:50:54
Lmax	(impulse):	86.7 dBA		97.2 dBC		97.9 dBF
	23-Apr-2012		23-Apr-2012		23-Apr-2012	
Lmin	(impulse):				and the part of the control of the c	
	23-Apr-2012		23-Apr-2012		23-Apr-2012	

Calibrated: Checked: Calibrator

06-Mar-2012 13:12:44 23-Apr-2012 11:06:32

3208

Cal Records Count:

Interval Records:

History Records:

Run/Stop Records:

Enabled Disabled

Offset: -46.7 dB Level: 114.0 dB Level: 114.0 dB

Number Interval Records: Number History Records: 0 Number Run/Stop Records: 2

R:\URS - Williamsburg\23Apr18s.slmdl File Translated: Model/Serial Number: 824 / A1515 Firmware/Software Revs: 4.290 / 3.120 Vibra-Tech Engineers, Inc. Name: Descr1: 109 East First Street Descr2: Hazleton, PA 18201 urs-ssa.ssa / URS-Williamsburg MGP Setup/Setup Descr: Location: URS-Williamsburg_Location 6 Note1: Ambient Note2: Overall Any Data Start Time: 23-Apr-2012 11:08:19 01:00:00 Elapsed Time: A Weight C Weight Flat 74.4 dBF Leq: 59.1 dBA 71.0 dBC 94.7 dBA SEL: 106.6 dBC 109.9 dBF 100.0 dBC 97.2 dBA 99.9 dBF Peak: 23-Apr-2012 11:21:20 23-Apr-2012 11:21:20 23-Apr-2012 11:33:06 Lmax (slow): 83.2 dBA 89.3 dBC 89.6 dBF 23-Apr-2012 11:21:21 23-Apr-2012 11:21:23 23-Apr-2012 11:21:23 Lmin (slow): 49.2 dBA 61.8 dBC 63.6 dBF 23-Apr-2012 11:49:53 23-Apr-2012 11:39:14 23-Apr-2012 11:39:14 Lmax (fast): 84.1 dBA 91.7 dBC 93.3 dBF 23-Apr-2012 11:21:20 23-Apr-2012 11:21:23 23-Apr-2012 11:33:06 Lmin (fast): 48.8 dBA 60.3 dBC 62.0 dBF 23-Apr-2012 11:49:52 23-Apr-2012 11:39:13 23-Apr-2012 11:37:57 Lmax (impulse): 84.4 dBA 92.3 dBC 95.9 dBF 23-Apr-2012 11:21:20 23-Apr-2012 11:21:23 23-Apr-2012 11:33:06
Lmin (impulse): 49.2 dBA 62.4 dBC 64.2 dBF 23-Apr-2012 11:49:53 23-Apr-2012 11:39:26 23-Apr-2012 11:39:26 Spectra Run Time Date Time 23-Apr-2012 11:08:19 01:00:00 Hz Leq1/3 Leq1/1 Max1/3 Max1/1 Min1/3 Min1/1 Hz Leq1/3 Leq1/1 Max1/3 Max1/1 Min1/3 Min1/1 49.5 12.5 73.0 68.7 63.7 39.3 630 39.3 16.0 66.9 71.9 61.9 67.7 44.1 48.1 800 50.0 73.0 39.9 20.0 54.6 65.2 63.0 44.9 1000 50.0 73.5 77.6 39.4 44.0 25.0 63.7 70.5 71.8 1250 38.1 46.5 49.3 46.1 51.3 1600 75.2 74.8 74.2 68.1 31.5 63.5 71.3 48.6 35.5 52.2 48.2 40.0 62.6 69.1 2000 47.2 79.0 32.0 37.8 29.2 50.0 62.7 67.2 2500 46.2 73.5 47.9 52.6 3150 63.0 62.5 67.0 69.9 89.0 70.6 43.6 24.9 46.6 68.0 61.5 73.5 27.5 80.0 88.9 47.3 4000 22.4 41.6 46.0 44.6 49.1 6300 8000 100 59.8 89.3 39.3 66.7 19.3 125 56.2 62.2 73.0 89.7 37.9 18.4 66.3 160 54.8 77.7 41.2 34.4 40.0 64.1 68.8 18.7 23.5 40.2 10000 39.4 44.0 12500 200 53.6 75.7 58.7 29.9 19.1 52.5 57.2 250 71.9 78.1 25.5 52.1 19.3 37.7 16000 39.3 20000 22.9 28.7 48.8 53.9 315 50.7 70.7 20.5 25.6 50.4 400 70.9 20000 37.6 39.3 23.0 22.1 39.8 44.2 500 49.9 54.7 72.4 77.0 Ln Start Level: 15 dB L10.00 60.5 dBA L30.00 55.5 dBA L90.00 51.5 dBA L20.00 57.2 dBA L50.00 53.8 dBA L95.00 51.0 dBA Slow A Detector: Weighting: SPL Exceedance Level 1: 85.0 dB Exceeded: 0 times 120 dB 105 dB SPL Exceedance level 2: Exceeded: 0 times Exceeded: 0 times Peak-1 Exceedance Level: Peak-2 Exceedance Level: 100 dB Exceeded: 0 times Hysteresis: 2
Overloaded: 0 time(s)

0 times for 00:00:00.0

Paused:

R:\URS - Williamsburg\23Apr18s.slmdl File Translated:

Model/Serial Number: 824 / A1515

Current Any Data

23-Apr-2012 11:08:19 Start Time:

Elapsed Time: 01:00:00

SEL:	: 23-Apr-2012	97.2 dBA	23-Apr-2012	100.0 dBC	23-Apr-2012	99.9 dBF
	(slow):					89.6 dBF
	23-Apr-2012		23-Apr-2012		23-Apr-2012	
Lmin	(slow):	49.2 dBA				63.6 dBF
	23-Apr-2012	11:49:53	23-Apr-2012	11:39:14	23-Apr-2012	11:39:14
Lmax	(fast):	84.1 dBA		91.7 dBC		93.3 dBF
	23-Apr-2012	11:21:20	23-Apr-2012	11:21:23	23-Apr-2012	11:33:06
Lmin	(fast):	48.8 dBA		60.3 dBC	-	
	23-Apr-2012	11:49:52	23-Apr-2012	11:39:13	23-Apr-2012	11:37:57
Lmax	(impulse):	84.4 dBA		92.3 dBC		95.9 dBF
	23-Apr-2012		23-Apr-2012	17/10/10/10 COLUMN 19/10/10/10/10/10/10/10/10/10/10/10/10/10/	23-Apr-2012	
Lmin	(impulse):		ao npa aoan			64.2 dBF
2211222	23-Apr-2012		23-Apr-2012		23-Apr-2012	

Calibrated: Checked: Calibrator

not set

Cal Records Count:

Interval Records: History Records: Run/Stop Records:

01-Jan-2000 00:02:09

Enabled Disabled

23-Apr-2012 11:06:03

Offset: -46.2 dB Level: 113.9 dB Level: 114.0 dB

Number Interval Records: 1 Number History Records: 0 Number Run/Stop Records: 2

Certificate Number 2012-155615

Instrument Model 824, Serial Number A1595, was calibrated on 28FEB2012. The instrument meets factory specifications per Procedure D0001.8046, IEC 61672-1:2002 Class 1; IEC 60651-2001, 60804-2000 and ANSI S1.4-1983 Type 1 1/3, 1/1 Oct. Filters; S1.11-1986 Type 1C; IEC61260-am1-2001 Class 1.

Instrument found to be in calibration as received: YES

Date Calibrated: 28FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Larson Davis	LDSigGn/2209	0617 / 0104	12 Months	16JAN2013	2012-153792

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 23 ° Centigrade

Relative Humidity: 32 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As received" data is the same as shipped data. Tested with PRM902 S/N 2100

Signed:

Technician: Sean Childs

Certificate Number 2012-155644

Microphone Model 2560, Serial Number 3231, was calibrated on 28FEB2012. The microphone meets factory specifications per Test Procedure D0001.8167.

Instrument found to be in calibration as received: YES

Date Calibrated: 28FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO
Larson Davis	2559	2506	12 Months	24MAY2012	18309-1
Larson Davis	2900	0575	12 Months	14JUN2012	2011-144882
Larson Davis	2559	3034LF	12 Months	15AUG2012	2011-147516
Larson Davis	PRM915	0102	12 Months	16AUG2012	2011-147581
Larson Davis	PRM902	0206	12 Months	16AUG2012	2011-147576
Larson Davis	PRM902	0529	12 Months	07SEP2012	2011-148677
Larson Davis	PRM902	0528	12 Months	07SEP2012	2011-148679
Larson Davis	MTS1000 / 2201	1000 / 0100	12 Months	09SEP2012	SM090911-3
Hewlett Packard	34401A	3146A62099	12 Months	15NOV2012	5436054
Larson Davis	PRM916	0102	12 Months	22DEC2012	2011-153087
Larson Davis	CAL250	42630	12 Months	04JAN2013	2012-153336

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Environmental test conditions as printed on microphone calibration chart.

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"AS RECEIVED" data is the same as shipped data.

Signed: Modamm Ortiga
Technician: Abraham Ortega

Certificate Number 2012-155609

Instrument Model PRM902, Serial Number 2100, was calibrated on 28FEB2012. The instrument meets factory specifications per Procedure D0001.8126.

Instrument found to be in calibration as received: YES

Date Calibrated: 28FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Hewlett Packard	34401A	US36033460	12 Months	20JUN2012	5254394
Larson Davis	LDSigGn/2209	0617 / 0104	12 Months	16JAN2013	2012-153792

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 23 ° Centigrade

Relative Humidity: 32 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As received" data is the same as shipped data.

Signed:

Technician: Sean Childs

Certificate Number 2012-155617

Instrument Model CAL200, Serial Number 3208, was calibrated on 28FEB2012. The instrument meets factory specifications per Procedure D0001.8190.

Instrument found to be in calibration as received: YES

Date Calibrated: 28FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO
Larson Davis	2900	0661	12 Months	05APR2012	2011-141857
Larson Davis	2559	2506	12 Months	24MAY2012	18309-1
PCB	1502C02FJ15PSIA	1429	12 Months	17AUG2012	3396448761.00
Hewlett Packard	34401A	3146A10352	12 Months	21AUG2012	5335364
Larson Davis	PRM915	0112	12 Months	09SEP2012	2011-148845
Larson Davis	PRM902	0480	12 Months	09SEP2012	2011-148846
Larson Davis	MTS1000/2201	0111	12 Months	09SEP2012	SM090911

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Environmental test conditions as shown on calibration report.

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As Received" data is the same as shipped data.

inea:

echnician Scott Montgomen

Certificate Number 2012-155614

Instrument Model 824, Serial Number A1515, was calibrated on 28FEB2012. The instrument meets factory specifications per Procedure D0001.8046, IEC 61672-1:2002 Class 1; IEC 60651-2001, 60804-2000 and ANSI S1.4-1983 Type 1 1/3, 1/1 Oct. Filters; S1.11-1986 Type 1C; IEC61260-am1-2001 Class 1.

Instrument found to be in calibration as received: YES

Date Calibrated: 28FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Larson Davis	LDSigGn/2209	0617 / 0104	12 Months	16JAN2013	2012-153792

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 23 ° Centigrade

Relative Humidity: 32 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As received" data is the same as shipped data. Tested with PRM902 S/N 2334

igned:

Technician: Sean Childs

Certificate Number 2012-155643

Microphone Model 2560, Serial Number 3200, was calibrated on 28FEB2012. The microphone meets factory specifications per Test Procedure D0001.8167.

Instrument found to be in calibration as received: YES

Date Calibrated: 28FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO
Larson Davis	2559	2506	12 Months	24MAY2012	18309-1
Larson Davis	2900	0575	12 Months	14JUN2012	2011-144882
Larson Davis	2559	3034LF	12 Months	15AUG2012	2011-147516
Larson Davis	PRM915	0102	12 Months	16AUG2012	2011-147581
Larson Davis	PRM902	0206	12 Months	16AUG2012	2011-147576
Larson Davis	PRM902	0529	12 Months	07SEP2012	2011-148677
Larson Davis	PRM902	0528	12 Months	07SEP2012	2011-148679
Larson Davis	MTS1000 / 2201	1000 / 0100	12 Months	09SEP2012	SM090911-3
Hewlett Packard	34401A	3146A62099	12 Months	15NOV2012	5436054
Larson Davis	PRM916	0102	12 Months	22DEC2012	2011-153087
Larson Davis	CAL250	42630	12 Months	04JAN2013	2012-153336

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Environmental test conditions as printed on microphone calibration chart.

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"AS RECEIVED" data is the same as shipped data.

Signed: Alendamm Ortiga

Technician: Abraham Ortega

Certificate Number 2012-155608

Instrument Model PRM902, Serial Number 2334, was calibrated on 28FEB2012. The instrument meets factory specifications per Procedure D0001.8126.

Instrument found to be in calibration as received: YES

Date Calibrated: 28FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Hewlett Packard	34401A	US36033460	12 Months	20JUN2012	5254394
Larson Davis	LDSigGn/2209	0617 / 0104	12 Months	16JAN2013	2012-153792

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 23 ° Centigrade

Relative Humidity: 32 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As received" data is the same as shipped data.

Signed:

Technician: Sean Childs

Certificate Number 2012-155612

Instrument Model CAL200, Serial Number 3106, was calibrated on 28FEB2012. The instrument meets factory specifications per Procedure D0001.8190.

Instrument found to be in calibration as received: YES

Date Calibrated: 28FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO
Larson Davis	2900	0661	12 Months	05APR2012	2011-141857
Larson Davis	2559	2506	12 Months	24MAY2012	18309-1
PCB	1502C02FJ15PSIA	1429	12 Months	17AUG2012	3396448761.00
Hewlett Packard	34401A	3146A10352	12 Months	21AUG2012	5335364
Larson Davis	PRM915	0112	12 Months	09SEP2012	2011-148845
Larson Davis	PRM902	0480	12 Months	09SEP2012	2011-148846
Larson Davis	MTS1000/2201	0111	12 Months	09SEP2012	SM090911

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Environmental test conditions as shown on calibration report.

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

Before: 113.90 dB, 93.89 dB, 1000.3 Hz @ sea level. After: Refer to Certificate of Measured Output.

Signed

Technician: Scott Montgomery

Ambient Sound Level Study
Williamsburg Works
Former MGP Site
50 Kent Avenue Parcel
Brooklyn, New York

Prepared for:

Mr. Colin Wasteneys URS Corporation 77 Goodell Street Buffalo, New York 14203

Prepared by:

Vibra-Tech Engineers, Inc. 109 E. First Street Hazleton, Pennsylvania 18201 (800) 233-6181

November 30, 2012

Ambient Sound Level Study
Williamsburg Works
Former MGP Site
50 Kent Avenue Parcel
Brooklyn, New York

November 30, 2012

Introduction

An ambient sound level study was carried out by Vibra-Tech Engineers, Inc. in the area surrounding the former MGP site at 50 Kent Avenue, Brooklyn, New York. The study was authorized by Mr. Colin Wasteneys of URS Corporation for the purpose of measuring ambient sound levels around the perimeter of the 50 Kent Avenue Parcel prior to the start of the project. Sound measurements were taken from November 21 to November 27, 2012.

Scope and Conditions of Study

Instrumentation

Six (6) Larson Davis System 820 sound level monitoring systems were used to conduct unattended monitoring during this ambient study. In addition, two Larson Davis 824 Systems were used to conduct spot check - attended monitoring at each location. The data collected by all systems contains various sound level quantities, including Exceedance Levels, $L_{\rm eq}$, and other noise measurements, all measured simultaneously. The sound level systems were laboratory calibrated by the manufacturer prior to the study. The systems were also field calibrated immediately after installation and removal. All sound level system calibration information for all six unattended systems is located in Appendix A.

Field Procedure

For the study conducted from November 21 to November 27, 2012, a total of 6 unattended sound level stations were deployed at locations along the project site periphery. The table below provides the location number, sound level meter serial number, a brief description, and GPS coordinate for each location. A map showing monitoring locations is located in Appendix B.

Table 1. Monitoring locations for the sound study conducted from November 21 to November 27, 2012

Location	SLM Serial Number	Description	GPS
1	1893	Northwest corner of site, along 11 th Street	N 40° 43′ 24.02″
1	1833	Northwest corner of site, along 11 Street	W 73° 57′ 37.76″
2	1577	West side of site, along 11 th Street	N 40° 43′ 22.79″
2	15//	west side of site, along 11 Street	W 73° 57′ 35.69″
3	1827	South Corner of site - Intersection of Kent Ave.	N 40° 43′ 21.55″
3	1027	and 11 th Street	W 73° 57′ 33.73″
4	1857	Southeast Corner of site - Intersection of Kent	N 40° 43′ 23.07″
4	1037	Ave. and 12 th Street	W 73° 57′ 32.13″
5	1532	East side of site, along 12 th Street	N 40° 43′ 24.22″
5	1552	East side of site, along 12 - Street	W 73° 57′ 33.96″
6	1602	North corner of site, along 12 th Street	N 40° 43′ 25.51″
В	1692	North corner of site, along 12 Street	W 73° 57′ 36.13″

In addition to the six stations deployed, two Larson Davis 824 Systems were used to conduct 1 hour spot checks at each of the six monitoring locations. The sound level systems were mounted on tripods approximately five feet above the ground and the microphones were equipped with wind screens. During these spot check tests, specific information regarding singular events which occurred near the monitoring location or were evident during each sound level test period were noted. Weather conditions during the testing were also recorded. A copy of the field notes for each of the six spot checks is included in Appendix C.

Sound Level Measurements

The measurement of noise involves quantifying both its rate (frequency in Hz) and intensity (pressure) relative to normal atmospheric pressure. People do not perceive all frequencies with equal sensitivity, rather they respond to higher frequencies more than lower frequencies. The following discussion of sound levels measurements describes the types of measurements collected for these studies.

dBA

A dBA sound level measurement weighs the various frequency components of a sound as perceived by the human ear in order to yield a single number indicator of its relative loudness. All measurements used in this study are dBA.

Ln – Exceedance Levels

Exceedance Level measurements are taken for a pre-determined period of time, which is variable. The results of these measurements are expressed as a dBA value and the percentage of time of the total measurement period that the level was exceeded. For example, if L_{10} = 50 dBA, for 10 percent of the test period, the sound level present was 50 dBA or above.

L_{eq} – Equivalent Sound Level

L_{eq} is a measurement over a period of time and is the steady state sound level, which contains the same acoustic energy as the measured time varying sound level for the time period of the measurement.

The sound level meters used for this project directly calculate and output a L_{eq} value in dB. The sound level meters use the following equation to calculate the L_{eq} values:

$$L_{eq} = 10 \log \left[\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \frac{p_A^2}{p_0^2} dt \right]$$

- Leg = equivalent continuous sound pressure level [dB]
- p0 = reference pressure level = 20μPa
- pA= acquired sound pressure in Pa
- t1 = start time of measurement
- t2 = end time of measurement

Results of the Study

Daily Summary for Each Location

The tables below contain the daily measurement summary which includes the maximum, minimum, and Leq levels recorded at each location. Please note that this summary is for data collection from November 21 at 00:00 to November 27 at 23:59. The sound level meters located at monitoring location 3 and monitoring location 4 did not record data after November 24, 2012 at 14:00 due to the memory filling up with event files. A copy of all sound level data for the six monitoring locations is included on the CD attached to this report titled "URS Corporation - Williamsburg Works Former MGP Site - November 21-27, 2012 - Ambient Sound Monitoring."

Monitoring Location 1

Date	11/21/12	11/22/12	11/23/12	11/24/12	11/25/12	11/26/12	11/27/12
Daily Maximum	87.5	80.8	80.1	79.7	74.9	84.2	102.2
Daily Minimum	43.5	39.6	39.0	39.9	37.6	40.2	39.5
Daily L _{eq} dBA	57.2	53.2	53.4	50.2	48.6	54.8	65.3

Monitoring Location 2

Date	11/21/12	11/22/12	11/23/12	11/24/12	11/25/12	11/26/12	11/27/12
Daily Maximum	89.3	77.2	79.1	80.9	76.9	83.2	84.6
Daily Minimum	43.0	40.2	39.2	42.6	39.9	41.6	39.8
Daily L _{eq} dBA	56.8	52.3	53.4	52.1	49.4	55.0	57.5

Monitoring Location 3

Date	11/21/12	11/22/12	11/23/12	11/24/12	11/25/12	11/26/12	11/27/12
Daily Maximum	91.3	96.0	97.6	-	-	-	-
Daily Minimum	45.0	42.6	42.0	ı	-	1	-
Daily L _{eq} dBA	64.7	60.9	62.6	-	-	-	-

Monitoring Location 4

Date	11/21/12	11/22/12	11/23/12	11/24/12	11/25/12	11/26/12	11/27/12
Daily Maximum	90.5	97.3	103.5	-	-	-	-
Daily Minimum	44.3	43.1	43.0	-	-	-	-
Daily L _{eq} dBA	67.4	63.1	69.6	-	-	-	-

Monitoring Location 5

Date	11/21/12	11/22/12	11/23/12	11/24/12	11/25/12	11/26/12	11/27/12
Daily Maximum	84.5	84.5	82.0	86.6	82.3	88.2	84.4
Daily Minimum	43.3	40.1	41.6	45.4	43.0	43.5	41.4
Daily L _{eq} dBA	58.4	54.6	57.0	57.1	54.3	58.7	58.7

Monitoring Location 6

Date	11/21/12	11/22/12	11/23/12	11/24/12	11/25/12	11/26/12	11/27/12
Daily Maximum	89.7	84.1	83.4	87	81.4	83.8	82.7
Daily Minimum	40.7	38.3	36.9	40.3	37.7	39.2	38.5
Daily L _{eq} dBA	56.2	53.2	54.1	53.3	51.1	54.6	55.7

3

Overall Summary for Each Location

The tables below contain the overall noise level summary including overall maximum, minimum, Leq, and LN Exceedance levels recorded at each location. Please note that this data includes readings from the date and time of installation (November 20, 2012) to the time of removal on November 28, 2012.

Location	1	2	3	4	5	6
Overall Maximum dBA	102.2	89.3	100.6	103.5	88.2	89.7
Overall Minimum dBA	37.6	39.2	40.9	43.0	40.1	36.9
Overall Leq	58.9	54.8	66.0	67.5	57.4	54.5
Ln 10	60.9	57.3	68.4	72.1	59.5	55.6
Ln 20	56.6	55.2	64.9	67.7	57.5	53.4
Ln 30	54.5	53.6	62.2	64.6	55.3	51.9
Ln 50	51.0	50.8	57.9	58.8	52.3	49.2
Ln 90	43.7	45.1	49.2	49.7	46.4	43.0
Ln 95	42.7	44.1	47.6	47.7	44.9	41.9

On Site Readings

The tables below contain the noise level summary including the maximum, minimum, Leq, and LN Exceedance levels recorded for the one hour spot checks conducted at each location. Please note that this data was collected on November 20, 2012. A copy of all sound level data for these spot checks is included in Appendix D along with the calibration certificates for the two sound level meters used to collect the on site data.

Location	1	2	3	4	5	6
Time	14:02:05	14:04:32	15:09:04	15:11:14	16:16:00	16:18:13
Spot Check Maximum dBA	79.6	80.8	81.5	97.9	82.4	75.4
Spot Check Minimum dBA	50.3	51.5	49.8	51.8	48.2	48.8
Spot Check Leq	58.5	60.0	65.9	68.5	59.6	57.0
Ln 10	58.7	60.7	69.2	70.4	61.3	59.5
Ln 20	57.1	58.8	66.6	68.0	59.0	57.8
Ln 30	56.2	57.6	65.0	66.4	57.4	56.7
Ln 50	54.7	56.0	61.8	63.5	55.2	55.1
Ln 90	52.1	53.2	53.7	55.5	51.2	52.0
Ln 95	51.6	52.8	52.7	54.4	50.4	51.3

Comparison of One Hour Spot Check and Sound Level Station

Location	Time	Leq dBA	Lmax dBA	Lmin dBA
Location 1	14:00	58.9	80.7	50.2
Spot check	14:02	58.5	79.6	50.3
Location 2	14:00	58.3	79.1	49.5
Spot check	14:04	60.0	80.8	51.5
Location 3	15:00	67.1	86.3	51.3
Spot check	15:09	65.9	81.5	49.8
Location 4	15:00	69.2	92.2	51.8
Spot check	15:11	68.5	97.9	51.8
Location 5	16:00	58.9	79.6	48.4
Spot check	16:16	59.6	82.4	48.2
Location 6	16:00	56.4	75.2	46.9
Spot check	16:18	57.0	75.4	48.8

If you have any questions or comments regarding the ambient sound monitoring at the Williamsburg Works Former MGP site please contact our office.

Respectfully submitted,

VIBRA-TECH ENGINEERS, INC.

Mark Edwards

Vibration and Sound Analyst

Jonathan A. Ferdinand

Vibration and Noise Specialist

APPENDIX A

Certificate Number 2012-162984

Instrument Model 820, Serial Number 1893, was calibrated on 19JUL2012. The instrument meets factory specifications per Procedure D0001.8160, ANSI S1.4 1983, IEC 651-Type 1 1979, and IEC 804-Type 1 1985.

New Instrument

Date Calibrated: 19JUL2012

Calibration due:

Calibration Standards Used

	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
MANUFACTURER		0277 / 0109	12 Months	20MAR2013	2012-156690
Larson Davis	LDSigGn/2209	027770109	12 WOMEN		

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 24 ° Centigrade

Relative Humidity: 31 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

Tested with PRM828 S/N 2921

Signed:

ochnician.

avid Jensen

Certificate Number 2012-162983

Instrument Model PRM828, Serial Number 2921, was calibrated on 17JUL2012. The instrument meets factory specifications per Procedure D0001.8135.

New Instrument

Date Calibrated: 17JUL2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Agilent Technologies	34401A	MY41044529	12 Months	26JAN2013	5522640
Larson Davis	LDSigGn/2209	0277 / 0109	12 Months	20MAR2013	2012-156690

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 24 ° Centigrade

Relative Humidity: 37 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

Signed

echnician. David Jense

ISO 9001-2008 Certified

Certificate Number 2012-163122

Microphone Model 377B20, Serial Number 127776, was calibrated on 27AUG2012. The microphone meets factory specifications per Test Procedure D0001.8167.

New Instrument

Date Calibrated: 27AUG2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTEDVAL	OAL BUE	
Larson Davis	MTS1000 / 2201	1000 / 0100	INTERVAL	CAL. DUE	TRACEABILITY NO
Hewlett Packard	34401A		12 Months	09SEP2012	SM090911-3
Larson Davis		3146A62099	12 Months	15NOV2012	5436054
	2559	2504	12 Months	13DEC2012	18736-1
Larson Davis	PRM916	0102	12 Months	22DEC2012	2011-153087
Larson Davis	CAL250	42630	12 Months	04JAN2013	
Larson Davis	2900	0575			2012-153336
Larson Davis	PRM902		12 Months	26JUL2013	2012-162047
Larson Davis		0206	12 Months	14AUG2013	2012-162575
Laisuii Davis	PRM915	0102	12 Months	15AUG2013	2012-162597

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Environmental test conditions as printed on microphone calibration chart.

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

Signed: Moderning astron

Technician: Abraham Ortega

Certificate Number 2012-157415

Instrument Model 820, Serial Number 1577, was calibrated on 06APR2012. The instrument meets factory specifications per Procedure D0001.8160, ANSI S1.4 1983, IEC 651-Type 1 1979, and IEC 804-Type 1 1985.

Instrument found to be in calibration as received: YES

Date Calibrated: 06APR2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Larson Davis	LDSigGn/2209	0612 / 0102	12 Months	06JAN2013	2012-153446

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 23 ° Centigrade

Relative Humidity: 28 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As Received" data is the same as shipped data. Tested with PRM828 S/N 2457.

Signed

Technician: Nick Rasmussen

Certificate Number 2012-157416

Instrument Model PRM828, Serial Number 2457, was calibrated on 06APR2012. The instrument meets factory specifications per Procedure D0001.8135.

Instrument found to be in calibration as received: YES

Date Calibrated: 06APR2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Agilent Technologies	34401A	MY47030867	12 Months	03MAY2012	5194985
Larson Davis	LDSigGn/2209	0612 / 0102	12 Months	06JAN2013	2012-153446

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 23 ° Centigrade

Relative Humidity: 28 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As Received" data is the same as shipped data.

ned: / Vick

Technician: Nick Rasmussen

ISO 9001-2008 Certified

Certificate Number 2012-157529

Microphone Model 377B20, Serial Number 128406, was calibrated on 10APR2012. The microphone meets factory specifications per Test Procedure D0001.8167.

New Instrument

Date Calibrated: 10APR2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL, DUE	TRACEABILITY NO
Larson Davis	2559	2506	12 Months	24MAY2012	18309-1
Larson Davis	2900	0575	12 Months	14JUN2012	2011-144882
Larson Davis	PRM915	0102	12 Months	16AUG2012	2011-147581
Larson Davis	PRM902	0206	12 Months	16AUG2012	2011-147576
Larson Davis	MTS1000 / 2201	1000 / 0100	12 Months	09SEP2012	SM090911-3
Hewlett Packard	34401A	3146A62099	12 Months	15NOV2012	5436054
Larson Davis	PRM916	0102	12 Months	22DEC2012	2011-153087
Larson Davis	CAL250	42630	12 Months	04JAN2013	2012-153336

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Environmental test conditions as printed on microphone calibration chart.

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

Signed: Abrolomma Os

Technician: Abraham Ortega

Certificate Number 2012-163132

Instrument Model 820, Serial Number 1827, was calibrated on 27AUG2012. The instrument meets factory specifications per Procedure D0001.8160, ANSI S1.4 1983, IEC 651-Type 1 1979, and IEC 804-Type 1 1985.

Instrument found to be in calibration as received: YES

Date Calibrated: 27AUG2012

Calibration due:

Calibration Standards Used

· · · · · · · · · · · · · · · · · · ·	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
MANUFACTURER		0666 / 0123	12 Months	08DEC2012	2011-152463
Larson Davis	LDSigGn / 2209	000070123	12 101011110		

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 24 ° Centigrade

Relative Humidity: 33 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As Received" data is the same as shipped data.

Tested with PRM828 S/N 2826

gned: Naid Gensen
Technician: David Jensen

Certificate Number 2012-163068

Instrument Model PRM828, Serial Number 2382, was calibrated on 24AUG2012. The instrument meets factory specifications per Procedure D0001.8135.

Instrument found to be in calibration as received: YES

Date Calibrated: 24AUG2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO
	34401A	MY47024345	12 Months	28SEP2012	5375785
Agilent Technologies		0276 / 0105	12 Months	04NOV2012	2011-151113
Larson Davis	2900 / 2239	027070103	12		

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 24 ° Centigrade

Relative Humidity: 32 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As Received" data is the same as shipped data.

ned: Naid Gensen

Γechnician: Ďavid Jensen

Certificate Number 2012-163054

Microphone Model 377B20, Serial Number LW130081, was calibrated on 27AUG2012. The microphone meets factory specifications per Test Procedure D0001.8167.

New Instrument

Date Calibrated: 27AUG2012

Calibration due:

Calibration Standards Used

MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO
MTS1000 / 2201	1000 / 0100	12 Months	09SEP2012	SM090911-3
34401A	3146A62099	12 Months	15NOV2012	5436054
	2504	12 Months	13DEC2012	18736-1
	0102	12 Months	22DEC2012	2011-153087
		12 Months	04JAN2013	2012-153336
		12 Months	26JUL2013	2012-162047
		12 Months	14AUG2013	2012-162575
				2012-162597
		MTS1000 / 2201 1000 / 0100 34401A 3146A62099 2559 2504 PRM916 0102 CAL250 42630 2900 0575 PRM902 0206	MTS1000 / 2201 1000 / 0100 12 Months 34401A 3146A62099 12 Months 2559 2504 12 Months PRM916 0102 12 Months CAL250 42630 12 Months 2900 0575 12 Months PRM902 0206 12 Months	MTS1000 / 2201 1000 / 0100 12 Months 09SEP2012 34401A 3146A62099 12 Months 15NOV2012 2559 2504 12 Months 13DEC2012 PRM916 0102 12 Months 22DEC2012 CAL250 42630 12 Months 04JAN2013 2900 0575 12 Months 26JUL2013 PRM902 0206 12 Months 14AUG2013

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Environmental test conditions as printed on microphone calibration chart.

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

Signed: - Milm

Technician: Abraham Ortega

Certificate Number 2012-163140

Instrument Model 820, Serial Number 1857, was calibrated on 24AUG2012. The instrument meets factory specifications per Procedure D0001.8160, ANSI S1.4 1983, IEC 651-Type 1 1979, and IEC 804-Type 1 1985.

Instrument found to be in calibration as received: YES

Date Calibrated: 24AUG2012

Calibration due:

Calibration Standards Used

	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
MANUFACTURER	MODEL		12 Months	08DEC2012	2011-152463
Larson Davis	LDSigGn / 2209	0666 / 0123	12 1010111113	OODLOZOIL	

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 24 ° Centigrade

Relative Humidity: 32 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As Received" data is the same as shipped data.

Tested with PRM828 S/N 2382

Technician: David Jensen

Page 1 of 1

Certificate Number 2012-163067

Instrument Model PRM828, Serial Number 2827, was calibrated on 24AUG2012. The instrument meets factory specifications per Procedure D0001.8135.

Instrument found to be in calibration as received: YES

Date Calibrated: 24AUG2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Agilent Technologies	34401A	MY47024345	12 Months	28SEP2012	5375785
Larson Davis	2900 / 2239	0276 / 0105	12 Months	04NOV2012	2011-151113

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 24 ° Centigrade

Relative Humidity: 32 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As Received" data is the same as shipped data.

ed: Navid

echnician: David Jense

Page 1 of 1

~ Certificate of Calibration and Compliance ~

Microphone Model: 377B20

Serial Number: LW130058

Manufacturer: PCB

Calibration Environmental Conditions

Environmental test conditions as printed on microphone calibration chart.

Reference Equipment

Manufacturer	Model #	Serial #	PCB Control #	Cal Date	Due Date
Hewlett Packard	34401A	MY41045214	LD-001	3/8/12	3/8/13
Bruel & Kjaer	4192	2657834	LD028	12/30/11	11/30/12
Newport	BTH-W/N	8410668	CA1187	not required	not required
Larson Davis	PRM915	124	CA1024	12/6/11	12/6/12
Larson Davis	PRM902	4709	CA-1453	10/7/11	10/5/12
Larson Davis	2559LF	3216	CA-883	not required	not require
Larson Davis	ADP005	1	LD-017	not required	not require
Larson Davis	PRM916	127	CA-924	4/4/12	4/4/13
Larson Davis	CAL250	4147	LD018	2/29/12	3/1/13
Larson Davis	2201	140	CA890	8/18/11	8/17/12
Larson Davis	2900	1079	CA-521A	6/10/11	6/10/13
Larson Davis	PRA951-4	241	CA1449	9/16/11	9/14/12
0	0	0	0	not required	not require
0	0	0	0	not required	not require

Frequency sweep performed with B&K UA0033 electrostatic actuator.

Condition of Unit

As Found: N/A

As Left: New unit in tolerance

Notes

- 1. Calibration of reference microphone is traceable through PTB.
- 2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc.
- 3. Calibration is performed in compliance with ISO 9001, ISO 10012-1, ANSI/NCSL Z540.3 and ISO 17025.
- 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications.
- 5. Open circuit sensitivity is measured using the insertion voltage method following procedure AT603-5.
- 6. Measurement uncertainty (95% confidence level with coverage factor of 2) for sensitivity is +/-0.20 dB.
- 7. Unit calibrated per ACS-20.

Technician: Lenard Lukasik

July 26, 2012

3425 Walden Avenue, Depew, New York, 14043

TEL: 888-684-0013 FAX: 716-685-3886

Certificate Number 2012-163133

Instrument Model 820, Serial Number 1532, was calibrated on 24AUG2012. The instrument meets factory specifications per Procedure D0001.8160, ANSI S1.4 1983, IEC 651-Type 1 1979, and IEC 804-Type 1 1985.

Instrument found to be in calibration as received: YES

Date Calibrated: 24AUG2012

Calibration due:

Calibration Standards Used

	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
MANUFACTURER	MODEL	0277 / 0109	12 Months	20MAR2013	2012-156690
Larson Davis	LDSigGn/2209	021110100			

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 24 ° Centigrade

Relative Humidity: 32 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As Received" data is the same as shipped data.

Tested with PRM828 S/N 2827

ed: Naid y

Tachnician: David Jensen

Page 1 of 1

~ Certificate of Calibration and Compliance ~

Microphone Model: 377B20

Serial Number: LW130086

Manufacturer: PCB

Calibration Environmental Conditions

Environmental test conditions as printed on microphone calibration chart.

Reference Equipment

Manufacturer	Model #	Serial #	PCB Control #	Cal Date	Due Date
Hewlett Packard	34401A	MY41045214	LD-001	3/8/12	3/8/13
Bruel & Kjaer	4192	2657834	LD028	12/30/11	11/30/12
Newport Newport	BTH-W/N	8410668	CA1187	not required	not required
Larson Davis	PRM915	124	CA1024	12/6/11	12/6/12
Larson Davis	PRM902	4709	CA-1453	10/7/11	10/5/12
Larson Davis	2559LF	3216	CA-883	not required	not require
Larson Davis	ADP005	1	LD-017	not required	not require
Larson Davis	PRM916	127	CA-924	4/4/12	4/4/13
Larson Davis	CAL250	4147	LD018	2/29/12	3/1/13
Larson Davis	2201	140	CA890	8/18/11	8/17/12
Larson Davis	2900	1079	CA-521A	6/10/11	6/10/13
Larson Davis	PRA951-4	241	CA1449	9/16/11	9/14/12
0	0	0	0	not required	not require
0	0	0	0	not required	not require

Frequency sweep performed with B&K UA0033 electrostatic actuator.

Condition	of	Unit
-----------	----	------

As Found: N/A

As Left: New unit in tolerance

Notes

- 1. Calibration of reference microphone is traceable through PTB.
- 2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc.
- 3. Calibration is performed in compliance with ISO 9001, ISO 10012-1, ANSI/NCSL Z540.3 and ISO 17025.
- 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications.
- 5. Open circuit sensitivity is measured using the insertion voltage method following procedure AT603-5.
- 6. Measurement uncertainty (95% confidence level with coverage factor of 2) for sensitivity is +/-0.20 dB.
- 7. Unit calibrated per ACS-20.

Technician: Lenard Lukasik

e: July 26, 2012

3425 Walden Avenue, Depew, New York, 14043

TEL: 888-684-0013

FAX: 716-685-3886

www.pcb.com

Certificate Number 2012-163066

Instrument Model PRM828, Serial Number 2826, was calibrated on 24AUG2012. The instrument meets factory specifications per Procedure D0001.8135.

Instrument found to be in calibration as received: YES

Date Calibrated: 24AUG2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Agilent Technologies	34401A	MY47024345	12 Months	28SEP2012	5375785
Larson Davis	2900 / 2239	0276 / 0105	12 Months	04NOV2012	2011-151113

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 24 ° Centigrade

Relative Humidity: 32 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As Received" data is the same as shipped data.

d: 🐼

echnician: [

David Jensen

Certificate Number 2012-163147

Instrument Model 820, Serial Number 1692, was calibrated on 28AUG2012. The instrument meets factory specifications per Procedure D0001.8160, ANSI S1.4 1983, IEC 651-Type 1 1979, and IEC 804-Type 1 1985.

Instrument found to be in calibration as received: NO

Date Calibrated: 28AUG2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Larson Davis	LDSigGn / 2209	0666 / 0123	12 Months	08DEC2012	2011-152463

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 24 ° Centigrade

Relative Humidity: 32 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As Received" data unavailable due to unit failure.

Tested with PRM828 S/N 2869

David Gensen

Technician: David Jensen

Certificate Number 2012-163065

Instrument Model PRM828, Serial Number 2869, was calibrated on 24AUG2012. The instrument meets factory specifications per Procedure D0001.8135.

Instrument found to be in calibration as received: YES

Date Calibrated: 24AUG2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO
110 0.2	34401A	MY47024345	12 Months	28SEP2012	5375785
Agilent Technologies	2900 / 2239	0276 / 0105	12 Months	04NOV2012	2011-151113
Larson Davis	2900 / 2233	02/07/07			

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 24 ° Centigrade

Relative Humidity: 32 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As Received" data is the same as shipped data.

Signed

echnician: David Jense

Certificate Number 2012-163051

Microphone Model 377B20, Serial Number 127513, was calibrated on 27AUG2012. The microphone meets factory specifications per Test Procedure D0001.8167.

Instrument found to be in calibration as received: YES

Date Calibrated: 27AUG2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO
Larson Davis	MTS1000 / 2201	1000 / 0100	12 Months	09SEP2012	SM090911-3
Hewlett Packard	34401A	3146A62099	12 Months	15NOV2012	5436054
Larson Davis	2559	2504	12 Months	13DEC2012	18736-1
Larson Davis	PRM916	0102	12 Months	22DEC2012	2011-153087
Larson Davis	CAL250	42630	12 Months	04JAN2013	2012-153336
Larson Davis	2900	0575	12 Months	26JUL2013	2012-162047
Larson Davis	PRM902	0206	12 Months	14AUG2013	2012-162575
Larson Davis	PRM915	0102	12 Months	15AUG2013	2012-162597

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

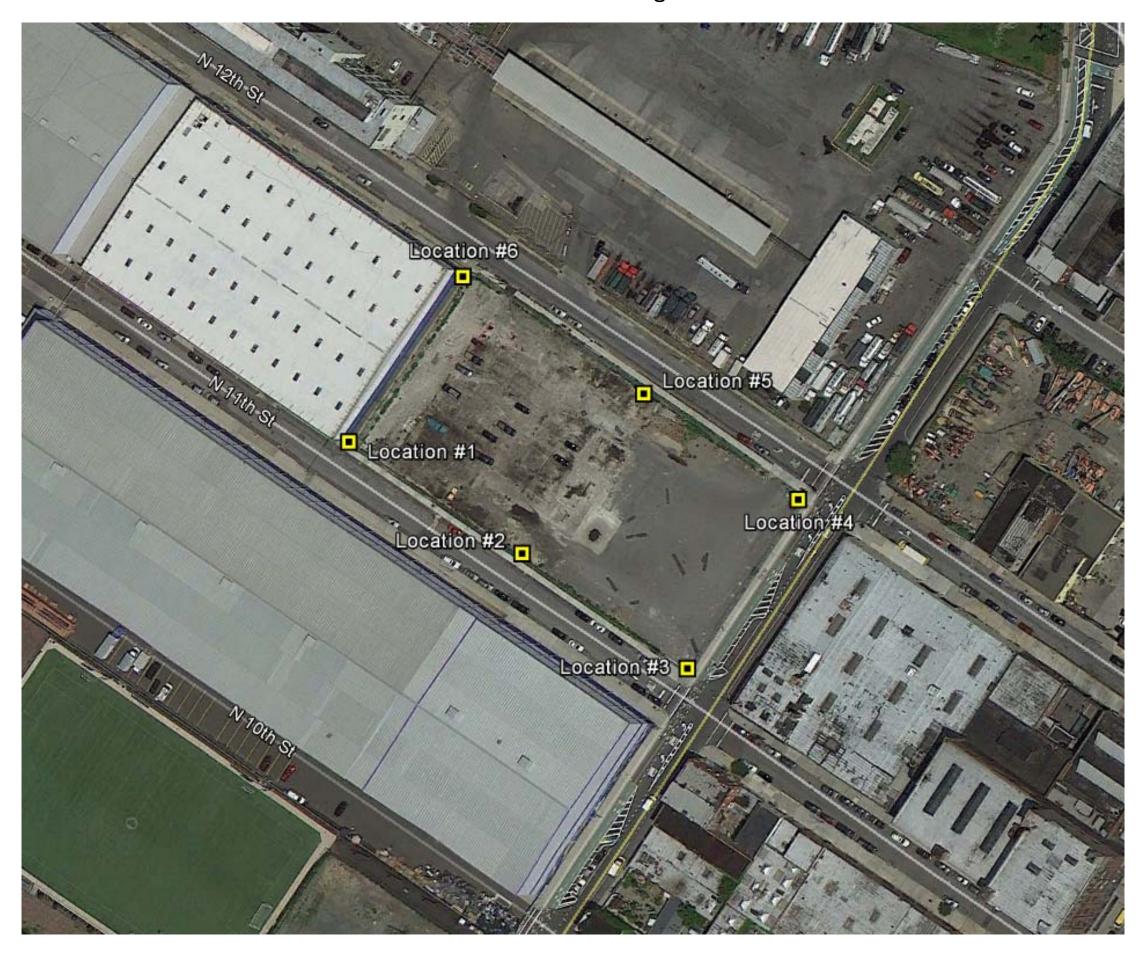
Environmental test conditions as printed on microphone calibration chart.

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.


"AS RECEIVED" data is the same as shipped data.

Signed: Abolemma Ostiga-

Technician: Abraham Ortega

APPENDIX B

Ambient Sound Monitoring Locations

APPENDIX C

Vibra-Tech Engineers, Inc.

Noise Producing Events that Occur During Test: Time Source	Time	Source
LOCATION 1 A 1502 14:02:00		
Location 2 A 1515 14:04:30		
		0
14:03 truck on Kent (3) 14:05 CAT ON 11th AVE.	14:51:45 Airbi	
14:05:37 notorcycle And horn		on Kent pedestrian on 11th ave. rm - Promiet fruck on 12th ave.
14:06:32 truck on Kent	14:53:48 truck	on 18th and
14:06:50 3 CARS ON KENT	14:55:30 Arrek	
14:07:33 truck on Kent	14:57:12 18 Wh	
14:09:12 CAR ON 11th Ave, truck on Kent	14:59:10 plane	
14: 10:40 CAT ON 11th AND		on Keert
14:11:07 truck on 11th Aug.	15:01:19 horn	
14:11:44 track on Kent	15:03:40 truck	
14:13:47 truck on Kent	15:64:00 truck	
14:13:30 horn	15:04:15 truck	on kent
14:13: 58 hom, 18 whl on Kent		
14:14:45 2 trucks, how on Kent plane		41 1502 LOCATION 58.5 La
14:15:20 CAT ON 11th Ave, music on Kent	PATA file *	+1 1515 LOCATION 2 60,0 Lea
14:15:55 bus on Kent		
14:16:53 VAN OF 1147 AVE.		
14:17:30 backup Alarm truck on Kent		
14:18:05 2 CARS ON 11th Aus.		
14:18:45 CAY ON 11th AND		
14:30:45 CAC ON 11th And, truck on 10th AVE.	51°F	
MI 21133 Frack on 18th Ave.	45% RH	
14:32:11 CAT ON 11th AVE.	0-3 MON NA	12
14:23:15 truck on 11th 2 CArs	_O supre to	
14:34:30 backup Alarms - Airbrakes > Primier		
14:27:15 2 tracks on Kent		
14:28:22 truck on Kent		
14:28:47 truck on Keng		
14:29:15 pickup on 12th = muffler		
14: 31: 00 brakes At premier - 18 whl on 12th ANC.		
14:32:40 truck on 11th Ave.		
14:33:05 CAR ON 11th Ave.	•	
14:34:33 CAT ON 11th Ave.		WALLEST TO THE STATE OF THE STA
14:35:40 horn - truck		
14:36:39 Airhorn - Premier truck on Kent		
14:37:07 2 trucks on Kent		
14:37:51 horn-truck on 12th Princer		
14:39:25 Aithorn and ear on 11th ave.	<u> </u>	
14:41:53 truck on Kent	 	distriction of the second seco
14:42:26 truck on Kent to 14:43:08 truck on 12th. Pringer		
14:43:42 horn (4)		
14.44.12 pach		
14:44:51 fack on Kent		A STATE OF THE STA
14:47:40 truck At Premier		
14:48:00 horn - CACON 11+1 AND	***************************************	
14:49:20 Prinjer truck or 13th horn, dog harking	-	
14:50:45 truck or Kent		

Doc: ADMIN/FORMS/E.020123

Vibra-Tech Engineers, Inc.

Noise Producing Events that Occur During Test: Time Source SN 1502 Location 3 Start 15:09:00	Time Source
SN 1615 LURATION 4 START 1511110	
Traffic on Kent throughout test car count	58:53 truck on 11th Am.
15:12:50 Trucks on Kent	SOLD HARR OF IT. PART
15:14:30 CAL ON 114 AND	
12 11 00 CHI ON III MA	
Location 3 SLM Time 7	
07:40 Pedestripms on Kent	
08:09 helicopter	
08: 44 Pedestrians on Kent	
09:12 Truck are Kener	
09:49 Track/Padostrians	
10:00-12:00 Truck Matte / Pedeshipes	
15:00 Truck on Kent	
Koi44 small motorcycle	
18:09 18 whl truck, lo cars	
18:45 plane	
19:30 Car with music	
19:50 18 will truck on Kent	The state of the s
20:43 truck on hour	
21:18 truck horrs	
23:30 & trucks on Kent	
27:38 2 horns	
28:01 2 trucks	
28:43 truck	
29:21 truck	(C) IT IT IT IN IN LIT IN WOT HIS HIT MI
30:45 CAT Starting	IN HI UK WIT WIT WIT WIT HAT HAT HAT
31:23 truck 4 cars truck	THE HAT WITH WHITH WAT WAT THE THE THE
31:50 truck	HIT HIT WITH LITH LITH LITH LITH LITH
32:48 Inck	are un ut her un jut just litt just tett
33:01 truck	WE WIN HIT HIT HET HET HET HET LITE LITE
33:20 truck caron 11th	THE LIFE LIKE WHITE HAT LIFE
33:57 backup Alasm, Arbrake	
34:11 2 trucks	
37:46 truck	WHI UST LET LET WITHTHE LET LET
38.09 horn, Arbrake	WHI HAT WHI WAT WHI WHI
38:20 truck how	
38:49 truck	
39:01 dog banking truck	
39:41 pedestinais	51°F
40:03 dog barking	43% RH
40.35 truck	O-3 MOL NNE
43:07 touck	
43.25 truck	
45:50 harmaning west manier	
46:32 truck	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
47:40 CAF W trailer	Location 3 th 2 on 1502 Leg 65.9
49: 41 0:ck-0 on 11th	Location 4 # 2 on 1515 Leg 68.5
50:10 picking on 12th	
52:35 truck	
53:42 2 trucks	Ambient & 50 dg
56:30 MO-ped, thurk	trucks & 80 dB
Doc: ADMIN/FORMS/E.020123	Cars × 70 db

Vibra-Tech Engineers, Inc.

Noise Producing Events that Oc			0
Time	Source	Time	Source
	16:16		
SN 1515 LOCATION #6	16:19		
16:22 helicopter truckon 114	^ Ave.		
16:23 Truck on Kent			
16:24 helicopter	·		
16:26 Truck on Kent			
16:30 Truck horn			
16:33 Truck on 11th Ave			
16:34 Truck on 12th Ave, Tru,	ck on Kent		
16:36 Truck on 11th Ave.			
16:37 helicopter			
10138 police car Alaems - At A	distance		
16:40 Truck on 11th Ave.		(1000)	
16:44 Truck on 11th Ave.			
16:46 CATON 12th Ave.			
16:48 Truck on 11th Ave.			
16:51 Truck on 12th Ave.			
16:52 helicopter			
16:55 horn's			
16:57 backup Alarms - Trem,	<u>'er" </u>		
17:00 CAF ON 18+4	<u> </u>	***************************************	
17:01 CAT ALATM			
17:04 Truck ON 1044 AVE.	1014.		
17:09 Backup Alarms, CAR	on 14 Ave.		
17:11 helicopter			
17112 BACKUP ALAIMS			
	··		
		-	
		49°F	
,		39 % RH	
		<u>-</u>	
		- 0 3 mph	NNE
			300

		· · · · · · · · · · · · · · · · · · ·	
		Location	#5 ON 1508 Leg 59.6
		LOCATION .	
		Cockwal	ru or or or

A DAMINICO DA COSTO CONTRACTOR			
loc: ADMIN/FORMS/E.020123			

APPENDIX D

File Translated: C:\Program Files\Larson Davis\824 Utility\20Nov14s_001.slmdl

Model/Serial Number: 824 / A1502 Firmware/Software Revs: 4.290 / 3.080

Vibra-Tech Enigneers, Inc Descr1: 109 East First Street Descr2: Hazleton, PA 18201 urs.ssa / SLM & Real-Time Analyzer

Setup/Setup Descr:

Location: Note1:

LOCATION 1 Note2:

Overall Measurement

Start Time: 20-Nov-2012 14:02:05

15 dB

Ln Start Level: 58.7 dBA L30.00 56.2 dBA L90.00 52.1 dBA L20.00 57.1 dBA L50.00 54.7 dBA L95.00 51.6 dBA

Interval Records: Number Interval Records: Enabled History Records: Enabled Number History Records: 14402

Current Any Data

Start Time: 20-Nov-2012 14:02:05

Elapsed Time: 01:00:00

Leq: SEL: Peak:	58.5 dBA 94.1 dBA 92.6 dBA	20-Nov-2012	70.8 dBC	1 20-Nov-2012	72.0 dBF 107.6 dBF 102.5 dBF
Lmax (slow):			89.4 dBC		90.6 dBF
20-Nov-2012 Lmin (slow):		20-Nov-2012		20-Nov-2012	14:23:16 64.5 dBF
20-Nov-2012		20-Nov-2012		20-Nov-2012	
Lmax (fast):	80.9 dBA		92.0 dBC		93.2 dBF
20-Nov-2012		20-Nov-2012		20-Nov-2012	
Lmin (fast):			61.3 dBC		
20-Nov-2012	14:08:1/	20-Nov-2012	14:09:06	20-Nov-2012	14:08:43
Lmax (impulse):	81.5 dBA		94.1 dBC		95.5 dBF
20-Nov-2012		20-Nov-2012		20-Nov-2012	
Lmin (impulse):			63.7 dBC		65.5 dBF
20-Nov-2012	14:08:34	20-Nov-2012	14:08:55	20-Nov-2012	14:08:30

Spectra

Date Time Run Time 20-Nov-2012 14:02:05 01:00:00

Hz	Leq1/3	Leq1/1	Max1/3	Max1/1	Min1/3	Min1/1	Hz	Leq1/3	Leq1/1	Max1/3	Max1/1	Min1/3	Min1/1
12.5	61.2	_	78.1		40.6		630	49.6		73.7		38.9	
16.0	60.3	65.1	71.7	80.4	44.1	47.9	800	49.9		72.1		39.1	
20.0	59.2		74.9		43.9		1000	48.8	53.7	71.7	76.3	38.1	43.0
25.0	61.3		71.0		45.6		1250	48.0		70.8		37.2	
31.5	63.3	68.1	72.9	78.1	48.9	52.8	1600	45.6		68.6		34.2	
40.0	64.7		75.1		48.9		2000	43.5	48.7	68.2	72.7	29.8	36.0
50.0	61.7		67.0		44.9		2500	41.7		66.7		25.6	
63.0	61.6	66.7	73.2	76.4	44.6	50.4	3150	39.6		64.7		21.0	
80.0	62.5		72.6		46.9		4000	38.0	42.7	61.7	67.1	18.7	24.3
100	62.2		70.0		47.1		5000	34.9		58.6		18.2	
125	56.6	64.1	75.1	77.2	45.4	50.4	6300	32.0		54.5		17.9	
160	56.4		70.0		43.6		8000	30.0	35.2	49.6	56.1	18.6	23.3
200	57.2		76.0		44.9		10000	28.4		45.5		19.1	
250	55.3	60.3	73.9	79.8	45.5	49.4	12500	23.3		45.3		19.4	
315	53.4		74.9		43.2		16000	22.6	27.9	36.5	46.0	20.7	25.8
400	52.2		73.6		41.4		20000	23.5		32.2		22.4	
500	50.7	55.7	72.6	78.1	40.4	45.1							

Overall	Spectra	al Ln's											
Hz	L10.00	L20.00	L30.00	L50.00	L90.00	L95.00	Ηz	L10.00	L20.00	L30.00	L50.00	L90.00	L95.00
12.5	62.0	59.5	58.5	56.0	51.0	49.5	630	49.5	47.5	46.5	45.0	42.0	41.5
16.0	62.5	61.0	60.0	58.0	53.0	51.5	800	49.0	47.5	46.5	45.0	42.0	41.5
20.0	61.5	59.5	58.5	56.5	52.0	51.0	1000	49.0	47.5	46.0	44.5	41.5	41.0
25.0	63.5	62.0	61.0	59.0	55.0	53.5	1250	48.5	46.5	45.5	44.0	41.0	40.0
31.5	66.0	63.5	62.0	60.0	56.0	55.0	1600	45.5	44.0	43.0	41.0	38.0	37.0
40.0	66.5	64.0	62.5	61.0	57.0	56.0	2000	43.0	41.5	40.0	38.0	33.5	33.0
50.0	62.5	60.0	58.5	56.5	52.5	51.5	2500	40.0	38.5	37.0	34.5	29.5	28.5
63.0	63.0	61.0	59.5	57.0	52.0	50.5	3150	36.5	34.5	32.5	30.0	25.0	24.0
80.0	64.0	62.0	60.5	58.0	54.0	53.0	4000	32.0	29.0	27.5	25.0	20.5	20.0
100	62.0	60.0	59.0	57.0	52.5	51.5	5000	27.0	24.0	22.5	20.5	19.0	19.0
125	57.5	55.5	54.5	53.0	50.0	49.5	6300	23.0	21.0	20.0	19.0	18.5	18.5
160	57.0	54.5	53.0	51.5	48.5	47.5	8000	20.5	19.5	19.5	19.5	19.0	19.0
200	56.5	54.0	53.0	51.5	48.5	48.0	10000	20.0	20.0	20.0	19.5	19.5	19.5
250	56.0	54.0	53.0	52.0	49.0	48.5	12500	20.5	20.0	20.0	20.0	19.5	19.5
315	54.0	52.5	51.0	49.0	46.5		16000	21.5	21.5	21.5	21.0	21.0	21.0
400	52.5	51.0	50.0	48.5	45.5	45.0	20000	23.0	23.0	23.0	23.0	22.5	22.5
500	51.0	49.0	48.0	46.5	44.0	43.5							

File Translated: C:\Program Files\Larson Davis\824 Utility\20Nov14s_001.slmdl

Model/Serial Number: 824 / A1515 Firmware/Software Revs: 4.290 / 3.080

Name: Vibra-Tech Engineers, Inc.
Descr1: 109 East First Street
Descr2: Hazleton, PA 18201

15 dB

Setup/Setup Descr:

Hazleton, PA 18201 urs.ssa / SLM & Real-Time Analyzer

Location: Note1:

Note:: LOCATION 2

Overall Measurement

Start Time: 20-Nov-2012 14:04:32

Ln Start Level:

L10.00 60.7 dBA L30.00 57.6 dBA L90.00 53.2 dBA L20.00 58.8 dBA L50.00 56.0 dBA L95.00 52.8 dBA

Interval Records: Enabled Number Interval Records: 1
History Records: Enabled Number History Records: 14402

Current Any Data

Start Time: 20-Nov-2012 14:04:32

Elapsed Time: 01:00:00

: 20-Nov-2012	95.0 dBA	20-Nov-2012	100.5 dBC	20-Nov-2012	102.0 dBF
(slow): 20-Nov-2012 (slow): 20-Nov-2012	14:23:23 51.5 dBA	20-Nov-2012 20-Nov-2012	14:55:51 63.8 dBC	20-Nov-2012 20-Nov-2012	65.0 dBF
(fast): 20-Nov-2012 (fast): 20-Nov-2012	14:55:51 51.1 dBA	20-Nov-2012 20-Nov-2012	62.5 dBC	20-Nov-2012 20-Nov-2012	63.5 dBF
(impulse): 20-Nov-2012 (impulse): 20-Nov-2012	14:55:51 51.5 dBA	20-Nov-2012 20-Nov-2012	14:23:22 64.4 dBC	20-Nov-2012 20-Nov-2012	65.7 dBF

Spectra

Date Time Run Time 20-Nov-2012 14:04:32 01:00:00

Hz	Leq1/3	Leq1/1	Max1/3	Max1/1	Min1/3	Min1/1	Hz	Leq1/3	Leq1/1	Max1/3	Max1/1	Min1/3	Min1/1
12.5	59.1		65.4		36.3		630	51.0		73.3		39.1	
16.0	58.0	63.3	69.9	78.7	40.8	44.8	800	50.8		73.1		40.2	
20.0	58.3		77.8		41.4		1000	50.2	54.9	72.4	77.8	40.2	44.4
25.0	59.0		77.0		42.9		1250	49.4		73.4		38.2	
31.5	60.6	65.3	78.3	85.3	46.1	50.4	1600	47.4		70.9		35.2	
40.0	61.6		83.4		47.0		2000	45.7	50.7	69.0	74.0	31.3	37.1
50.0	63.6		79.9		49.3		2500	44.0		66.8		27.1	
63.0	65.0	68.7	77.8	83.5	49.5	53.9	3150	41.5		65.8		22.6	
80.0	63.1		78.3		48.5		4000	38.6	44.1	64.4	69.8	19.1	25.1
100	62.6		82.3		47.0		5000	36.6		64.9		18.0	
125	59.8	65.6	75.2	83.6	48.2	51.6	6300	34.3		63.1		17.7	
160	59.4		74.1		44.5		8000	31.5	37.0	60.1	65.8	18.2	23.1
200	58.3		79.6		45.9		10000	29.6		58.9		19.0	
250	57.2	61.8	71.4	80.7	47.3	50.5	12500	22.9		48.0		19.2	
315	55.1		71.2		42.9		16000	21.8	27.4	39.6	48.7	20.5	25.5
400	53.4		71.6		40.2		20000	23.0		31.9		22.1	
500	52.0	57.0	72.0	77.1	38.8	44.2							

Overall	Spectra	al Ln's											
Hz	L10.00	L20.00	L30.00	L50.00	L90.00	L95.00	Hz	L10.00	L20.00	L30.00	L50.00	L90.00	L95.00
12.5	60.5	58.0	56.5	54.0	49.0	47.5	630	51.5	49.5	48.5	46.5	43.5	42.5
16.0	60.5	58.5	57.5	55.5	50.5	49.0	800	51.5	49.5	48.5	47.0	44.0	43.5
20.0	61.0	58.5	57.5	55.5	51.0	49.5	1000	51.0	49.5	48.0	46.5	43.5	43.0
25.0	61.0	59.0	58.0	56.0	52.0	51.0	1250	50.0	48.5	47.0	45.5	42.0	41.5
31.5	63.5	61.5	60.0	58.0	53.5	52.5	1600	47.5	45.5	44.5	42.5	38.5	38.0
40.0	64.0	62.0	60.5	58.5	54.5	53.5	2000	45.5	43.5	42.0	40.0	35.5	34.5
50.0	66.0	63.0	61.5	59.5	55.5	54.5	2500	43.5	41.0	39.0	36.5	31.5	30.5
63.0	67.5	65.0	63.0	60.5	56.0	55.0	3150	40.0	37.0	35.0	31.5	26.5	25.5
80.0	65.0	62.5	61.0	59.0	55.0	54.5	4000	36.0	32.5	30.0	26.5	21.5	21.0
100	64.0	61.5	60.0	58.0	53.5	52.5	5000	31.5	28.0	25.5	22.0	19.5	19.0
125	61.5	59.0	58.0	56.5	53.5	52.5	6300	27.5	24.0	22.0	19.5	18.5	18.0
160	59.5	57.0	55.5	53.5	50.0	49.0	8000	23.0	20.5	20.0	19.5	18.5	18.5
200	58.0	55.5	54.5	52.5	50.0	49.5	10000	20.5	20.0	20.0	19.5	19.5	19.5
250	57.0	55.5	54.5	53.0	50.5	50.0	12500	20.0	20.0	20.0	20.0	19.5	19.5
315	54.5	52.5	51.0	49.5	47.0	46.0	16000	21.5	21.0	21.0	21.0	20.5	20.5
400	53.0	51.0	50.0	48.0	45.0	44.5	20000	23.0	22.5	22.5	22.5	22.5	22.0
500	52.0	50.0	48.5	47.0	43.5	42.5							

File Translated: C:\Program Files\Larson Davis\824 Utility\20Nov15s_002.slmdl

Model/Serial Number: 824 / A1502 Firmware/Software Revs: 4.290 / 3.080

Vibra-Tech Enigneers, Inc Name: Descr1: 109 East First Street Descr2:

Setup/Setup Descr:

Hazleton, PA 18201 urs.ssa / SLM & Real-Time Analyzer

Location: Note1:

LOCATION 3 Note2:

Overall Measurement

Start Time: 20-Nov-2012 15:09:04

Ln Start Level: 15 dB

69.2 dBA L10.00 L30.00 65.0 dBA L90.00 53.7 dBA L20.00 66.6 dBA L50.00 61.8 dBA L95.00 52.7 dBA

Interval Records: Enabled Number Interval Records: History Records: Enabled Number History Records: 14402

Current Any Data

20-Nov-2012 15:09:04 Start Time:

Elapsed Time: 01:00:00

Leq: SEL: Peak:	A Weight 65.9 dBA		C Weight 75.9 dBC		Flat 76.7 dBF
SEL:	101.5 dBA		111.5 dBC		112.3 dBF
Peak:	102.7 dBA		104.8 dBC	:	106.1 dBF
20-Nov-2012	15:52:36	20-Nov-2012	15:20:45	20-Nov-2012	16:02:52
Lmax (slow):	81.5 dBA		96.2 dBC		96.9 dBF
20-Nov-2012	15:12:03	20-Nov-2012	15:20:46	20-Nov-2012	15:20:46
Lmin (slow):	49.8 dBA		64.2 dBC		65.3 dBF
20-Nov-2012	15:26:16	20-Nov-2012	15:26:29	20-Nov-2012	15:26:29
Lmax (fast):	86.1 dBA		99.0 dBC		99.8 dBF
20-Nov-2012	15:52:36	20-Nov-2012	15:20:45	20-Nov-2012	15:20:45
Lmin (fast):	49.3 dBA		62.5 dBC		63.6 dBF
20-Nov-2012	15:26:18	20-Nov-2012	15:26:18	20-Nov-2012	15:26:26
Lmax (impulse):	88.6 dBA		99.8 dBC		100.5 dBF
20-Nov-2012	15:52:36	20-Nov-2012	15:20:45	20-Nov-2012	15:20:45
Lmin (impulse):	49.8 dBA		65.0 dBC		66.3 dBF
20-Nov-2012	15:26:14	20-Nov-2012	15:27:05	20-Nov-2012	15:26:16

Spectra

Date Time Run Time 20-Nov-2012 15:09:04 01:00:00

U→	Log1/3	T 0 0 1 / 1	May 1/2	Mass 1 /1	Min1/3	Min1/1	II -	T 0 0 1 / 2	T 0 ~ 1 / 1	May 1 /2	Max 1 /1	Min1/3	Min1/1
		ned1/1		Max1/1		MIIII/I		-	геdт\т		Max1/1		MITHIT / I
12.5	62.4		77.9		38.5		630	56.7		72.9		38.9	
16.0	62.1	67.3	80.5	83.8	41.0	45.5	800	57.1		74.6		39.5	
20.0	63.0		78.1		41.9		1000	57.1	61.6	73.5	78.2	38.2	43.1
25.0	63.5		80.2		44.0		1250	56.1		71.5		36.9	
31.5	64.6	69.1	79.3	83.8	46.5	50.4	1600	54.8		70.4		33.9	
40.0	64.8		77.1		46.0		2000	52.6	57.8	70.2	74.9	30.1	36.0
50.0	66.8		85.7		50.7		2500	50.7		69.6		27.3	
63.0	70.3	73.4	81.3	87.8	49.5	54.7	3150	48.2		69.0		23.9	
80.0	67.9		80.1		49.6		4000	45.9	51.0	69.7	73.5	20.7	26.5
100	66.6		78.6		49.8		5000	43.4		67.3		19.1	
125	63.8	69.4	75.7	81.8	48.2	53.3	6300	41.7		68.7		18.5	
160	62.5		76.2		47.0		8000	38.6	44.1	64.3	70.6	18.8	23.6
200	61.9		79.8		44.7		10000	35.9		61.3		19.2	
250	61.3	65.9	75.3	82.0	45.2	49.2	12500	32.1		57.6		19.6	
315	60.0		74.4		43.0		16000	30.4	35.1	54.6	59.6	20.8	25.8
400	58.5		73.3		41.0		20000	27.3		46.7		22.3	
500	57.1	62.3	72.6	77.7	39.8	44.8							

011	0	-1											
Overall			T 00 00	T.F.O. O.O.	- 00 00	TOE 00		710 00	T 00 00	* 20 00	7.50 00	T 00 00	TOE 00
Hz			L30.00					L10.00				L90.00	
12.5	62.5	59.0	57.0	54.5	49.0	47.5	630	60.0	57.0	55.0	51.5	44.0	43.0
16.0	63.0	59.5	58.0	55.5	50.0	48.5	800	60.5	58.0	56.5	53.0	44.0	43.0
20.0	64.5	61.5	59.5	57.0	52.0	51.0	1000	60.5	58.0	56.0	52.5	43.0	42.0
25.0	64.5	62.0	60.5	58.0	53.5	52.0	1250	59.5	57.0	55.0	51.5	41.5	40.0
31.5	66.0	63.5	62.0	59.5	55.0	53.5	1600	58.0	55.5	54.0	49.5	39.5	38.5
40.0	67.0	64.0	62.5	60.0	55.5	54.0	2000	55.5	52.5	51.0	46.5	36.0	34.5
50.0	68.0	65.5	64.0	61.5	57.5	56.5	2500	53.0	50.0	48.0	43.5	33.0	31.5
63.0	70.0	66.0	64.0	61.5	56.5	55.0	3150	50.5	46.5	44.5	40.0	29.0	27.5
80.0	69.0	65.5	63.5	61.0	56.5	55.0	4000	47.5	43.5	41.0	36.5	24.5	23.0
100	67.0	63.5	61.5	59.0	55.0	54.0	5000	44.5	40.0	37.5	32.5	21.5	20.5
125	66.0	62.5	60.5	57.5	53.0	52.0	6300	41.5	37.0	34.5	29.0	20.0	19.5
160	64.5	61.0	59.0	56.0	51.0	50.5	8000	37.5	33.0	30.5	26.0	19.5	19.5
200	64.5	61.0	58.5	55.5	49.5	49.0	10000	33.5	29.0	27.0	23.0	20.0	19.5
250	63.0	60.0	58.0	55.0	49.5	48.5	12500	29.5	26.0	24.0	21.5	20.0	20.0
315	61.5	58.0	56.0	53.0	47.5	46.5	16000	27.0	24.0	23.0	21.5	21.0	21.0
400	60.5	57.5	55.5	52.0	46.0	45.0	20000	25.0	23.5	23.5	23.0	22.5	22.5
500	59.5	56.5	55.0	51.5	45.0	43.5							

File Translated: C:\Program Files\Larson Davis\824 Utility\20Nov15s 002.slmdl

Model/Serial Number: 824 / A1515 Firmware/Software Revs: 4.290 / 3.080 Name:

Vibra-Tech Engineers, Inc. Descr1: 109 East First Street Descr2: Hazleton, PA 18201 urs.ssa / SLM & Real-Time Analyzer

15 dB

Setup/Setup Descr:

SLM & RTA Summary

Location: Notel:

LOCATION 4 Note2:

Overall Measurement

Start Time: 20-Nov-2012 15:11:14

Ln Start Level:

70.4 dBA L30.00 L10.00 66.4 dBA L90.00 55.5 dBA L20.00 68.0 dBA L50.00 63.5 dBA L95.00 54.4 dBA

Interval Records: Enabled Number Interval Records: History Records: Enabled Number History Records: 14402

Current Any Data

Start Time: 20-Nov-2012 15:11:14

Elapsed Time: 01:00:00

A Weight	C Weight	Flat 77.1 dBF 112.6 dBF
Leq: 68.5 dBA	76.2 dBC 111.8 dBC	77.1 dBF
SEL: 104.0 dBA	111.8 dBC	112.6 dBF
Peak: 119.1 dBA	118.0 dBC	118.4 dBF
20-Nov-2012 15:47:29	20-Nov-2012 15:47:29	20-Nov-2012 15:47:29
Lmax (slow): 97.9 dBA	97.1 dBC	97.4 dBF
20-Nov-2012 15:47:29	20-Nov-2012 15:47:29	20-Nov-2012 15:47:29
Lmin (slow): 51.8 dBA	65.8 dBC	66.9 dBF
20-Nov-2012 15:56:07	20-Nov-2012 15:26:41	20-Nov-2012 15:26:42
Lmax (fast): 103.8 dBA	103.0 dBC	103.2 dBF
20-Nov-2012 15:47:29	20-Nov-2012 15:47:29	20-Nov-2012 15:47:29
Lmin (fast): 50.9 dBA	64.1 dBC	64.9 dBF
20-Nov-2012 15:56:06	20-Nov-2012 16:09:58	20-Nov-2012 16:09:58
Lmax (impulse): 104.9 dBA	104.0 dBC	104.3 dBF
20-Nov-2012 15:47:29	20-Nov-2012 15:47:29	20-Nov-2012 15:47:29
Lmin (impulse): 51.8 dBA	66.4 dBC	67.9 dBF

20-Nov-2012 15:39:45

Spectra

Date Time Run Time 20-Nov-2012 15:11:14 01:00:00

20-Nov-2012 15:32:05

Hz	Leq1/3	Leq1/1	Max1/3	Max1/1	Min1/3	Min1/1	Hz	Leq1/3	Leq1/1	Max1/3	Max1/1	Min1/3	Min1/1
12.5	62.0		62.2		39.8		630	58.6		87.6		41.9	
16.0	62.2	67.1	60.8	67.5	40.0	46.2	800	58.8		83.0		41.5	
20.0	62.8		64.4		43.4		1000	58.9	63.8	90.5	96.2	40.2	44.9
25.0	64.2		75.7		46.1		1250	59.4		94.6		37.8	
31.5	65.8	70.4	77.4	80.7	48.0	51.9	1600	58.1		91.5		37.3	
40.0	66.6		74.1		47.0		2000	59.0	62.5	96.5	98.6	34.4	39.8
50.0	68.9		83.7		54.8		2500	55.2		91.4		31.3	
63.0	69.3	73.3	79.2	85.2	50.3	57.0	3150	53.5		90.2		26.3	
80.0	67.0		70.6		49.9		4000	51.2	56.3	88.3	92.9	24.3	29.2
100	66.1		69.7		49.4		5000	48.3		83.7		21.5	
125	63.9	69.2	66.3	71.8	48.5	52.9	6300	49.3		81.8		19.3	
160	62.4		62.3		45.8		8000	44.3	51.1	80.2	85.3	18.8	23.9
200	61.7		61.3		45.9		10000	42.0		79.0		19.3	
250	61.0	65.9	78.4	86.7	45.0	49.5	12500	37.3		72.6		19.4	
315	60.5		86.0		42.5		16000	32.6	38.8	63.1	73.1	20.6	25.7
400	58.1		64.5		41.1		20000	25.7		56.1		22.2	
500	58.0	63.0	88.7	91.2	40.9	46.1							

20-Nov-2012 15:23:20

Overall	Spectra	al Ln's											
Hz	L10.00	L20.00	L30.00	L50.00	L90.00	L95.00	Hz	L10.00	L20.00	L30.00	L50.00	L90.00	L95.00
12.5	61.5	58.5	57.0	54.5	49.0	47.5	630	61.5	58.5	56.5	53.0	46.0	45.0
16.0	62.5	59.0	57.5	55.0	50.0	48.5	800	62.0	60.0	58.0	54.5	46.5	45.0
20.0	63.5	60.5	59.0	56.5	51.5	50.5	1000	61.5	59.5	58.0	54.5	45.5	44.0
25.0	65.0	62.5	61.0	59.0	54.5	53.5	1250	61.0	58.5	57.0	53.5	44.0	42.5
31.5	67.5	64.0	62.5	60.0	55.5	54.5	1600	59.5	57.0	55.5	52.0	42.5	41.0
40.0	68.0	65.0	63.0	60.5	55.5	54.5	2000	57.5	55.0	53.0	49.5	40.0	38.5
50.0	70.0	67.5	66.0	64.0	61.5	60.5	2500	55.5	52.0	50.0	46.5	36.5	35.5
63.0	70.0	66.5	64.0	61.5	56.5	55.5	3150	52.5	48.5	46.5	42.5	32.5	31.0
80.0	68.5	65.5	63.5	61.0	56.5	55.5	4000	49.5	45.0	42.5	39.0	28.5	27.5
100	67.0	64.0	62.0	59.5	55.0	54.0	5000	46.5	42.0	39.5	36.0	25.0	23.5
125	66.0	62.5	61.0	58.0	53.5	52.5	6300	43.5	39.0	36.5	32.5	21.5	20.5
160	64.5	61.5	59.5	56.5	51.5	51.0	8000	40.0	35.5	33.0	29.0	20.0	19.5
200	64.0	61.0	58.5	55.5	50.0	49.5	10000	35.5	31.0	28.5	25.0	20.0	19.5
250	63.0	60.0	58.0	55.0	50.0	49.0	12500	29.5	25.5	23.5	21.5	20.0	19.5
315	62.0	58.5	56.5	53.5	47.5	46.5	16000	24.5	22.5	22.0	21.5	21.0	21.0
400	61.0	57.5	55.5	52.5	46.0	45.0	20000	23.5	23.0	23.0	23.0	22.5	22.5
500	60.5	57.5	55.5	52.5	45.5	44.5							

File Translated: C:\Program Files\Larson Davis\824 Utility\20Nov16s_003.slmdl

Model/Serial Number: 824 / A1502

Firmware/Software Revs: 4.290 / 3.080

Vibra-Tech Enigneers, Inc Name: Descr1: 109 East First Street Descr2:

Setup/Setup Descr:

Hazleton, PA 18201
urs.ssa / SLM & Real-Time Analyzer

Location: Note1:

LOCATION 5 Note2:

Overall Measurement

Start Time: 20-Nov-2012 16:16:00

Ln Start Level: 15 dB

L10.00 61.3 dBA L30.00 57.4 dBA L90.00 51.2 dBA L20.00 59.0 dBA L50.00 55.2 dBA L95.00 50.4 dBA

Interval Records: Enabled Number Interval Records: History Records: Enabled Number History Records: 14402

Current Any Data

20-Nov-2012 16:16:00 Start Time:

Elapsed Time: 01:00:00

SEL:	: 20-Nov-2012	95.2 dBA 97.0 dBA	20-Nov-2012	C Weight 71.1 dBC 106.7 dBC 98.1 dBC 16:30:18	20-Nov-2012	Flat 72.3 dBF 107.9 dBF 98.1 dBF 16:30:18
Lmax	(slow):			85.8 dBC		86.5 dBF
	20-Nov-2012		20-Nov-2012		20-Nov-2012	
Lmın	(slow):		00.17		00.10	
	20-Nov-2012	16:31:52	20-Nov-2012	16:17:30	20-Nov-2012	16:17:19
Lmax	(fast):	84.8 dBA		89.0 dBC		89.8 dBF
	20-Nov-2012	16:30:18	20-Nov-2012	16:34:33	20-Nov-2012	16:34:33
Lmin	(fast):	47.6 dBA		61.6 dBC		62.9 dBF
	20-Nov-2012	16:31:51	20-Nov-2012	16:17:30	20-Nov-2012	16:17:30
Imav	(impulse):	95 6 dpn		00 1 ABC		90.8 dBF
шпал	20-Nov-2012		20-Nov-2012		20-Nov-2012	
Lmin	(impulse):		20 NOV 2012		20 1101 2012	
	20-Nov-2012		20-Nov-2012		20-Nov-2012	
		- -		· · ·		

Spectra

Date Time Run Time 20-Nov-2012 16:16:00 01:00:00

	Leq1/3	Leq1/1		Max1/1		Min1/1		4 .	Leq1/1	Max1/3	Max1/1		Min1/1
12.5	56.9		68.6		38.4		630	52.8		77.9		38.2	
16.0	59.4	65.0	72.0	75.8	40.7	44.6	800	51.5		75.4		36.3	
20.0	62.6		71.8		40.0		1000	50.0	54.9	71.8	77.5	35.9	40.0
25.0	61.4		67.7		46.0		1250	48.2		68.1		32.7	
31.5	61.8	66.9	68.0	72.7	44.5	50.3	1600	46.8		71.2		31.3	
40.0	63.1		68.2		46.0		2000	46.9	51.1	76.2	79.3	27.8	33.6
50.0	64.9		68.2		51.7		2500	45.0		74.7		25.5	
63.0	64.2	68.7	66.6	72.8	48.9	54.5	3150	39.8		63.7		21.4	
80.0	62.2		69.0		47.6		4000	37.7	43.1	63.2	68.6	20.1	25.0
100	61.4		67.1		48.1		5000	36.9		64.6		18.8	
125	57.7	63.7	62.7	.69.1	45.9	51.0	6300	31.0		54.8		18.6	
160	55.6		60.6		43.5		8000	29.5	34.0	50.1	56.2	18.8	23.6
200	54.6		73.5		41.8		10000	25.5		40.9		19.2	
250	53.8	58.5	57.9	73.7	42.1	46.2	12500	29.5		35.1		19.4	
315	52.5		57.0		40.2		16000	25.0	31.6	26.4	36.1	20.8	25.8
400	53.5		79.3		39.6		20000	23.6		25.7		22.4	
500	52.8	57.8	59.7	81.7	38.6	43.6							

Overall	Spectra	al Ln's											
Hz	L10.00	L20.00	L30.00	L50.00	L90.00	L95.00	Hz	L10.00	L20.00	L30.00	L50.00	L90.00	L95.00
12.5	59.0	57.0	56.0	54.0	49.0	47.5	630	54.0	51.5	49.5	47.0	42.5	41.5
16.0	62.0	60.0	58.5	56.0	51.0	49.5	800	53.0	50.5	49.0	46.5	41.5	41.0
20.0	61.5	59.5	58.0	56.0	51.5	50.0	1000	51.5	49.0	47.5	45.0	40.5	39.5
25.0	62.5	60.5	59.5	58.0	54.0	52.5	1250	50.5	47.5	46.0	43.5	38.0	37.0
31.5	64.0	62.5	61.0	59.5	55.0	54.0	1600	48.0	45.5	43.5	41.5	36.5	35.5
40.0	64.5	62.0	60.5	58.5	55.0	53.5	2000	45.5	43.0	41.0	38.5	33.0	32.0
50.0	66.5	64.0	63.0	61.5	58.0	57.5	2500	43.0	40.0	38.0	35.5	30.5	29.5
63.0	66.5	63.5	62.0	60.0	56.0	55.0	3150	39.5	36.0	34.0	31.5	26.5	25.0
80.0	64.0	61.5	60.0	58.0	54.5	53.5	4000	36.5	33.0	31.0	27.5	23.0	22.0
100	63.5	60.5	59.0	57.0	53.5	53.0	5000	32.0	28.5	26.0	23.5	20.5	20.0
125	59.5	57.5	56.0	54.5	51.0	50.0	6300	28.5	24.5	22.5	21.0	19.5	19.0
160	58.0	55.5	54.0	51.5	48.0	47.5	8000	24.5	21.5	20.5	20.0	19.0	19.0
200	57.0	54.5	52.5	50.5	46.5	45.5	10000	21.5	20.5	20.0	20.0	19.5	19.5
250	56.5	54.0	53.0	51.0	46.5	45.5	12500	20.5	20.5	20.0	20.0	19.5	19.5
315	55.0	52.5	50.5	48.5	45.0	44.0	16000	21.5	21.5	21.5	21.5	21.0	21.0
400	55.0	52.0	50.0	48.0	44.0	43.5	20000	23.0	23.0	23.0	23.0	22.5	22.5
500	54.5	51.5	50.0	47.5	43.5	43.0							

C:\Program Files\Larson Davis\824 Utility\20Nov16s_003.slmdl 824 / A1515 File Translated:

Model/Serial Number: Firmware/Software Revs: 4.290 / 3.080

Vibra-Tech Engineers, Inc. Name: Descr1: 109 East First Street Descr2:

Setup/Setup Descr:

Hazleton, PA 18201 urs.ssa / SLM & Real-Time Analyzer

Location: Note1: Note2:

LOCATION 6

Overall Measurement

Start Time: 20-Nov-2012 16:18:13

Ln Start Level:

15 dB 59.5 dBA L10.00 L30.00 56.7 dBA L90.00 52.0 dBA L20.00 57.8 dBA L50.00 55.1 dBA L95.00 51.3 dBA

Interval Records: Enabled Number Interval Records: 14402 History Records: Enabled Number History Records:

Current Any Data

Start Time: 20-Nov-2012 16:18:13

Elapsed Time: 01:00:00

		A Weight		C Weight 69.7 dBC 105.3 dBC 97.9 dBC		Flat
Leq:		57.0 dBA		69.7 dBC		71.2 dBF
SEL:		92.6 dBA		105.3 dBC	1	106.8 dBF
	:	87.9 dBA		97 9 dBC		97 8 dBF
	20-Nov-2012	16:30:18	20-Nov-2012	17:09:03	20-Nov-2012	17:09:03
Lmax	(slow):	75.4 dBA		86.7 dBC		86.9 dBF
	20-Nov-2012	16:30:19	20-Nov-2012	17:09:03	20-Nov-2012	17:09:03
Lmin	(slow):	48.8 dBA		63.4 dBC		64.8 dBF
	20-Nov-2012	16:31:51	20-Nov-2012		20-Nov-2012	
Lmax	(fast):	79.0 dBA		90.5 dBC		90.6 dBF
	20-Nov-2012	17:09:03	20-Nov-2012	17:09:03	20-Nov-2012	17:09:03
Lmin	(fast):	48.3 dBA				63.8 dBF
	20-Nov-2012	16:31:51	20-Nov-2012	16:25:46	20-Nov-2012	16:25:47
Lmax	(impulse):	79.8 dBA		91.4 dBC		92.4 dBF
	20-Nov-2012	17:09:03	20-Nov-2012	17:09:03	20-Nov-2012	16:22:23
Lmin	(impulse):	48.9 dBA		64.6 dBC		65.8 dBF
	20-Nov-2012	16:31:51	20-Nov-2012	16:25:47	20-Nov-2012	16:25:47

Spectra

Time Run Time Date 20-Nov-2012 16:18:13 01:00:00

Hz	Leq1/3	Leq1/1	Max1/3	Max1/1	Min1/3	Min1/1	Hz	Leq1/3	Leq1/1	Max1/3	Max1/1	Min1/3	Min1/1
12.5	59.5		68.4		40.2		630	49.6		77.8		39.0	
16.0	61.3	65.7	75.6	77.2	41.3	47.2	800	48.4		66.5		38.4	
20.0	61.7		69.6		44.6		1000	47.5	52.3	60.3	67.9	37.2	41.8
25.0	61.6		67.6		44.4		1250	46.5		57.5		34.8	
31.5	62.5	66.7	67.4	72.2	48.4	52.3	1600	43.6		59.4		32.4	
40.0	61.6		67.2		48.7		2000	42.0	46.7	60.7	63.9	29.1	34.7
50.0	61.1		63.4		48.3		2500	39.2		56.3		26.0	
63.0	61.5	66.1	61.9	71.0	49.2	53.7	3150	35.6		48.4		21.3	
80.0	61.5		69.5		49.2		4000	32.5	38.1	45.4	51.1	18.7	24.3
100	60.9		68.2		49.0		5000	29.9		44.0		17.9	
125	57.1	63.2	60.4	69.5	46.3	52.0	6300	27.2		30.9		17.7	
160	55.5		60.9		45.5		8000	25.5	30.2	24.9	32.2	18.2	23.1
200	55.5		64.7		44.3		10000	22.4		21.1		19.0	
250	52.2	58.0	60.0	66.3	43.5	47.9	12500	21.0		21.3		19.2	
315	50.5		54.9		40.8		16000	22.7	27.1	22.8	27.8	20.6	25.6
400	50.9		73.8		39.3		20000	23.0		24.4		22.1	
500	49.7	54.9	55.8	79.3	38.9	43.8							

Overall	Spectra	al Ln's											
Hz	L10.00	L20.00	L30.00	L50.00	L90.00	L95.00	Hz	L10.00	L20.00	L30.00	L50.00	L90.00	L95.00
12.5	61.0	59.0	57.5	55.5	50.0	49.0	630	51.5	50.0	48.5	47.0	43.0	42.0
16.0	63.5	61.0	60.0	58.0	53.0	51.5	800	50.5	49.0	48.0	46.5	42.5	42.0
20.0	63.0	61.0	59.5	57.5	53.0	52.0	1000	50.0	48.5	47.0	45.0	41.5	40.5
25.0	63.5	61.5	60.5	59.0	54.5	53.5	1250	49.0	47.0	45.5	43.5	39.5	38.5
31.5	65.0	63.5	62.0	60.0	56.0	55.0	1600	46.0	44.0	43.0	41.0	37.5	36.5
40.0	63.5	62.0	61.0	59.0	55.5	54.5	2000	44.0	42.0	40.0	38.0	34.5	34.0
50.0	62.5	60.5	59.5	58.0	54.5	53.5	2500	41.0	38.5	37.0	34.5	31.0	30.5
63.0	63.5	61.5	60.0	58.5	55.0	54.0	3150	38.0	34.5	32.5	30.5	26.0	25.0
80.0	63.5	61.5	60.0	58.5	55.0	54.0	4000	34.0	30.0	28.0	25.5	21.5	20.5
100	62.5	60.5	59.0	57.5	54.0	53.5	5000	30.0	26.0	24.5	22.5	19.0	19.0
125	59.0	57.5	56.5	55.0	52.0	51.0	6300	26.5	23.0	21.5	20.0	18.5	18.5
160	57.0	55.5	54.5	53.0	50.0	49.5	8000	23.0	20.5	20.0	19.0	18.5	18.5
200	55.5	53.5	52.5	51.0	48.0	47.5	10000	21.0	20.0	20.0	19.5	19.5	19.5
250	54.5	52.5	51.5	50.5	47.5	46.5	12500	20.0	20.0	20.0	20.0	19.5	19.5
315	52.5	50.5	49.5	48.0	45.0	44.5	16000	22.5	22.0	22.0	21.5	21.0	21.0
400	52.5	50.5	49.5	47.5	44.0	43.0	20000	23.0	22.5	22.5	22.5	22.5	22.5
500	52.5	50.0	49.0	47.5	43.5	43.0							

Certificate Number 2012-163410

Instrument Model 824, Serial Number A1502, was calibrated on 05SEP2012. The instrument meets factory specifications per Procedure D0001.8046, IEC 61672-1:2002 Class 1; IEC 60651-2001, 60804-2000 and ANSI S1.4-1983 Type 1 1/3, 1/1 Oct. Filters; S1.11-1986 Type 1C; IEC61260-am1-2001 Class 1.

Instrument found to be in calibration as received: YES

Date Calibrated: 05SEP2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Larson Davis	LDSigGn/2209	0617 / 0104	12 Months	16JAN2013	2012-153792

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 24 ° Centigrade

Relative Humidity: 28 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As received" data is the same as shipped data. Tested with PRM902 S/N 1999

Signed: 🥰

Technician: Sean Childs

Certificate Number 2012-163397

Instrument Model PRM902, Serial Number 1999, was calibrated on 05SEP2012. The instrument meets factory specifications per Procedure D0001.8126.

Instrument found to be in calibration as received: YES

Date Calibrated: 05SEP2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Larson Davis	LDSigGn/2209	0617 / 0104	12 Months	16JAN2013	2012-153792
Hewlett Packard	34401A	US36033460	12 Months	27JUN2013	5708507

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 24 ° Centigrade

Relative Humidity: 28 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As received" data is the same as shipped data.

gned:

Technician: Sean Childs

Certificate Number 2012-163468

Microphone Model 2541, Serial Number 8071, was calibrated on 06SEP2012. The microphone meets factory specifications per Test Procedure D0001.8167.

Instrument found to be in calibration as received: YES

Date Calibrated: 06SEP2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Larson Davis	PRM902	0529	12 Months	07SEP2012	2011-148677
Larson Davis	PRM902	0528	12 Months	07SEP2012	2011-148679
Larson Davis	MTS1000 / 2201	1000 / 0100	12 Months	09SEP2012	SM090911-3
Hewlett Packard	34401A	3146A62099	12 Months	15NOV2012	5436054
Larson Davis	2559	2504	12 Months	13DEC2012	18736-1
Larson Davis	PRM916	0102	12 Months	22DEC2012	2011-153087
Larson Davis	CAL250	42630	12 Months	04JAN2013	2012-153336
Larson Davis	2900	0575	12 Months	26JUL2013	2012-162047
Larson Davis	PRM902	0206	12 Months	14AUG2013	2012-162575
Larson Davis	2559	3034LF	12 Months	14AUG2013	2012-162596
Larson Davis	PRM915	0102	12 Months	15AUG2013	2012-162597

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Environmental test conditions as printed on microphone calibration chart.

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"AS RECEIVED" data is the same as shipped data.

Signed: Mondomma Ontage-

Technician: Abraham Ortega

Certificate Number 2012-163370

Instrument Model CAL200, Serial Number 3207, was calibrated on 30AUG2012. The instrument meets factory specifications per Procedure D0001.8190.

Instrument found to be in calibration as received: YES

Date Calibrated: 30AUG2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY N
Larson Davis	PRM915	0112	12 Months	09SEP2012	2011-148845
Larson Davis	PRM902	0480	12 Months	09SEP2012	2011-148846
Larson Davis	MTS1000/2201	0111	12 Months	09SEP2012	SM090911
Larson Davis	2559	2504	12 Months	13DEC2012	18736-1
Larson Davis	2900	0661	12 Months	06APR2013	2012-157399
PCB	1502B02FJ15PSIA	1428	12 Months	10APR2013	3416909125.00
Hewlett Packard	34401A	3146A10352	12 Months	28AUG2013	5778699

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Environmental test conditions as shown on calibration report.

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As Received" data is the same as shipped data.

Sianed:

Technician: Scott Montgomery

Certificate Number 2012-155614

Instrument Model 824, Serial Number A1515, was calibrated on 28FEB2012. The instrument meets factory specifications per Procedure D0001.8046, IEC 61672-1:2002 Class 1; IEC 60651-2001, 60804-2000 and ANSI S1.4-1983 Type 1 1/3, 1/1 Oct. Filters; S1.11-1986 Type 1C: IEC61260-am1-2001 Class 1.

Instrument found to be in calibration as received: YES

Date Calibrated: 28FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO	٥.
Larson Davis	LDSigGn/2209	0617 / 0104	12 Months	16JAN2013	2012-153792	

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 23 ° Centigrade

Relative Humidity: 32 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As received" data is the same as shipped data. Tested with PRM902 S/N 2334

Signed: Technician: Sean Childs

Page 1 of 1

Provo Engineering and Manufacturing Center, 1681 West 820 North, Provo, Utah 84601 Toll Free: 888.258.3222 Telephone: 716.926.8243 Fax: 716.926.8215 ISO 9001-2008 Certified

Certificate Number 2012-155643

Microphone Model 2560, Serial Number 3200, was calibrated on 28FEB2012. The microphone meets factory specifications per Test Procedure D0001.8167.

Instrument found to be in calibration as received: YES

Date Calibrated: 28FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO
Larson Davis	2559	2506	12 Months	24MAY2012	18309-1
Larson Davis	2900	0575	12 Months	14JUN2012	2011-144882
Larson Davis	2559	3034LF	12 Months	15AUG2012	2011-147516
Larson Davis	PRM915	0102	12 Months	16AUG2012	2011-147581
Larson Davis	PRM902	0206	12 Months	16AUG2012	2011-147576
Larson Davis	PRM902	0529	12 Months	07SEP2012	2011-148677
Larson Davis	PRM902	0528	12 Months	07SEP2012	2011-148679
Larson Davis	MTS1000 / 2201	1000 / 0100	12 Months	09SEP2012	SM090911-3
Hewlett Packard	34401A	3146A62099	12 Months	15NOV2012	5436054
Larson Davis	PRM916	0102	12 Months	22DEC2012	2011-153087
Larson Davis	CAL250	42630	12 Months	04JAN2013	2012-153336

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Environmental test conditions as printed on microphone calibration chart.

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"AS RECEIVED" data is the same as shipped data.

Signed: Alexandra Ortoga

Technician: Abraham Ortega

Page 1 of 1

Certificate Number 2012-155608

Instrument Model PRM902, Serial Number 2334, was calibrated on 28FEB2012. The instrument meets factory specifications per Procedure D0001.8126.

Instrument found to be in calibration as received: YES

Date Calibrated: 28FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Hewlett Packard	34401A	US36033460	12 Months	20JUN2012	5254394
Larson Davis	LDSigGn/2209	0617 / 0104	12 Months	16JAN2013	2012-153792

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 23 ° Centigrade

Relative Humidity: 32 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As received" data is the same as shipped data.

Signed:

Technician: Sean Childs

Page 1 of 1

Certificate Number 2012-155612

Instrument Model CAL200, Serial Number 3106, was calibrated on 28FEB2012. The instrument meets factory specifications per Procedure D0001.8190.

Instrument found to be in calibration as received: YES

Date Calibrated: 28FEB2012

Calibration due:

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY N
Larson Davis	2900	0661	12 Months	05APR2012	2011-141857
Larson Davis	2559	2506	12 Months	24MAY2012	18309-1
PCB	1502C02FJ15PSIA	1429	12 Months	17AUG2012	3396448761.00
Hewlett Packard	34401A	3146A10352	12 Months	21AUG2012	5335364
Larson Davis	PRM915	0112	12 Months	09SEP2012	2011-148845
Larson Davis	PRM902	0480	12 Months	09SEP2012	2011-148846
Larson Davis	MTS1000/2201	0111	12 Months	09SEP2012	SM090911

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Environmental test conditions as shown on calibration report.

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

This calibration complies with the requirements of ISO 17025 and ANSI Z540. The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

Before: 113.90 dB, 93.89 dB, 1000.3 Hz @ sea level. After: Refer to Certificate of Measured Output.

Signed:

Technician: Scott Montgomery

Sound Level Prediction and Control Program
Williamsburg Works
Former MGP Site
50 Kent Avenue Parcel
Brooklyn, New York

Prepared for:

Mr. Colin Wasteneys URS Corporation 77 Goodell Street Buffalo, New York 14203

Prepared by:

Vibra-Tech Engineers, Inc. 109 E. First Street Hazleton, PA 18201 1-800-233-6181

July 31, 2012

TABLE OF CONTENTS

INTRODUCTION 2 DISCUSSION OF SOUND LEVEL MEASUREMENTS 2 DB 2 DBA 2 AMBIENT SOUND 2 IMPULSIVE SOUND 2
DB
DBA
DBA
IMPULSIVE SOUND
Non-Impulsive Sound
Extraneous Sound
Maximum – dBA L _{max}
Ln Exceedance Levels
Total Sound Level
COMBINING SOUND LEVELS3
NOISE SOURCE DATA3
REGULATIONS4
LOCAL LAWS OF THE CITY OF NEW YORK - NEW YORK CITY NOISE CODE
AMBIENT SOUND LEVEL STUDY5
SOUND LEVEL PREDICTION ANALYSIS5
RESULTS6
CONSTRUCTION NOISE MITIGATION7
DEPARTMENT OF ENVIRONMENTAL PROTECTION CITYWIDE CONSTRUCTION NOISE MITIGATION
DISCUSSION8
CONCLUSION9
APPENDIX A10
APPENDIX B11
APPENDIX C

LIST OF TABLES

Table 1.	Approximate Addition of Sound Levels	.3
Table 2.	Construction Equipment 50 feet Noise Emission Reference Levels – Federal Highway Administration Roadway Construction Noise Model User's Guide	.4
Table 3.	Monitoring Locations for the Ambient Sound Study	.5
Table 4.	Ambient L _{max} (Onsite) and Ambient L _{max} (Week) Noise Levels.	.6
Table 5.	Predicted L _{max} Noise Levels for Each Type of Equipment	.6
Table 6.	Predicted L _{max} noise levels with All Equipment Running	.7
Tahle 7	Predicted I noise levels with Equipment other than Pile Driver Running	7

Executive Summary

As per an agreement between Vibra-Tech Engineers, Inc. and URS Corporation, Vibra-Tech has completed a sound prediction and control program for the Williamsburg Works former MGP site in Brooklyn, New York. The sound prediction analysis focuses on all major noise sources associated with the environmental remediation site, including pile driving, drilling, and excavation.

Based on the noise predictions performed for the former Williamsburg Works MGP site, the vibratory pile driver is the loudest noise source (92.08 dBA). The next highest noise sources are the auger drill rig, roller, and dozer (all at 82.08 dBA). The backhoe and the front end loader had the lowest predicted noise levels. Maximum noise levels of 85.46 to 92.08 from the pile driver exceed the New York City Noise Code of 85 dBA at or beyond a distance of 50 feet from the source. For all other equipment running individually, the predicted levels are below 85 dBA.

Based on an analysis of combined noise levels from all noise sources running at the same time, predicted sound levels in excess of the 85 dBA New York City Noise Code were calculated at four of the six monitoring locations. If the pile driver was eliminated from this analysis, then only two locations would exceed 85 dBA.

According to the DEP Environmental Protection Citywide Construction Noise Mitigation regulations, several noise mitigation efforts should be made to reduce noise at the receptor locations. Additional noise mitigation efforts must be made when operating the vibratory pile driver, dump trucks, and the auger drill rig.

Sound should be monitored during the use of the construction equipment to verify sound level predictions for comparison to the levels noted in the Federal Highway Administration Roadway Construction Noise Model User's Guide, and to ensure compliance with local noise ordinances.

Sound Level Prediction and Control Program
Williamsburg Works
Former MGP Site
50 Kent Avenue Parcel
Brooklyn, New York

July 31, 2012

Introduction

As per an agreement between Vibra-Tech Engineers, Inc. and URS Corporation, Vibra-Tech has completed a sound level prediction and control program for the Williamsburg Works former MGP site in Brooklyn, New York. The sound prediction analysis focuses on all major noise sources associated with work at the environmental remediation project, including pile driving, rock drilling, and excavation. This report discusses both existing and predicted sound levels at receptor locations adjacent to the project site. The predicted noised levels were compared to the Local Laws of The City of New York - New York City Noise Code. In addition, noise control efforts such as those described in the DEP Citywide Construction Noise Mitigation regulations have been summarized for proposed equipment operation.

Discussion of Sound Level Measurements

The measurement of noise involves quantifying both its rate (frequency in Hz) and intensity (pressure) relative to normal atmospheric pressure. People do not perceive all frequencies with equal sensitivity; rather, they respond to higher frequencies more than lower frequencies. The following discussion of sound levels measurements describes the types of measurements collected for these studies.

dB

A decibel (dB) is a unit of measure of sound pressure. The base or threshold of hearing is 0 dB. The calculations of dB are logarithmic allowing very large and very small relationships of sound pressure to be compared.

dBA

The A-weighted decibel level (dBA). A dBA sound level measurement weighs the various frequency components of a sound as perceived by the human ear in order to yield a single number indicator of its relative loudness. All measurements used in this study are dBA.

Ambient Sound

The sound level at a given location that exists as a result of the combined contribution in that location of all sound sources, excluding the contribution of a source or sources under investigation.

Impulsive Sound

A sound that is of short duration; where each peak sound lasts two seconds or less, and is characterized by abrupt onset and rapid decay.

Non-Impulsive Sound

A sound that is of long duration; where each peak sound lasts longer than two seconds.

Extraneous Sound

Sound that is intense, intermittent, not representative of the relatively steady sound levels at a given location, such sounds include but are not limited to sirens of passing emergency vehicles, and unusually load motor vehicles such as motorcycles.

Maximum – dBA L_{max}

The maximum measured sound level at any instant in time.

Ln Exceedance Levels

Exceedance Level measurements are taken for a pre-determined period of time, which is variable. The results of these measurements are expressed as a dBA value and the percentage of time of the total measurement period that the level was exceeded. For example, if L_{10} = 50 dBA, for 10 percent of the test period, the sound level present was 50 dBA or above.

Total Sound Level

Measured sound level that represents the combined sound level of the source or sources under investigation and the ambient sound level. Total sound level measurements shall exclude extraneous sound sources.

Combining Sound Levels

In general, the approximate addition of sound levels can be made using the table below.

Table 1. Approximate Addition of Sound Levels

Difference between two sound levels	Add to the Higher of the two sound levels
1 dBA or less	3 dBA
2 to 3 dBA	2 dBA
4 to 9 dBA	1 dBA
10 dBA or more	0 dBA

Noise Source Data

According to the DEP Citywide Construction Noise Mitigation regulations, noise levels in the Federal Highway Administration Roadway Construction Noise Model User's Guide, January 2006, page 3, are to be used as the basis for predicting noise levels from proposed equipment. The DEP Citywide Construction Noise Mitigation regulations can be found in Appendix A; the Federal Highway Administration Roadway Construction Noise Model User's Guide noise levels can be found on page 31 and 32 in Appendix A.

Table 2 below shows all major noise sources associated with the environmental remediation of the Williamsburg Works former MGP site and the corresponding L_{max} values at a reference distance of 50 feet. These values were taken directly from the Federal Highway Administration Roadway Construction Noise Model User's Guide.

Table 2. Construction Equipment 50 feet Noise Emission Reference Levels – Federal Highway Administration Roadway Construction Noise Model User's Guide

Equipment Description	L _{max} at 50 feet (dBA slow)
Backhoe	80
Dozer	85
Front End Loader	80
Vibratory Pile Driver	95
Auger Drill Rig	85
Roller	85
Dump Truck	84

Regulations

Local Laws of the City of New York - New York City Noise Code

The New York City Noise Code took effect on July 1, 2007. This noise code is found in the Local Laws of the City of New York for the year 2005 - No. 113 and can also be found in Appendix B of this report. In Subchapter 5 of the New York City Noise Code - "Prohibited Noise - Specific Noises Sources - Sound Level Standard" Subsection 24-228 - Construction, exhausts and other devices it reads:

- (a) No person shall operate or use or cause to be operated or used a construction device or combination of devices in such a way as to create an unreasonable noise. For the purposes of this section unreasonable noise shall include but shall not be limited to sound that exceeds the following prohibited noise levels:
 - (1) Sound, other than impulsive sound, attributable to the source or sources, that exceeds 85 dB(A) as measure 50 or more feet from the source or sources at a point outside the property line where the source or sources are located or as measure 50 or more feet from the source or sources on a public right-of-way
 - (2) Impulsive sound, attributable to the source, that is 15 dB(A) or more above the ambient sound level as measure at any point within a receiving property or as measure at a distance of 15 feet or more from the source on a public right-of-way. Impulsive sound levels shall be measured in the A-weighting network with the sound level meter set to fast response. The ambient sound level shall be taken in the A-weighted network with the sound level meter set to slow response.

The proposed construction equipment to be operated at the Williamsburg Works former MGP site will generate steady state (non-impulsive) sound. There may be some instances when impulsive sounds may be produced, such as the impact of an excavator shovel on ground or asphalt.

As per the New York City Noise Code the allowable limit for construction noise is 85 dBA. The predicted equipment noise will be compared to the limit of 85 dBA.

Ambient Sound Level Study

An ambient sound study was conducted at the Williamsburg Works former manufactured gas plant site from April 23 to April 29, 2012. Monitoring was conducted at six (6) unattended sound level stations at receptor locations adjacent to the project site. The table below provides the location number, a brief description, and GPS coordinate for each location. A map showing monitoring locations is located in Appendix C.

Table 3. Monitoring Locations for the Ambient Sound Study

Location	Description	GPS
1	1 20 N. 12 th Street Block 2287 - South Corner	
1	20 N. 12 Street Block 2287 - South Corner	W 73° 57′ 38.02″
2	2 Plack 2204 Lat 1 North Side of Building	
2	Block 2294 Lot 1 - North Side of Building	W 73° 57′ 36.30″
3	51 Kent Avenue - North Corner	N 40° 43′ 20.67″
3	31 Rent Avenue - North Comer	W 73° 57′ 33.76″
4	35 Kent Avenue Block 2288 Lot 1 - North Corner	N 40° 43′ 22.62″
4	33 Kent Avenue Block 2288 Lot 1 - North Corner	W 73° 57′ 31.43″
5	Block 2277 Lot 1 - South of Building	N 40° 43′ 24.27″
3	Block 2277 Lot 1 - South of Bulluling	W 73° 57′ 33.02
6	20 N. 12 th Street Block 2287 - Northeast Corner	N 40° 43′ 25.49″
8	20 N. 12 Street block 2207 - NORtheast Corner	W 73° 57′ 36.07″

In addition to the six stations deployed, two Larson Davis 824 Systems were used to conduct 1 hour spot checks at each of the six monitoring locations. The sound level meters were mounted on tripods approximately five feet above the ground and the microphones were equipped with wind screens. All sound level meters meet American National Standards Institute (ANSI) S1.4-1983. The data collected by these systems contains various sound level quantities, including Exceedance Levels, $L_{\rm eq}$, and other noise measurements, all measured simultaneously. All ambient and noise source sound level measurements were made using the A-weighted scale with the meter set to slow response. The sound level systems were laboratory calibrated by the manufacturer prior to the study. The systems were also field calibrated immediately before and after the study.

The data recorded during the spot checks (L_{max} Onsite) and the data collected during the week of ambient data collection (L_{max} Week) can be found in Table 4. The data which was collected on site (L_{max} Onsite) was collected in one hour intervals during the hours when construction will be taking place and field technicians were on site to take detailed notes throughout the testing.

Sound Level Prediction Analysis

In order to assess the overall potential noise impact from the remediation site, sound level prediction analysis for the Williamsburg Works former MGP site was completed. All sound level predictions were made using a standard sound attenuation formula known as the "inverse square law" as found in Equation 1. Sound pressure level changes in inverse proportion to the square of the distance from the sound source. At distances greater than 50 feet from a sound source, every doubling of the distance produces a 6 dB reduction in the sound.

Sound Level₁ – [20 x Log (d_2 / d_1)] = Sound Level₂

d_1 = Distance from source where Sound Level₁ was measured d_2 = Distance from source where Sound Level₂ is to be determined

Sound level prediction calculations were based on the L_{max} source sound level from seven (7) noise sources which will be used during the environmental remediation project. The L_{max} noise source data for all construction equipment proposed to be in operation at the site were provided by URS Corporation, or acquired from the Federal Highway Administration Roadway Construction Noise Model User's Guide, January 2006.

For each piece of construction equipment, the maximum noise level at a specific reference distance (50 feet) was used to calculate the noise level at each receptor. The receptor locations were the locations for which Vibra-Tech had previously conducted ambient noise level testing. After the noise levels were calculated for each piece of equipment to each receptor location, the noise level was determined for all equipment running simultaneously at each receptor location.

Results

Table 4 provides a summary of the L_{max} (Onsite) and L_{max} (Week) data collected at each of the six monitoring locations located adjacent to the project site. The projected L_{max} sound levels for each type of construction equipment are noted in Table 5, the predicted L_{max} noise levels with all equipment running can be found in Table 6, and the predicted L_{max} noise levels with all equipment running other than the pile driver can be found in Table 7.

Table 4. Ambient L_{max} (Onsite) and Ambient L_{max} (Week) Noise Levels.

Monitoring Location	Lmax (Onsite) Ambient	Lmax (Week) Ambient
Location 1	72.7	88.2
Location 2	75.9	92.9
Location 3	93.6	102
Location 4	95.4	115.8
Location 5	84.1	107
Location 6	83.2	97.3

Table 5. Predicted L_{max} Noise Levels for Each Type of Equipment

Monitoring Location	Estimated Distance	Dozer Predicted L _{max} (dBA)	Front End Loader Predicted Lmax (dBA)	Vibratory Pile Driver Predicted Lmax (dBA)	Auger Drill Rig Predicted Lmax (dBA)	Roller Predicted Lmax (dBA)	Dump Truck Predicted Lmax (dBA)
Location 1	210	72.54	67.54	82.54	72.54	72.54	71.54
Location 2	70	82.08	77.08	92.08	82.08	82.08	81.08
Location 3	115	77.77	72.77	87.77	77.77	77.77	76.77
Location 4	150	75.46	70.46	85.46	75.46	75.46	74.46
Location 5	70	82.08	77.08	92.08	82.08	82.08	81.08
Location 6	220	72.13	67.13	82.13	72.13	72.13	71.13

Table 6. Predicted L_{max} noise levels with All Equipment Running

Monitoring Location	Estimated Distance	Projected L _{max} (dBA)
Location 1	210	82.54
Location 2	70	92.08
Location 3	115	87.77
Location 4	150	85.46
Location 5	70	92.08
Location 6	220	82.13

Table 7. Predicted L_{max} noise levels with Equipment other than Pile Driver Running

Monitoring Location	Estimated Distance	Projected L _{max} (dBA)
Location 1	210	78.54
Location 2	70	88.08
Location 3	115	83.77
Location 4	150	81.46
Location 5	70	88.08
Location 6	220	78.13

Construction Noise Mitigation

Department of Environmental Protection Citywide Construction Noise Mitigation

According to the DEP Environmental Protection Citywide Construction Noise Mitigation regulations, several noise mitigation efforts should be made to reduce noise at the receptor locations. The following list represents mitigations efforts which may be necessary to comply with the DEP regulations.

- The use of manufacturer's noise reduction device(s) on construction equipment.
- Keep engine housing doors closed; the use of noise-insulating material mounted on the engine housing; and operating the machinery at lower engine speeds.
- Cover portable compressors, generators, pumps, and other such devices with noise-insulating fabric.
- Prevent the idling of vehicles on site.
- The use of guieter backup alarms which are in conformance with OSHA standards.
- The fabrication of perimeter noise barriers in accordance with the standards set forth in the DEP Citywide Construction Noise Mitigation regulations Chapter 28-107 Perimeter Noise Barriers.
- Construction activities limited to between the hours of 7:00 A.M. to 6:00 P.M on weekdays.

According to the DEP, the operation of certain types of equipment requires additional noise mitigation. The type of equipment which requires the additional mitigation measures are:

- Impact Equipment (Pile Drivers, Jackhammers, Hoe Rams, Blasting)
- Earth Moving Devices (Vacuum Excavators)
- Construction Trucks (Dump Trucks)
- Stationary Devices (Cranes, Auger Drills, Street Plates, Backup Alarms)
- Manual Devices (Concrete Saws)

Impact equipment such as a pile driver, construction trucks such as dump trucks, and stationary devices such as auger drills, are to be used at the Williamsburg Works former MGP site remediation project. When operating the impact equipment such as the pile driver at this site the pile holes can be preaugured or pre-trenched to soften the underlying ground, reducing ground resistance, and potentially reducing pile driving noise based on geotechnical conditions at the site.

When operating construction trucks or vehicles such as the dump trucks at this site the smallest sized and quietest dump trucks that are adequate for a particular job should be selected. Bed liners made of thick rubber, spray-on liner, or other material which can mitigate the noise of the first load being dropped in the dump truck should be installed. Dump trucks should be positioned so they are not at the closest point to the receptor locations. Dump trucks should use quieter warning devices such as backup alarms, be equipped with an effective muffler, and ensure the engine housing doors are kept closed when the engine is in operation.

Auger drill rigs should be equipped with an effective muffler, and all moving parts should be well lubricated. Debris from the drill bit should be removed without quick twisting, jerking, or hammering the bit. The use of pathway controls such as noise barriers and curtains should be in place and utilized while using auger drills. The noise barriers should be in conformance with DEP Citywide Construction Noise Mitigation regulations 28-102. Construction Devices - d. - Stationary Equipment, 2. - Auger Drill Rigs, C. - Pathway Controls: Noise Barriers & Curtains.

Discussion

As per the Local Laws of the City of New York - The New York City Noise Code, each person, corporation or other business entity performing construction work in the city shall adopt and implement a noise mitigation plan for each construction site. The plan shall provide in detail the noise mitigation strategies, methods, and procedures for each device or activity employed or performed at this site. The Department of Environmental Protection Citywide Construction Noise Mitigation regulations provide mitigation measures for certain types of construction equipment that should be implemented. Site visits may be made by DEP personnel throughout the course of the construction activity to ensure compliance with noise ordinances and to ensure noise mitigation measures are employed.

The decrease in sound level over distance normally follows the inverse square law. At distances of fifty (50) feet or greater from a sound source, every doubling of distance produces a 6 dBA reduction in sound. Therefore, a sound of 70 dBA at 50 feet would have a sound level of approximately 64 dBA at 100 feet. At 200 feet the sound level would be 58 dBA. For this project, the closest distance from any noise source to any receiver was approximately 70 feet.

Conclusion

Based on the noise predictions performed for the former Williamsburg Works MGP site, the vibratory pile driver is the major contributing noise source as per Table 7. The next highest noise sources are the auger drill rig, roller, and dozer (all at 82.08 dBA). The backhoe and the front end loader had the lowest predicted noise levels. Maximum noise levels of 85.46 to 92.08 from the pile driver exceed the New York City Noise Code of 85 dBA at or beyond a distance of 50 feet from the source. For all other equipment running individually, the predicted levels are below 85 dBA.

Based on an analysis of combined noise levels from all noise sources running at the same time provided in Table 8, predicted sound levels in excess of the 85 dBA New York City Noise Code were calculated at four of the six monitoring locations. If the pile driver was eliminated from this analysis, then only two locations would exceed 85 dBA.

The L_{max} noise levels recorded during the ambient study represent noise levels from existing sources such as motor vehicle traffic along Kent Avenue and other nearby roads, aircraft flying overhead, pedestrian foot traffic, and activities from nearby warehouses. The predicted L_{max} values for the construction equipment indicated represent the highest dBA sound level from that particular type of machine. The predictions do not take into consideration the length of time the equipment will be emitting this sound level. Therefore, as the remediation efforts progress additional sound measurements should be taken and actions can be employed to minimize the effects of noise from the project site.

Under normal operating conditions of the remediation site, it is probable that all seven noise sources used in this analysis would not be running simultaneously. Mitigation efforts should be made to help reduce offsite noise levels. Sound should be monitored during the use of the construction equipment to verify sound level predictions, for comparison to the levels noted in the Federal Highway Administration Roadway Construction Noise Model User's Guide, and to ensure compliance with local noise ordinances.

Respectfully submitted,

VIBRA-TECH ENGINEERS, INC.

Mark Edwards

Vibration and Sound Analyst

Jonathan A. Ferdinand

Xalundy

Jonathan A. Ferdinand

Vibration and Sound Specialist

APPENDIX A	
The DEP Citywide Construction Noise Mitigation Regulations - Federal Highway Administration Roadway Construction Noise Model User's Guide	
10	

DEPARTMENT OF ENVIRONMENTAL PROTECTION NOTICE OF ADOPTION OF RULES FOR CITYWIDE CONSTRUCTION NOISE MITIGATION

NOTICE IS HEREBY GIVEN PURSUANT TO THE AUTHORITY VESTED IN THE Department of Environmental Protection by section 1043 of the New York City Charter and section 24-219 of the Administrative Code of the City of New York, and after a duly advertised public hearing held on January 18th, 2007, that the Department of Environmental Protection has promulgated rules concerning citywide construction noise mitigation.

STATEMENT OF BASIS AND PURPOSE

On December 29th, 2005, Mayor Michael Bloomberg signed Local Law 113 for the year 2005. The law amended the Administrative Code of the City of New York in relation to the Noise Control Code. Specifically, the law established standards and procedures to reduce noise levels from construction, and established sound level standards for specific noise sources. The law also mandated the adoption of rules in section 24-219 of the Administrative Code. Pursuant to that section, these rules prescribe the methods, procedures and technology that shall be used at construction sites to achieve noise mitigation whenever any one or more of certain construction devices or activities set forth in the rules are employed or performed.

The rules are authorized by section 1043 of the Charter of the City of New York as well as section 24-219 of the Administrative Code of the City of New York.

The text of the rules follow. New matter is underlined.

* * *

Title 15 of the Rules of the City of New York is amended by adding a new Chapter 28 to read as follows:

CHAPTER 28

CITYWIDE CONSTRUCTION NOISE MITIGATION

<u> </u>	General Construction Noise Mitigation Plan.
§28-101	Required Noise Mitigation Measures for General Construction.
§28-102	Construction Devices and Activities.
<u>§28-103</u>	Authorized Work Hours.
§28-104	Alternative Noise Mitigation Plan.
§28-105	Utility Noise Mitigation Plan.
§28-106	Required Noise Mitigation Measures for Utilities.
§28-107	Perimeter Noise Barriers.
§28-108	Temporary or Portable Noise Barriers.
§28-109	Definitions.
Appendix	Federal Highway Administration Roadway Construction Noise Model
	User's Guide, Jan. 2006.

§ 28-100 General Construction Noise Mitigation Plan.

In accordance with §24-219 of the New York City Noise Code, every construction site where construction activities take place shall have, conspicuously posted, a complete and accurate Construction Noise Mitigation Plan. So long as the plan complies with this chapter, it need not be filed with the Department of Environmental Protection (DEP); however, such plan must be readily available for inspection at the construction site. The Construction Noise Mitigation Plan Form is available at: http://www.nyc.gov/dep or at DEP's Offices at:

New York City Department of Environmental Protection Bureau of Environmental Compliance, 9th Floor 59-17 Junction Blvd. Flushing, NY 11373.

§28-101 Required Noise Mitigation Measures for General Construction.

a. The responsible party shall self-certify in its Construction Noise Mitigation Plan that all construction tools and equipment have been maintained so that they operate at normal manufacturer's operating specifications, including at peak loading. Such self-certification shall be indicated on the Construction Noise Mitigation Plan form required by §28-100 of this chapter. Upon a DEP inspection of the work site, DEP shall use the noise level guidelines in the Federal Highway Administration Roadway Construction Noise Model User's Guide, Jan. 2006, page 3, located in the Appendix to this chapter, as a means of identifying equipment that may be the cause of a noise complaint. If an individual piece of equipment is identified by DEP as exceeding the level specified in such Guide located in the Appendix to this chapter, upon notification by DEP, the responsible party shall have the option of: (i) performing maintenance

to demonstrate a good faith effort, notwithstanding the model year of the equipment, to mitigate the noise by a measurable level acceptable to the Department, (ii) replacing the equipment with equipment that complies with said level, or (iii) filing an Alternative Noise Mitigation Plan pursuant to §28-104 of this chapter, within five business days of said inspection. If the responsible party elects to perform maintenance pursuant to option (i), but cannot demonstrate within five business days a reduction in noise by a measurable level acceptable to the Department, such party shall pursue one of the other two options to the satisfaction of the Department. The failure to exercise and complete one of such three options within five business days of said inspection shall be a violation of this rule.

- b. All construction equipment being operated on site must be equipped with the appropriate manufacturer's noise reduction device(s), including, but not limited to, a manufacturer's muffler (or equivalently rated material) that is free of rust, holes and exhaust leaks.
- c. The responsible party shall mitigate noise from construction devices with internal combustion engines by ensuring that the engine's housing doors are kept closed, and by using noise-insulating material mounted on the engine housing that does not interfere with the manufacturer's guidelines for engine operation or exhaust. The responsible party shall further reduce noise by operating the device at lower engine speeds during the work to the maximum extent possible.
- d. Portable compressors, generators, pumps and other such devices shall be covered with noise-insulating fabric to the maximum extent possible that does not interfere with the manufacturer's guidelines for engine operation or exhaust, and shall further reduce noise by operating the device at lower engine speeds during the work to the maximum extent possible.
- e. Vehicle engine idling on site shall be prevented in accordance with New York City Administrative Code §24-163.
- f. Quieter back-up alarms shall be used in pre-2008 model year vehicles when practicable for the job site. 2008 model year or newer vehicles shall be equipped with a quieter back-up warning device in accordance with OSHA standards, as set forth in paragraph 4 of subdivision d of §28-102 of this chapter.
- g. When DOB regulations require a perimeter barrier, or "construction fence," and the site is within 200 feet of a receptor or a receiving property as defined in §28-109 of this chapter, perimeter noise barriers shall be fabricated in accordance with the standards set forth in subdivision e of §28-107 of this chapter and lined with material set forth in subdivisions c and e of §28-107 of this chapter. Further, the responsible party shall fill in any gaps and holes in adjacent panels of noise barriers with noise attenuation material, so as to maximize the effectiveness of such barriers. Such noise attenuation material shall include noise curtain material, additional plywood, or similar material. When viewing ports are required in the curtain material, they shall be filled in with clear plastic attached to the curtain.
- h. The contractor shall create and utilize a noise mitigation training program, which shall be implemented for all field-worker supervisory personnel including sub-contractor supervisors.

Supervisory personnel shall field-train all field workers to minimize construction noise. Such training program shall be developed in consultation with DEP.

- i. When work is planned near sensitive receptors, including but not limited to facilities such as schools, hospitals, places of worship, and homes for the aging, the responsible party shall cooperate with the facility owner or operator to coordinate the work schedule so as to minimize the noise impact on the facility.
- j. A DEP inspector may visit a construction site to examine the Noise Mitigation Plan upon receiving a complaint, or as a matter of routine inspection, to ensure that the responsible party is complying with such Plan. A responsible party found not to be complying with such Plan shall be provided a cure period of three business days to correct the condition or to file an Alternative Noise Mitigation Plan under §28-104 of this chapter. If the condition is not corrected nor an Alternative Noise Mitigation Plan filed with DEP within three business days, then a Notice of Violation shall be issued against the responsible party. Said violations may be issued on-site or by mail. Notwithstanding the preceding sentences in this subdivision, there shall be no cure period afforded with respect to compliance with §\$28-100, 28-101(a), (b), (e), (f), (h); §28-104; §28-105; and §\$28-106(a), (b), (d) (g) & (i) of this chapter.
- k. Construction activities may take place during the hours of 7:00 a.m. to 6:00 p.m. on weekdays. At all other times, the permitee shall obtain after-hours authorization, pursuant to §28-103 of this chapter.
- l. Where construction projects are of shorter duration of less than 15 days and within the property line and do not require Department of Buildings (DOB) perimeter barriers ("construction fences"), and where the work site is within 75 feet of a residential receptor, a temporary or portable (i.e. unanchored) noise barrier shall be fabricated in accordance with the specifications in §28-108 of this chapter. For long-term street work, defined as 15 days or longer, that is outside the property line and within 75 feet of a residential receptor and where there is a dedicated lane available, a temporary barrier in accordance with the specifications in §28-108 of this chapter shall be required.
- m. Whenever a responsible party is engaged in sandblasting operations that require a perimeter or other barrier during sandblasting, said barrier shall be lined with noise barrier material as set forth in subdivision e of §28-107 of this chapter.
- n. Responsible parties conducting construction and roadway work that will commence and be completed within a continuous period of no longer than 24 hours, that occurs between the hours of 7:00 a.m. and 6:00 p.m. on weekdays, need not post or file with DEP a Construction Noise Mitigation Plan. However, the responsible party for such construction work shall not create unreasonable noise. In addition, if the work occurs near or adjacent to a sensitive receptor as defined in §28-101(i) of this chapter, then the responsible party shall make modifications including scheduling changes or employing additional noise mitigation methods listed in §\$28-102, 28-107, and 28-108. This subdivision shall not apply to construction work that occurs after hours.

o. Technical terms in these rules are defined in the Noise Code or in §28-109 of this chapter.

§28-102 Construction Devices and Activities.

The devices listed in this section require additional noise mitigation. A responsible party using any of these devices shall mitigate the noise by following the rules set forth in this section for the specific device. There are five categories of devices:

- a. Impact Equipment: Pile Drivers, Jackhammers, Hoe Rams, Blasting.
- b. Earth Moving Devices: Vacuum Excavators.
- c. Construction Trucks: Dump Trucks.
- d. Stationary Devices: Cranes, Auger Drills, Street Plates, Backup Alarms.
- e. Manual Devices: Concrete Saws.

If the responsible party cannot in good faith comply with the noise mitigation rules for each device, the responsible party shall file with DEP an Alternative Noise Mitigation Plan in accordance with §28-104 of this chapter.

a. Impact Equipment.

1. Pile Drivers. This rule provides noise mitigation strategies that responsible parties shall utilize in order to reduce the noise emissions from pile driving and related equipment. Pile drivers for sheet piles and/or column piles are a common necessity on a construction project. Piles can be used to stabilize trench walls during excavation, create coffer dams to hold back water, or to provide an anchored platform upon which structures can be built. There are two basic types of pile drivers - impact hammers and vibratory drivers. Noise emission levels from pile drivers can vary widely based on the type of driver, the type of pile (steel, concrete, wood), and the underlying ground conditions.

A. GENERAL RULES OF OPERATION

i. The hours of operation shall be in accordance with §28-103 of this chapter.

B. SOURCE CONTROLS: QUIETER MODELS & MUFFLERS

i. The quietest pile driving method shall be selected that allows the work to be performed based on structural, geotechnical, and pile friction requirements and ground conditions. The following list or their equivalent are acceptable pile-driving methods to the Department: a hydraulic pile pushing system, a vibratory

pile driver; a hydraulic impact pile driver; a drop hammer, a diesel impact pile driver.

- ii. Hydraulic pushing method pile drivers, including the Ken-Jet Still Worker, the Giken Silent Piler, or the SERF Pilemaster, or equivalent, shall be utilized rather than louder impact or vibratory pile drivers when ground conditions permit such use. Further, such quieter pile drivers shall be utilized whenever a responsible party is working within 100 feet of a receptor.
- iii. In accordance with the noise mitigation criteria outlined in §28-101(b) of this chapter, an impact pile driver shall be equipped with a well maintained exhaust muffler in order to mitigate the amount of noise escaping out with the diesel exhaust.
- iv. The responsible party shall select the type of pile being driven based on structural and/or geotechnical performance requirements. In order of loudness, wooden piles shall be preferred first, followed by concrete piles, and then steel piles.
- v. The responsible party shall pre-auger or pre-trench the pile holes to soften the underlying ground, reduce ground resistance, and thus reduce pile driving noise based upon geotechnical conditions at the location. Auger drill rigs may be mounted to the same crane as the pile driver or alternatively, an excavator with a long bucket arm may pre-trench as deep as 25 feet below grade.
- vi. A properly secured impact cushion shall be installed on top of piles that are being driven by an impact hammer. Commercially available pile cushions or those fabricated on the job site, out of scrap wood, leather or rubber, may be utilized.
- vii. Quieter alternative methods to pile driving, including the use of drilled caissons filled with concrete, or slurry walls dug out initially with a milling machine, shall be used whenever possible, depending on structural and geotechnical performance requirements.
- viii. Noise bellows systems such as the IHC Hydrohammer, or an equivalent bellows device, may be used to provide further noise attenuation. Bellows enclosures accompany the pile down to the ground and collapse accordion style as the pile reaches the ground.
- ix. When the responsible party uses a vibratory pile driver or a hydraulic impact pile driver as set forth in clause (ii) of this subparagraph and/or noise bellows as set forth in clause (viii) of this subparagraph, between the hours of 7:00 a.m. to 6:00 p.m. on weekdays, the responsible party need not utilize additional pathway controls listed in subparagraph C of this paragraph, unless the responsible party is performing work within 35 feet of an indoor receptor and

with the exception of any required perimeter barriers as specified in §28-101(g) of this chapter.

- x. No violation shall be issued to the responsible party if the bellows in clause (viii) of this subparagraph B or the barriers listed in subparagraph C of this paragraph are adjusted such that the operator can view the end of the hammer for safety purposes.
- C. NOISE PATHWAY CONTROLS: NOISE BARRIERS & ENCLOSURES. The responsible party shall utilize one of the following pathway controls. However, if the Department receives noise complaints concerning the site, the responsible party shall utilize additional pathway controls listed in this subparagraph as required by DEP.
 - i. The responsible party shall construct a portable noise barrier that shall be free from gaps and holes and constructed of a sufficiently massive material to achieve a Sound Transmission Class rating of STC 30 or greater. It shall be positioned as close as possible to the pile driver. A portable (i.e. unanchored) noise barrier can be made, for example, of concrete jersey bases with ¾-inch plywood panels attached to fence posts extending upwards to an overall height of 15 feet. This shall be the maximum height for a free-standing barrier in order to avoid it tipping over from wind load. Multiple jersey bases and plywood panels shall be positioned adjacent to one another to form a barrier of any desired length. The gaps between adjacent panels shall be filled-in with noise curtain material, additional plywood, or similar material when practicable. A properly balanced canted panel, not susceptible to windy conditions, may be placed on top of the barrier in order to provide better shielding for multi-story receptors. However, said barrier's height shall not exceed 15 feet including the balanced canted portion.
 - ii. The noise barrier shall be long and tall enough to completely block the line of sight between the pile driver and any indoor receptor within 200 feet and that is a maximum of 20 feet above grade level, when work occurs. The barrier should be placed as close to the actual pile driving work as feasible. Greater noise attenuation occurs when barriers are placed as close as possible to the noise source.
 - with noise curtain material, such as SoundSeal model BBC-13-2, or equivalently rated material, shall be hoisted up into position on the crane's second cable to form a noise barrier in the direction of sensitive receptors. The shield shall be large enough to completely block the line of sight between the receptors and the pile driver, and shall be lowered to the ground as the pile is being driven in order to maintain the shielding effect. Such portable noise shield shall be utilized when the pile driver is higher than any barrier at the site required under §28-101(g) of this chapter.

- iv. Alternative barriers may be utilized in accordance with site-specific conditions. For example, shipping container (Conex) boxes or truck trailers may be positioned along the edge of the work site to form an effective semi-permanent noise barrier. Sufficient space at the site is necessary, as these containers are generally 8 feet wide by 8 feet tall and can be double-stacked to form a noise barrier 16 feet in height. The gaps between and/or under container boxes shall be filled-in with heavy vinyl noise curtains or similar materials. It should be noted that gaps and spaces are one of the primary contributors to degrading a noise barrier's performance.
- 2. Jackhammers/Pavement Breakers. This rule shall provide noise mitigation strategies that the responsible party shall utilize in order to reduce the noise emissions from jackhammers and pavement breakers. These devices are defined as manually-operated, powered (pneumatic or other) devices, consisting of chisel-hammers or bits used to cut or break through pavement, concrete, or street surfaces. Jackhammers can be very loud as the steel chisel or bit hits the target object.

A. GENERAL RULES OF OPERATION

i. The hours of operation shall be in accordance with the rules as set forth in §28-103 of this chapter.

B. SOURCE CONTROLS: QUIETER MODELS & MUFFLERS

- i. Quieter makes and models of jackhammers such as the Copco model TEX P90S or equivalent model with an elongated effective muffler casing or bellows measuring a total of greater than 15 inches in length, shall be used whenever practicable.
- ii. The quietest jackhammer suitable to perform the given work shall be selected for use. The quieter jackhammers, including the jackhammer specified in clause (i) of this subparagraph or the Chicago Pneumatic CP1240, with a model F-814004 muffler, or equivalent, shall be used when suitable and whenever a responsible party is working in close proximity to receptors, whenever a responsible party is using multiple jackhammers, and whenever jackhammer operations are occurring during after hours as set forth in §24-223 of the Administrative Code.
- iii. In all cases, jackhammers shall be equipped with an effective muffler, provided either from the manufacturer or from an aftermarket vendor, which effectively reduces noise from the exhaust air by about 4 dBA or more. In accordance with §28-101(b) of this chapter, an effective muffler shall be properly fitted to the jackhammer to insure against air or noise leakage.
- iv. If appropriate to the size of the job, smaller jackhammers shall be used, as they tend to be quieter.

- v. When the responsible party uses a device described in clause (i) of this subparagraph between the hours of 7:00 a.m. to 6:00 p.m. on weekdays, the responsible party need not utilize additional pathway controls listed in subparagraph C of this paragraph, unless the responsible party is performing work within 35 feet of an indoor receptor and with the exception of any required perimeter barriers as specified in §28-101(g) of this chapter.
- C. NOISE PATHWAY CONTROLS: NOISE BARRIERS & ENCLOSURES. The responsible party shall utilize one of the following pathway controls for jackhammers or pavement breaker operations within a property line or for long-term work when outside of the property line as specified in §28-106(p) or §28-101(l) of this chapter. However, if the Department receives noise complaints concerning the site, the responsible party shall utilize additional pathway controls listed in this subparagraph as required by DEP. The pathway controls are set forth as follows: jersey barriers, tents, or other portable noise barriers.
 - i. The responsible party shall construct a portable noise barrier that shall be free from gaps and holes and constructed of a sufficiently massive material to achieve a Sound Transmission Class rating of STC 30 or greater and that shall be positioned as close as possible to the jack hammer. The noise barrier shall be long and tall enough to completely block the line of sight between the jackhammer and any indoor receptor within 200 feet and that is a maximum of 20 feet above grade level, when work occurs. The barrier shall be placed as close to the actual jackhammering work as feasible. Greater noise attenuation occurs when barriers are placed as close as possible to the noise source. A balanced canted panel, not susceptible to high winds shall be placed, when feasible, on top of the barrier in order to provide better shielding for multi-story receptors. However, said barrier's height shall not exceed 15 feet including the balanced canted portion.
 - ii. Jersey barriers. A portable (i.e. unanchored) noise barrier can be made, for example, of concrete jersey bases with ¾-inch plywood panels attached to fence posts extending upwards to an overall height of 15 feet. This shall be the maximum height for a free-standing barrier in order to avoid it tipping over from wind load. Multiple jersey bases and plywood panels can be positioned adjacent to one another to form a barrier of any desired length. The gaps between adjacent panels should be filled-in with noise curtain material, additional plywood, or similar material. All jersey barriers shall comply with the requirements in clause (i) of this subparagraph, including a Sound Transmission Class rating of STC 30 or greater.

iii. Portable noise enclosures.

(a) Portable noise enclosures (so-called "noise tents") made of steel frames wrapped with noise curtain material, such as SoundSeal model BBC-13-2, or equivalently rated material, may be built to surround the jackhammer (on the top and 3 sides) and the operator. A properly constructed enclosure, using curtain material with a Sound Transmission Class rating of STC 30 or greater, generally provides a 5 dBA insertion loss. Such barrier shall meet OSHA standards for worker exposure to particulate matter.

- (b) The responsible party shall utilize multiple tents for multiple jackhammers. For example, when two jackhammers are being utilized and they cannot fit under the same noise tent, the responsible party shall provide an additional noise tent.
- (c) The noise tent shall be moved as the jackhammer work progresses in order to maintain the tent's ability to block the line of sight between the jackhammer and the receptors.
- (d) In accordance with §24-223 of the Administrative Code, when emergency jackhammering occurs after normal working hours within 500 feet of any residential receptor, the responsible party shall use noise tents with double thick noise curtain material or a noise tent augmented with a portable noise barrier to form a double layer of mitigation. See section §28-108 of this chapter. Quieter jackhammers and compressor vehicles shall also be utilized during after hours work whenever feasible.
- (e) Where there are receptors surrounding the jackhammer work site on all sides, two tents shall be used on either side of the jackhammer to form a complete enclosure as close to the jackhammer as practicable.
- 3. Hoe Rams. This rule shall provide noise mitigation strategies that the responsible party shall utilize in order to reduce the noise emissions from hoe rams. Hoe rams, and hoe ram-like devices, are used to cut through roadway pavement or concrete walls and for demolition of large concrete or steel structures. They are typically large hydraulic chisel-hammers attached on the end of a backhoe or excavator arm that can be very loud as the steel chisel hits the target object.

A. GENERAL RULES OF OPERATION

i. The hours of operation shall be in accordance with the rules as set forth in §28-103 of this chapter.

B. SOURCE CONTROLS: QUIETER MODELS & MUFFLERS

- i. Quieter makes and models of hoe rams, such as the Bosma Hammer-Head or equivalent quieter devices, shall be used whenever feasible, especially near receptors.
- ii. The smallest hoe ram necessary shall be selected to perform the task, as smaller devices tend to produce less noise.
- iii. A noise shroud enclosure shall be wrapped around the head (i.e. chisel) of the hoe ram whenever working within 200 feet of a receptor. Shrouds may be selected from various manufacturers such as Krupp Industries, Allied Hi-Ram, Montabert, or Rammer Inc. with steel shrouds to attach to the hoe ram head. Alternatively, a shroud may be fabricated on-site by wrapping the chisel head with a heavy vinyl noise curtain

material, such as SoundSeal BBC-13-2, or equivalently rated material, and securing it with tie wire.

- iv. A skilled hoe ram operator can significantly affect the amount of noise produced during the work. In accordance with §28-101(h) of this chapter, responsible party and sub-contractor personnel shall be trained on the proper angle or position when the hoe ram chisel is placed against the work. The operator shall position and operate the device in such a manner as to minimize its noise output. A violation shall only be issued for failure to train the operator as set forth in subdivision (h) of section 28-101 of this chapter.
- v. Alternative methods to hoe ramming concrete, including hydraulic jacks or chemical splitting (use of expansive demolition agents), shall be utilized whenever feasible. For steel demolition, alternative quieter methods may include the use of hydraulic shears and grapples, or the use of torches to cut the steel into more manageable pieces, which can then be trucked off-site for further demolition.
- vi. When the responsible party uses specific makes and models as set forth in clause (i) of this subparagraph or a noise shroud as set forth in clause (iii) of this subparagraph, between the hours of 7:00 a.m. to 6:00 p.m. on weekdays, then the responsible party need not utilize additional pathway controls listed in subparagraph C. of this paragraph, unless the responsible party is performing work within 35 feet of an indoor receptor and with the exception of any required perimeter barriers as specified in §28-101(g) of this chapter.
- vii. No violation shall be issued to the responsible party if any of the shrouds in clause (iii) of this subparagraph are adjusted such that the operator can view the end of the bit for safety purposes.
- C. NOISE PATHWAY CONTROLS: NOISE BARRIERS & ENCLOSURES. The responsible party shall utilize one of the following pathway controls below. However, if the Department receives noise complaints concerning the site, the responsible party shall utilize additional pathway controls listed in this subparagraph as required by DEP.
 - i. The responsible party shall construct a portable noise barrier that shall be free from gaps and holes and constructed of sufficiently massive material to achieve a Sound Transmission Class rating of STC 30 or greater and shall be positioned as close as possible to the hoe ram. A portable (i.e. unanchored) noise barrier can be made, for example, of concrete jersey bases with ¾-inch plywood panels attached to fence posts extending upwards to a overall height of 15 feet. This shall be the maximum height for a free-standing barrier in order to avoid it tipping over from wind load. Multiple jersey bases and plywood panels can be positioned adjacent to one another to form a barrier of any desired length. The gaps between adjacent panels should be filled-in with noise curtain material, additional plywood, or similar material. A balanced canted panel, not susceptible to high winds shall be placed, when feasible, on top of the barrier in order to

provide better shielding for multi-story receptors. However, said barrier's height shall not exceed 15 feet including the balanced canted portion. The noise barrier shall be long and tall enough to completely block the line of sight between the hoe ram and any indoor receptor within 200 feet and that is a maximum of 20 feet above grade level, when work occurs. The barrier should be placed as close to the actual hoe ram work as feasible. Greater noise attenuation occurs when barriers are placed as close as possible to the noise source. Alternative barriers may be utilized in accordance with site-specific conditions. For example, shipping container (Conex) boxes or truck trailers may be positioned along the edge of the work site to form a semi-permanent noise barrier. Sufficient space must be available since containers are generally 8 feet wide by 8 feet tall and can be double-stacked to form a noise barrier 16 feet in height. The gaps between and/or under container boxes should be filled-in with heavy vinyl noise curtains or similar material. Where there are receptors surrounding the hoe ram work site on all sides, several noise barriers shall be used to form a complete enclosure around the hoe ram. Blasting. This rule shall provide noise mitigation strategies that the responsible party shall utilize in order to reduce the noise emissions from blasting. The controlled use of explosives is occasionally necessary on a construction site, primarily to loosen hard rock ledges or to demolish large concrete structures. This rule does not apply to tunneling activities subject to the regulations set forth in §24-246 of the Administrative Code. A. GENERAL RULES OF OPERATION i. The hours of operation shall be in accordance with the rules as set forth in §28-103 of this chapter. The necessary and FDNY-regulated use of blasting shall be done in close coordination with the affected public in order to minimize potential disturbance. B. SOURCE CONTROLS: The smallest appropriate blasting charge possible shall be used in order to minimize blasting noise at its source. The quietest explosive material possible shall also be selected. Relatively slow-burning explosives produce quieter noise emissions as compared to faster-burning explosives. C. NOISE PATHWAY CONTROLS: BLAST MATS AND BARRIERS

i. Blast mats made of heavy rubber shall be laid over the blast site.

- ii. When blasting occurs close to receptors, the responsible party shall construct a portable noise barrier that shall be free from gaps and holes, constructed of a sufficiently massive material to achieve a Sound Transmission Class rating of STC 30 or greater, and positioned as close as possible to the blast site.
- iii. The noise barrier shall be long and tall enough to completely block the line of sight between the blasting and any indoor receptor within 200 feet and that is a maximum of 20 feet above grade level, when work occurs. A portable (i.e. unanchored) noise barrier can be made, for example, of concrete jersey bases with ¾-inch plywood panels attached to fence posts extending upwards to a maximum height of 15 feet.

b. Earth Moving Equipment.

1. Vacuum Excavators. This rule shall provide noise mitigation strategies the responsible party shall utilize when working with a vacuum excavator, or vac-truck. A vac-truck is a vehicle equipped with a low pressure suction hose leading to an on-board storage tank. Vac-trucks are generally used when removing dirt to avoid disrupting underground utility services such as telecommunications cables, water and sewer pipes, gas lines, or electrical cables.

A. GENERAL RULES OF OPERATION

i. The hours of operation shall be in accordance with the rules as set forth in §28-103 of this chapter.

B. SOURCE CONTROLS: QUIETER MODELS & SILENCERS

- i. Smaller capacity (lower suction) vac-trucks tend to be quieter and shall be used whenever practicable. Listed from the quietest to the loudest order, examples include GapVac, BSI Dewitz, BoVac and Guzzler.
- <u>ii.</u> Vac-trucks shall be run in their lower power setting whenever practicable. While suction capacity is reduced with lower engine speeds, there remains adequate suction to perform almost any job.
- <u>iii.</u> Several manufacturers do provide silencers on the air intake and exhaust sides of the blower. Heavier duty silencers including Universal, Industrial Acoustics, McGill and Burgess-Manning, or equivalent, shall be used whenever practicable.
- iv. The vac-truck's suction creating component (i.e. blower) shall be covered with a noise-reducing housing or enclosure.
- v. When the responsible party uses a specific vac-truck as set forth in clause (i) of this subparagraph and/or silencers specifically set forth in clause (iii) of this subparagraph between the hours of 7:00 a.m. to 6:00 p.m. on weekdays, then the responsible party need not utilize additional pathway controls listed in subparagraph C of this paragraph, unless the responsible party is performing work within 35 feet of an

indoor receptor and with the exception of any required perimeter barriers as specified in §28-101(g) of this chapter.

- C. NOISE PATHWAY CONTROLS: NOISE BARRIERS & CURTAINS

 The responsible party shall utilize one of the following pathway controls below. However, if the Department receives noise complaints concerning the site, the responsible party shall utilize additional pathway controls listed in this subparagraph as required by DEP.
 - i. The responsible party shall construct a portable noise barrier that shall be free of gaps and holes and constructed of a sufficiently massive material to achieve a Sound Transmission Class rating of STC 30, or greater, and shall be positioned as close as possible to the vac-truck. A portable (i.e. unanchored) noise barrier can be made, for example, of concrete jersey bases with ¾-inch plywood panels attached to fence posts extending upwards to an overall height of 15 feet. This shall be the maximum height for a free-standing barrier in order to avoid it tipping over from wind load. Multiple jersey bases and plywood panels shall be positioned adjacent to one another to form a barrier of any desired length. The gaps between adjacent panels should be filled-in with noise curtain material, additional plywood, or similar material. A properly balanced canted panel, not susceptible to windy conditions, may be placed on top of the barrier in order to provide better shielding for multi-story receptors. However, such barrier's height shall not exceed 15 feet including the balanced canted portion.
 - ii. The noise barrier shall be long and tall enough to completely block the line of sight between the vac-truck and any indoor receptor within 200 feet and that is a maximum of 20 feet above grade level, when work occurs. The barrier should be placed as close to the actual vac-truck work as feasible. Greater noise attenuation occurs when barriers are placed as close as possible to the noise source.
 - iii. Portable noise shields made of steel frames wrapped with noise curtain material, such as SoundSeal model BBC-13-2, or equivalently rated material, shall be used to form a noise barrier in the direction of sensitive receptors and completely block the line of sight between the receptors and vac-truck. Noise curtains are typically made out of a ¼-inch thick heavy vinyl material, often with a noise absorptive quilt attached to one side. These noise curtains generally weigh 1.5 lbs/sq. ft., have an STC rating of about 32, and come in 4-foot wide sheets complete with grommets and Velcro edges to aid in hanging the curtains and sealing the sheets side-by-side.
 - iv. Alternative barriers may be utilized in accordance with site-specific conditions. For example, shipping container (Conex) boxes or truck trailers can be positioned along the edge of the work site to form a semi-permanent noise barrier. Sufficient space at the site is necessary as these containers are typically 8 feet wide by 8 feet tall and can be double-stacked to form a noise barrier 16 feet in height. The gaps between and/or under container boxes should be filled-in with heavy vinyl noise curtains or similar materials.

v. Whenever possible, vac-truck exhaust shall be positioned and directed away from receptors.

c. Construction Trucks and Vehicles.

1. Dump Trucks. This paragraph shall provide noise mitigation strategies that the responsible party shall utilize in order to reduce the noise emissions from dump trucks. Dump trucks are commonly used on construction sites in order to deliver construction materials, remove and excavate debris, or transfer materials around the job site. However they can produce loud noises when their tailgates are slammed when dumping a load, when their engines are revved with inadequate exhaust mufflers, when the first shovel-full is dropped into the bed, or due to use of their backup alarms.

A. GENERAL RULES OF OPERATION

i. The hours of operation shall be in accordance with the rules as set forth in §28-103 of this chapter.

B. SOURCE CONTROLS

- i. The smallest sized and quietest dump truck that is adequate for a particular job shall be selected.
- <u>ii.</u> A bed liner made of thick rubber, spray-on liner, plywood, sand or gravel shall be installed to mitigate the noise of the first load being dropped into the dump truck.
- iii. Though not required for use in the United States (US), most US dump truck manufacturers produce quieter models for use in Europe. European Environmental Label (i.e. Blue Angel) low noise emission construction equipment, which is required for import and use in European Union (EU) nations in accordance with Quality Assurance Publication RAL UZ 53 and the Treaty on European Union 992-02-07 Journal C224, shall be used whenever feasible if it meets the US Environmental Protection Agency's emission requirements and/or regulations. These models are generally 10 dBA quieter than similar equipment used in the US.
- iv. The positioning of the dump truck shall be carefully selected in order to minimize operation near receptors. Responsible parties shall attempt to reduce the necessity of backing-up by selecting a straight drive-through truck route. If a backup alarm is used, a quieter warning device shall be installed in accordance with §28-101(f) of this chapter.
- v. The truck shall be equipped with an effective muffler in accordance with §28-101(b) of this chapter, which shall be well-maintained to ensure maximum noise reduction.

- vi. Slamming a tail gate shall be avoided to the extent possible to prevent unreasonable noise. Alternately, a pad made of heavy rubber, leather or wood, when practicable, shall be used under the tail gate to prevent metal contact.
- vii. The engine housing doors shall be kept closed while the engine is in operation.
- viii. When the responsible party uses quieter dump truck models as set forth in clause (iii) of this subparagraph, between the hours of 7:00 a.m. to 6:00 p.m. on weekdays, the responsible party need not utilize additional pathway controls listed in subparagraph C of this paragraph, unless the responsible party is performing work within 35 feet of an indoor receptor and with the exception of any required perimeter barriers as specified in §28-101(g) of this chapter.
- C. NOISE PATHWAY CONTROLS: NOISE BARRIERS & CURTAINS
 The responsible party shall utilize one of the following pathway controls. However, if the
 Department receives noise complaints concerning the site, the responsible party shall utilize
 additional pathway controls listed in this subparagraph as required by DEP.
 - i. The responsible party shall construct a portable noise barrier that shall be free from gaps and holes and constructed of a sufficiently massive material to achieve a Sound Transmission Class rating of STC 30, and shall be positioned as close as possible to the vehicle, in order to provide the greatest insertion loss. A portable (i.e. unanchored) noise barrier can be made, for example, of concrete jersey bases with ¾-inch plywood panels attached to fence posts extending upwards to an overall height of 15 feet. This shall be the maximum height for a free-standing barrier in order to avoid it tipping over from wind load. Multiple jersey bases and plywood panels may be positioned adjacent to one another to form a barrier of any desired length. The gaps between adjacent panels shall be filled-in with noise curtain material, additional plywood, or similar material. A canted panel may be placed on top of the barrier in order to provide better shielding for multi-story receptors; however care must be taken to avoid having the barrier tip over from unbalanced loading. Further, said barrier's height shall not exceed 15 feet including the balanced canted portion.
 - ii. The noise barrier shall be long and tall enough to completely block the line of sight between the dump truck and any indoor receptor within 200 feet and that is a maximum of 20 feet above grade level, when work occurs. The barrier shall be placed as close to the actual dump truck work as feasible. Greater noise attenuation occurs when barriers are placed as close as possible to the noise source.
 - iii. Noise curtain material, such as SoundSeal model BBC-13-2, or equivalently rated material, shall be used to form a noise barrier in the direction of sensitive receptors and completely block the line of sight between the receptors and dump truck. It shall also be draped over the dump truck to augment the engine housing and exhaust stack. Noise curtains are typically made out of a ¼-inch thick heavy vinyl material, often with a noise absorptive quilt attached to one side. These noise curtains

generally weigh 1.5 lbs/sq. ft., have an STC rating of about 32, and come in 4-foot wide sheets complete with grommets and Velcro edges to aid in hanging the curtains and sealing the sheets side-by-side.

- iv. Conveyor belts shall be used whenever practicable, as they may allow the dump trucks to operate much farther away from receptors.
- v. Alternative barriers may be utilized in accordance with site-specific conditions. For example, shipping container (Conex) boxes or truck trailers may be positioned along the edge of the work site to form a semi-permanent noise barrier.

 Sufficient space at the site is necessary as these containers are generally 8 feet wide by 8 feet tall and can be double-stacked to form a noise barrier 16 feet in height. The gaps between and/or under container boxes shall be filled-in with heavy vinyl noise curtains or similar material.

d. Stationary Equipment.

1. Cranes. This rule shall provide noise mitigation strategies that the responsible party shall utilize in order to reduce the noise emissions from cranes. Cranes are an essential piece of equipment on most large construction sites in order to load and unload delivery trucks, lift building materials to required heights, lift excavated materials out of tunnels and for other subsurface excavations, and move other equipment and personnel around the job site. Cranes come in many varieties and sizes, including tracked or wheeled mobile cranes, fixed or floating derricks, and tower cranes.

A. GENERAL RULES OF OPERATION

i. The hours of operation shall be in accordance with the rules set forth in §28-103 of this chapter.

B. SOURCE CONTROLS: QUIETER MODELS

- i. There are various makes and models that are inherently quieter than others. Smaller, quieter cranes, including rubber-tired mobile cranes, shall be used whenever possible based on load lifting requirements.
- ii. New modern hydraulic cranes shall be used whenever possible to avoid the squeal produced by cable drum brakes on mechanical cranes.
- manufacturers produce quieter models for use in Europe. European Environmental Label (i.e. Blue Angel) low noise emission construction equipment, which is required for import and use in European Union (EU) nations in accordance with Quality Assurance Publication RAL UZ 53 and the Treaty on European Union 992-02-07 Journal C224, shall be used whenever feasible and if it meets the US Environmental Protection

Agency's emission requirements and/or regulations. These cranes are about 10 dBA guieter than similar models sold in the US.

- iv. The positioning of the crane shall be carefully selected in order to minimize the need to relocate it around the job site. Whenever possible, tower cranes shall be used, as they essentially produce no noise at ground level.
- v. The crane shall be equipped with an effective muffler in accordance with §28-101(b) of this chapter, which shall be well maintained to ensure maximum noise reduction.
- vi. When the responsible party uses new modern hydraulic cranes as set forth in clause (ii) of this subparagraph and/or additional source controls set forth in clause (iii) of this subparagraph, between the hours of 7:00 a.m. to 6:00 p.m. on weekdays, the responsible party need not utilize additional pathway controls listed in subparagraph C of this paragraph, unless the responsible party is performing work within 35 feet of an indoor receptor and with the exception of any required perimeter barriers as specified in §28-101(g) of this chapter.
- C. NOISE PATHWAY CONTROLS: NOISE BARRIERS & CURTAINS
 The responsible party shall utilize one of the following pathway controls. However, if the
 Department receives noise complaints concerning the site, the responsible party shall utilize
 additional pathway controls listed in this subparagraph as required by DEP.
 - i. The responsible party shall construct a portable noise barrier that shall be free from gaps and holes constructed of a sufficiently massive material to achieve a Sound Transmission Class rating of STC 30 or greater, and shall be positioned as close as possible to the crane. A portable (i.e. unanchored) noise barrier can be made, for example, of concrete jersey bases with ¾-inch plywood panels attached to fence posts extending upwards to an overall height of 15 feet. This shall be the maximum height for a free-standing barrier in order to avoid it tipping over from wind load. Multiple jersey bases and plywood panels shall be positioned adjacent to one another to form a barrier of any desired length. The gaps between adjacent panels shall be filled-in with noise curtain material, additional plywood, or similar material. A properly balanced canted panel, not susceptible to windy conditions, may be placed on top of the barrier in order to provide better shielding for multi-story receptors. However, said barrier's height shall not exceed 15 feet including the balanced canted portion.
 - ii. The noise barrier shall be long and tall enough to completely block the line of sight between the crane and any indoor receptor within 200 feet and that is a maximum of 20 feet above grade level, when work occurs. The barrier shall be placed as close to the actual crane work as feasible. Greater noise attenuation occurs when barriers are placed as close as possible to the noise source.
 - iii. Portable noise shields made of steel frames wrapped with noise curtain material, such as SoundSeal model BBC-13-2, or equivalently rated material, shall be

used to form a noise barrier in the direction of sensitive receptors and completely block the line of sight between the receptors and crane. Noise curtains are typically made out of a ¼-inch thick heavy vinyl material, often with a noise absorptive quilt attached to one side. These noise curtains generally weigh 1.5 lbs/sq. ft., have an STC rating of about 32, and come in 4-foot wide sheets complete with grommets and Velcro edges to aid in hanging the curtains and sealing the sheets side-by-side.

- iv. Alternative barriers may be utilized in accordance with site-specific conditions. For example, shipping container (Conex) boxes or truck trailers may be positioned along the edge of the work site to form a semi-permanent noise barrier. Sufficient space at the site is necessary as these containers are generally 8 feet wide by 8 feet tall and can be double-stacked to form a noise barrier 16 feet in height. The gaps between and/or under container boxes shall be filled-in with heavy vinyl noise curtains or similar material.
- 2. Auger Drill Rigs. This rule shall provide mitigation strategies the responsible party shall utilize when using auger drill rigs. Auger drill rigs are typically mounted to cranes or they can be built as dedicated machines as well. Auger drill rigs are used to drill shafts into the ground, which are then filled with cement form concrete piles, to loosen underlying soil and allow solid piles to be driven more easily, or used in multiple configuration to "mix" grout into the soil and change the soil's properties (i.e. strengthen it and reduce its water content).

A. GENERAL RULES OF OPERATION

i. The hours of operation shall be in accordance with the rules set forth in §28-103 of this chapter.

B. SOURCE CONTROLS: QUIETER MODELS & SILENCERS

- i. The auger drill rig or crane shall be equipped with an effective muffler in accordance with §28-101(b) of this chapter, which shall be well-maintained to ensure maximum noise reduction.
- ii. All moving parts shall be well lubricated for proper drilling performance and to avoid unnecessary noise from squeaking parts.
- <u>iii.</u> Debris on the drill bit shall be removed without quick twisting, jerking or hammering the bit, unless geotechnical conditions at the location so require. Alternative quieter methods include use of a high pressure water hose where debris is not contaminated or a laborer using a hand shovel.
- C. PATHWAY CONTROLS: NOISE BARRIERS & CURTAINS
 The responsible party shall utilize one of the following pathway controls. However, if the
 Department receives noise complaints concerning the site, the responsible party shall utilize
 additional pathway controls listed in this subparagraph as required by DEP.

- i. The responsible party shall construct a portable noise barrier that shall be free from gaps and holes and constructed of a sufficiently massive material to achieve a Sound Transmission Class rating of STC 30, or greater, and shall be positioned as close as possible to the auger drill rig. A portable (i.e. unanchored) noise barrier may be made, for example, of concrete jersey bases with ¾-inch plywood panels attached to fence posts extending upwards to an overall height of 15 feet. This shall be the maximum height for a free-standing barrier in order to avoid it tipping over from wind load. Multiple jersey bases and plywood panels shall be positioned adjacent to one another to form a barrier of any desired length. The gaps between adjacent panels shall be filled-in with noise curtain material, additional plywood, or similar material. A properly balanced canted panel, not susceptible to windy conditions, may be placed on top of the barrier in order to provide better shielding for multi-story receptors. However, said barrier's height shall not exceed 15 feet including the balanced canted portion.
- ii. The noise barrier shall be long and tall enough to completely block the line of sight between the auger drill rig and any indoor receptor within 200 feet and that is a maximum of 20 feet above grade level, when work occurs. The barrier should be placed as close to the actual auger drill rig work as feasible. Greater noise attenuation occurs when barriers are placed as close as possible to the noise source.
- iii. Noise curtain material, such as SoundSeal model BBC-13-2, or equivalently rated material, shall be used to form a noise barrier in the direction of sensitive receptors and completely block the line of sight between the receptors and auger drill rig. Noise curtains are typically made out of a ¼-inch thick heavy vinyl material, often with a noise absorptive quilt attached to one side. These noise curtains generally weigh 1.5 lbs/sq. ft., have an STC rating of about 32, and come in 4-foot wide sheets complete with grommets and Velcro edges to aid in hanging the curtains and sealing the sheets side-by-side.
- iv. Alternative barriers may be utilized in accordance with site-specific conditions. For example, shipping container (Conex) boxes or truck trailers may be positioned along the edge of the work site to form a semi-permanent noise barrier. Sufficient space at the site is necessary as these containers are generally 8 feet wide by 8 feet tall and can be double-stacked to form a noise barrier 16 feet in height. The gaps between and/or under container boxes shall be filled-in with heavy vinyl noise curtains or similar material.
- 3. Street Plates. In addition to the Department of Transportation rules set forth in 34 RCNY §2-11(10), the responsible party shall follow one or more of the following methods to reduce noise emissions from loose or rattling street plates.

A. SOURCE CONTROLS:

i. The street plates shall be installed in the street surface in accordance with 34 RCNY §2-11(10) in order to have a level and smooth transition from pavement to plate surface and to keep the plates firmly in place.

	<u>ii.</u>	Asphalt o	cold-patch	shall be	applied	when t	<u>feasible</u>	around	the edge	es of the
street	plate to	o minimize	vehicular	tire impa	act on th	e plate	and to	help ke	ep the pl	ate in
place.										

B. NOISE PATHWAY CONTROLS:

- i. Whenever feasible, traffic shall be routed around the street plates by placing traffic cones, barrels, and/or warning tape around the plated area.
- 4. Backup Alarms. In accordance with §28-101(f) of this chapter, all existing vehicles that enter a work site shall be equipped with OSHA-approved, and OEM manufacturer-approved (if necessary), quieter backup alarms by January 1, 2008. All new vehicles that enter the work site shall be equipped with OSHA-approved quieter backup alarms by January 1, 2008. All on-road vehicles that do not enter the work site, but are in operation after hours pursuant to §28-103 of this chapter, shall also be equipped with OSHA-approved, and OEM manufacturer-approved (if necessary), quieter backup alarms by January 1, 2008. The work site referenced in this paragraph shall mean construction sites within the property line. Subparagraph A of this paragraph contains a list of quieter OSHA-approved backup alarms pursuant to OSHA Regulations, 29 CFR Part 1926, Subpart "O", 1926.601.b.4 and 1926.602.a.9. If the responsible party cannot reasonably comply with the requirements of this paragraph, such person shall file an Alternative Noise Mitigation Plan in accordance with §28-104 of this chapter.

A. SOURCE CONTROLS: QUIETER MAKES & MODELS

- i. Quieter alarms or similar backup devices that meet OSHA requirements may be selected from the list below or from equivalent quieter alarms.
 - (a) Examples of manually-adjustable backup alarms include:
 - Preco Model 45AA
 - Ecco Model 820
 - (b) Examples of automatically-adjustable backup alarms include:
 - Preco Model 1048
 - Ecco Model SA907
 - Grote Model 73100
 - (c) Examples of community sensitive backup alarms include:
 - BBS-TEK Brigade Model BBS-92
- ii. When the responsible party uses quieter backup alarms as described in clause (i) of this subparagraph, the responsible party need not utilize additional pathway controls listed in subparagraph B of this paragraph, unless the responsible party is performing work within 35 feet of an indoor receptor and with the exception of any required perimeter barriers as specified in §28-101(g) of this chapter.

- B. NOISE PATHWAY CONTROLS. If it is not feasible to select one of the OSHA-approved alarms in subparagraph A of this paragraph, responsible parties shall utilize one of the following pathway controls. However, if the Department receives noise complaints concerning the site, the responsible party shall utilize additional pathway controls listed in this subparagraph as required by DEP.
 - i. Responsible parties shall attempt to reduce the necessity of backing-up by selecting a straight drive-through truck route.
 - ii. The responsible party shall construct a portable noise barrier that shall be free from gaps and holes and constructed of a sufficiently massive material to achieve a Sound Transmission Class rating of STC 30 or greater. It shall be positioned as close as possible to the vehicle, in order to provide the greatest insertion loss. A portable (i.e. unanchored) noise barrier may be made, for example, of concrete jersey bases with ¾-inch plywood panels attached to fence posts extending upwards to an overall height of 15 feet. This shall be the maximum height for a free-standing barrier in order to avoid it tipping over from wind load. Multiple jersey bases and plywood panels may be positioned adjacent to one another to form a barrier of any desired length. The gaps between adjacent panels shall be filled-in with noise curtain material, additional plywood, or similar material. A canted panel may also be built on top of the barrier in order to provide better shielding for multi-story receptors; however care must be taken to avoid having the barrier tip over from unbalanced loading. Further, said barrier's height shall not exceed 15 feet including the balanced canted portion.
 - iii. The noise barrier shall be long and tall enough to completely block the line of sight between the backup alarm and any indoor receptor within 200 feet and that is a maximum of 20 feet above grade level, when work occurs. The barrier should be placed as close to the actual backup alarm as feasible. Greater noise attenuation occurs when barriers are placed as close as possible to the noise source.
 - iv. Alternative barriers may be utilized in accordance with site specification. Conex containers are likely already available to the responsible party. For example, where sufficient work site space exists, container (Conex) boxes or truck trailers may be positioned along the edge of the work site to form a semi-permanent noise barrier. These containers are typically 8 feet wide by 8 feet tall and can be double-stacked to form a noise barrier 16 feet in height. The gaps between and/or under container boxes shall be filled-in with heavy vinyl noise curtains or similar material.

e. Manually Operated Equipment.

1. Concrete Saws. This rule shall provide noise mitigation strategies that the responsible party shall utilize in order to reduce the noise emissions from concrete saws. Concrete saws are used on construction projects primarily for demolition purposes, but can also be used for opening access holes, cutting stress relief channels, and finishing off new construction.

A. GENERAL RULES OF OPERATION

i. The hours of operation shall be in accordance with the rules as set forth in §28-103 of this chapter.

B. SOURCE CONTROLS: QUIETER MODELS

- i. Smaller saws shall be used, based on the power and cutting depth necessary to perform the job, as they tend to be quieter.
- ii. A quieter-type saw blade, including a grinding saw blade or one made of ceramic or special-tipped cutting teeth, shall be chosen whenever practicable.
- C. NOISE PATHWAY CONTROLS: NOISE BARRIERS & ENCLOSURES. The responsible party shall utilize one of the following pathway controls. However, if the Department receives noise complaints concerning the site, the responsible party shall utilize additional pathway controls listed in this subparagraph as required by DEP.
 - i. The responsible party shall construct a portable noise barrier that shall be free from gaps and holes and constructed of a sufficiently massive material to achieve a Sound Transmission Class rating of STC 30 or greater, and is positioned as close as possible to the saw. A portable (i.e. unanchored) noise barrier may be made, for example, of concrete jersey bases with ¾-inch plywood panels attached to fence posts extending upwards to an overall height of 15 feet. This shall be the maximum height for a free-standing barrier in order to avoid it tipping over from wind load. Multiple jersey bases and plywood panels shall be positioned adjacent to one another to form a barrier of any desired length. The gaps between adjacent panels shall be filled-in with noise curtain material, additional plywood, or similar material. A properly balanced canted panel, not susceptible to windy conditions, may be placed on top of the barrier in order to provide better shielding for multi-story receptors. However, said barrier's height shall not exceed 15 feet including the balanced canted portion.
 - ii. The noise barrier shall be long and tall enough to completely block the line of sight between the saw and any indoor receptor within 200 feet and that is a maximum of 20 feet above grade level, when work occurs. The barrier shall be placed as close to the actual saw work as feasible. Greater noise attenuation occurs when barriers are placed as close as possible to the noise source.
 - iii. Portable noise enclosures made of steel frames wrapped with noise curtain material, such as SoundSeal model BBC-13-2, or equivalently rated material, shall be built to surround (top and 3 sides) the concrete saw and the operator. A well made enclosure, using curtain material with a Sound Transmission Class rating of STC 30 or greater, can generally provide a 5 dBA insertion loss providing there are no gaps in the enclosure. Noise tents may be reused at other sites with proper care and maintenance.

- iv. There shall be multiple tents for multiple concrete saws. For example, when two saws are being utilized and they cannot fit under the same noise tent, the responsible party shall provide an additional noise tent.
- v. The noise tent shall be moved as the concrete saw work progresses in order to maintain the tent's ability to block the line-of-sight between the saw and the receptors.
- vi. Emergency concrete sawing that occurs on any public right-of-way after normal working hours as set forth in §28-103 of this chapter, within 500 feet of any residential receptor, shall require noise tents with double-thick noise curtain material, or a noise tent augmented with a portable noise barrier to form a double layer of mitigation.
- vii. Where there are receptors surrounding the concrete saw work site on all sides, two tents shall be used whenever practicable, on either side of the saw, to form a complete enclosure.

§28-103 Authorized Work Hours.

- a. Equipment shall be used only during the hours of 7:00 a.m. and 6:00 p.m. on weekdays, unless the responsible party obtains an after hours work authorization, in which case the equipment shall be used in accordance with the hours specified in the permit and in the after hours work authorization, as set forth in §24-223 of the Administrative Code.
- b. When work occurs after hours in accordance with §24-223 of the Administrative Code, or falls within one of the exceptions to limits on after hours and weekend construction work set forth in §24-222 of such Code, additional noise mitigation measures and/or techniques shall be implemented when required by DEP.

§28-104 Alternative Noise Mitigation Plan.

When required by §24-221 of the Administrative Code or this chapter, a complete and accurate Alternative Noise Mitigation Plan shall be filed with DEP in accordance with §24-221 of such Code. If and when approved by DEP, such plan shall be conspicuously posted at the job site. When an Alternative Noise Mitigation Plan is required, no construction activities shall take place until said plan is filed with and approved by DEP. The Alternative Noise Mitigation Plan Form is available at: http://www.nyc.gov/dep or at DEP's Offices at:

New York City Department of Environmental Protection Bureau of Environmental Compliance, 9th Floor 59-17 Junction Blvd. Flushing, NY 11373

§28-105 Utility Noise Mitigation Plan.

Pursuant to §24-219 of the Administrative Code, every authorized publicly franchised New York City utility company that provides gas, electric, steam and telecommunication services shall have conspicuously posted a complete and accurate Utility Noise Mitigation Plan at all sites

where construction activities take place. Although the plan need not be filed with DEP, it shall be readily available for inspection should a complaint be filed or during a routine inspection. The Utility Noise Mitigation Plan Form is available at: http://www.nyc.gov/dep or at DEP's Offices at:

New York City Department of Environmental Protection Bureau of Environmental Compliance, 9th Floor 59-17 Junction Blvd. Flushing, NY 11373

§28-106 Required Noise Mitigation Measures for Utilities.

- A utility company conducting construction activity shall self-certify in its Construction Noise Mitigation Plan that all construction tools and equipment have been maintained so that they operate at normal manufacturer's operating specifications, including at peak loading. Such self-certification shall be indicated on the Construction Noise Mitigation Plan form required by §28-100 of this chapter. Upon a DEP inspection of the work site, DEP shall use the noise level guidelines in the Federal Highway Administration Roadway Construction Noise Model User's <u>Guide, Jan. 2006</u>, page 3, located in the Appendix to this chapter, as a means of identifying equipment that may be the cause of a noise complaint. If an individual piece of equipment is identified by DEP as exceeding the level specified in such Guide located in the Appendix to this chapter, upon notification by DEP, the responsible party shall have the option of: (i) performing maintenance to demonstrate a good faith effort, notwithstanding the model year of the equipment, to mitigate the noise by a measurable level acceptable to the Department, (ii) replacing the equipment with equipment that complies with said level, or (iii) filing an Alternative Noise Mitigation Plan pursuant to §28-104 of this chapter, within five business days of said inspection. If the responsible party elects to perform maintenance pursuant to option (i), but cannot demonstrate within five business days a reduction in noise by a measurable level acceptable to the Department, such party shall pursue one of the other two options to the satisfaction of the Department. The failure to exercise and complete one of such three options within five business days of said inspection shall be a violation of this rule.
- b. All tools and equipment being operated on site must be equipped with the appropriate manufacturer's noise reduction device. These devices, including but not limited to portable compressors and other such pneumatic tools, such as jackhammers/pavement breakers, shall be equipped with a standard muffler and jacket, free from air or exhaust leaks.
- c. Specialized vehicles, including but not limited to compressor trucks, vacuum excavators, pavement-coring, power-roding, flush trucks, and other vehicles with internal combustion motors, shall require additional noise mitigation measures as specified by DEP, such as the use of noise-insulating material that does not interfere with the engine operation and/or other techniques to reduce noise.
- d. Portable compressors, generators, pumps and other such devices shall be covered with noise-insulating fabric, which is not to interfere with engine operations, and/or shall employ other techniques to reduce noise.

e. The time of day that work is in progress shall also determine the technology that provides
the appropriate noise mitigation. All work that occurs after the hours of 7:00 a.m. to 6:00 p.m. on
weekdays shall require an after hours work authorization in accordance with §24-223 of the
Administrative Code. From the hours of 6:00 p.m. to 10:00 p.m. on weekdays, the utility shall
use daytime noise mitigation controls. However, work between the hours of 10:00 p.m. and 7:00
a.m. on weekdays and between 7:00 p.m. and 7:00 a.m. on weekends may be required by DEP to
employ additional techniques, including noise blankets and barriers to reduce the level of noise
for receptors within 200 feet.
f. Quieter jackhammers, compressors, and other such construction devices shall be used
when available and/or may be required by DEP. A program shall be initiated between DEP and
the utilities to perform additional noise-testing of construction devices and to make
recommendations to DEP for future rules and use of devices.
g. All unnecessary vehicle engine-idling on site shall be prevented in accordance with §24-
163 of the Administrative Code.
100 01 MILE TAMINION WITH COMPT
h. All steel traffic plates are to be properly installed and secured to the roadway surface in
compliance with 34 RCNY §2-11(10)(e). Within 24 hours after a call to the utility from DEP,
plates shall be re-set and secured properly.
pintes shari se te see and see
i. Notification shall be given to residents within 200 feet of the construction when work is
scheduled for longer than 3 days. Such notification shall include information on construction
work schedules and locations.
Work senedules and rocations.
j. The permit-holder shall respond to all noise complaints and/or official notice from DEP
the same day as received or the next day if received after regular utility work hours or as may be
required by DEP.
required by BBI.
k. All new vehicles will be phased in with the installation of quieter backup warning devices
in accordance with paragraph 4 of subdivision d of §28-102 of this chapter.
in accordance with paragraph 4 of subdivision a of \$20 for of this enaptor.
1. A formal noise mitigation training program shall be established and implemented for all
field-worker supervisory personnel including sub-contractor supervisors. Supervisory personnel
shall field-train all field workers in an effort to minimize construction noise.
shan field-train an field workers in an erfort to infiniting constituction holse.
m. When work is planned near sensitive receptors, including but not limited to schools,
hospitals, places of worship, homes for the aging, etc., the permit-holder shall I cooperate with
the facility owner/operator to coordinate the work whenever possible so as to minimize the
impact on the facility and the utility shall use quieter devices and other noise mitigation methods,
such as blankets and barriers.
such as vialinous and varriors.
n. A DEP Inspector may visit the site to examine the Utility Noise Mitigation Plan upon
n. A DEP Inspector may visit the site to examine the Utility Noise Mitigation Plan upon receiving a complaint and may require further action to reduce the level of noise. The responsible
party will be provided a 24-hour cure period to correct the condition or to file an Alternative

Noise Mitigation Plan under §28-104 of this chapter. If the condition is not corrected after 24 hours or if an Alternative Noise Mitigation Plan is not filed with DEP, a Notice of Violation shall be issued. However, there shall be no 24-hour cure period with respect to compliance with §\$28-100, 28-101(a), (b), (f), or (h); §28-104; §28-105; and §\$28-106(a), (b), (d), (g), or (i) of this chapter.

- o. Perimeter noise barriers shall be used as set forth in §28-101(g) of this chapter. All gaps and spaces in the semi-permanent or temporary barriers shall be filled with noise attenuation material, and such barriers shall be placed as close as possible to the noise source to promote greater noise attenuation.
- p. Utilities that engage in non-emergency, long-term projects, defined as continuous work that cannot be completed within 15 calendar days when there is a dedicated lane, shall be required to comply with §§28-100 to 28-104 of this chapter. Work shall be considered continuous even though there may be a cessation of activities for 24 hours or less during the project.

§28-107 Perimeter Noise Barriers.

- a. Perimeter Noise Barriers Noise barriers, positioned between construction equipment and receptors, shall be used whenever practicable for all construction projects. Such barriers may be semi-permanent given the time and space requirements of the job site. They may be made of wood, plastic, Plexiglas, precast concrete or steel panels, or where work site space permits, natural materials, such as dirt piles or earthen berms.
- b. Noise barriers shall be used to reduce noise affecting pedestrians. Being relatively tall and solid, noise barriers form an excellent perimeter and/or security fence around a job site in addition to reducing noise at street level. Greater noise attenuation occurs when barriers are placed as close as possible to the noise source.
- c. When the work site is within 200 feet of a residential receptor, the responsible party that is required to use a work site perimeter noise barrier (or "construction fence") under DOB rules and regulations shall ensure that noise-resistant material fully lines the interior face (facing the work site) of the perimeter barrier, and shall ensure that:
 - 1. the barrier breaks the line-of-sight between the noise source and indoor receptors within 200 feet and a maximum of 20 feet above grade level where practicable; however, said barrier's height shall not exceed 15 feet, including the balanced canted portion;
 - 2. the barrier is made of a material sufficiently resistant to noise in accordance with subdivision e of this section; and
 - 3. there are no leaks or gaps that will allow noise to pass through the barrier.
- d. Noise Barrier Design Options.

- 1. Semi-permanent noise barriers are barriers that, due to their height, will require some form of anchoring system. Typically, semi-permanent barriers are intended for long term continuous use. Thus they are built out of materials suitable to withstand weather conditions for several years. Materials such as tongue and groove wooden timbers, vertical I-beam posts and lagging, or precast concrete panels, serve very well as semi-permanent noise barriers. Being anchored, semi-permanent barriers can easily extend to heights of 15 feet and must be in accordance with DOB and FDNY rules and regulations.
- 2. Where practicable, the responsible party shall build a pitched panel on top of the barrier in order to provide better shielding for multi-story receptor buildings, however care must be taken to avoid having the barrier tip over from unbalanced loading.
- 3. Alternative barriers may be utilized in accordance with site-specific conditions. For example, shipping container (Conex) boxes are likely already available to the responsible party. For example, where work site space permits, these container boxes or truck trailers may be positioned along the edge of the work site to form a semi-permanent noise barrier. These containers are typically 8 feet wide by 8 feet tall and can be double-stacked to form a noise barrier 16 feet in height. The gaps between and/or under container boxes shall be filled-in to avoid having noise flank around or under the container boxes.
- 4. There are also several product vendors that design and manufacture noise barrier materials and barrier systems. These special purpose products are available in various colors and materials including wood, plastic, Plexiglas, precast concrete or steel panels. They are available with or without anchoring systems, as needed.
- e. Noise Barrier Specifications. Noise barriers shall be made of noise-resistant material sufficient to achieve a Sound Transmission Class (STC) rating of STC 30 or greater, based on sound transmission loss data taken according to ASTM Test Method E90. Such a barrier can provide as much as a 10 dBA insertion loss providing it is positioned as close as possible to the noise source or to the receptors. To be at all effective, the barrier must be long and tall enough to completely block the line-of-sight between the noise source and the receptors. The gaps between adjacent panels must be filled-in to avoid having noise penetrate directly through the barrier.

§28-108 Temporary or Portable Noise Barriers.

a. Where there is a dedicated lane for such barrier, temporary or portable (i.e. unanchored) noise barriers shall be used for street work lasting longer than 15 days as set forth in this section.
All such barriers shall be placed as close as possible to the noise source in order to maximize
noise attenuation.
b. Where construction projects are of shorter duration than 15 days and within the property line and do not require perimeter barriers and are within 75 feet of a residential receptor, a temporary or portable (i.e. unanchored) noise barrier shall be made in accordance with this section.
c. Construction of temporary barrier. Noise barriers shall be made of noise-resistant material sufficient to achieve a Sound Transmission Class (STC) rating of STC 30 or greater, based on sound transmission loss data taken according to ASTM Test Method E90. Such a barrier may provide as much as a 10 dBA insertion loss, provided it is positioned as close as possible to the noise source or to the receptors. To be at all effective, the barrier must be long and tall enough to completely block the line-of-sight between the noise source and the receptors. The gaps between adjacent panels must be filled-in to avoid having noise penetrate directly through the barrier.
i. Temporary or portable noise barriers, where required, may be made, for example, of concrete jersey bases with ¾-inch plywood panels attached to fence posts extending upwards to an overall height of 15 feet and must be in accordance with DOB and FDNY rules and regulations. This shall be the maximum height for a free-standing barrier in order to avoid it tipping over from wind load. Multiple jersey bases and plywood panels may be positioned adjacent to one another to form a barrier of any desired length. The gaps between adjacent sections shall be filled-in to form a continuous solid barrier surface.
ii. Wherever practicable, a pitched panel shall be built on top of the barrier in order to provide better shielding for multi-story receptor buildings; however care must be taken to avoid having the barrier tip over from unbalanced loading. Further, the barrier shall not exceed 15 feet in height including the pitched panel.
d. Noise curtains. Noise curtain material may be mounted or hung over perimeter chain link fences, or draped over small noise sources, to form a flexible noise barrier. The chain link fence can also be attached to the top of jersey bases.
i. Noise curtains shall be made of a ½-inch thick heavy vinyl material, with a noise absorptive quilt attached to one side (the side facing the noise source).
ii. Noise control curtains shall have a Sound Transmission Class (STC) rating of STC 30 or greater, based on sound transmission loss data according to ASTM Test Method E90. The noise absorptive face of the curtains shall have a Noise Reduction Coefficient (NRC) rating of 0.85 or greater, based on sound absorption coefficient data taken according to ASTM Test Method C423.

- iii. Noise curtains of this sort, such as SoundSeal model BBC-13-2, or equivalently rated material, generally weigh about 1.5 lbs/sq. ft. They come in 4-foot wide sheets complete with grommets and Velcro edges to aid in hanging the curtains and sealing the sheets side-by-side.
- e. Noise Tents. A noise tent may be used within the property line.
- i. Noise curtain material may be attached to a metal frame to form a portable enclosure (known as a "noise tent"). The noise tent shall have noise curtain material attached on three sides and on top of the frame, with the remaining side of the frame left open for work access and ventilation.
- ii. A frame size of 8 feet tall by 6 feet wide by 6 feet deep shall allow the tent to be positioned over small noise sources, such as pumps, generators or compressors. The tent may also be used to cover a laborer using hand-held power tools, such as jackhammers, saws or grinders. Caster wheels may be placed under the frame for mobility, or the tent may be picked up and moved with the arm of a backhoe, for example.

§28-109 Definitions.

For the purpose of this chapter, the meaning of terms shall be as follows (unless the context specifically indicates otherwise):

<u>Canted Panel.</u> "Canted Panel" shall mean a tilted panel of noise mitigation material that extends a noise barrier to protect upper floor receptors from noise sources.

<u>Insertion Loss</u>. "Insertion Loss" shall mean the reduction in noise level at the receptor's location attributable to the introduction of a noise barrier, muffler, or other mitigation measure.

Jersey Bases, "Jersey Bases," also known as concrete traffic dividers or jersey barriers, shall mean movable concrete bases used in construction that can accommodate fencing poles to which noise curtain material can be attached.

Noise absorptive quilt. "Noise absorptive quilt" shall mean padded light-weight porous material sewn together into a quilt-like pattern and then attached to one side of a vinyl sheet.

Noise Barrier. "Noise Barrier" shall mean a structure used for the purpose of placing near a noise source to reduce the noise level measurable at a receptor location. This can consist of noise resistant materials such as plywood, timbers, trailer containers, or noise curtains.

Noise curtain. "Noise curtain" shall mean noise control product comprised of (typically) '4-inch thick vinyl sheet, to act as a noise resistant material, with some noise absorptive quilt material attached on one side of the vinyl as well.

Noise Pathway Controls. "Noise Pathway Controls" shall mean noise mitigation techniques placed between the source of noise and the receptor.

Noise-resistant material. "Noise-resistant material" shall mean material that has sufficient mass and stiffness to resist noise from transmitting through the material.

Receptor. "Receptor," also known as receiving property, shall mean real property, including but not limited to buildings, grounds, offices and dwelling units, from which sound levels from sound sources outside such property may be measured.

Responsible party. "Responsible party" shall mean, with respect to any activity regulated or covered by these rules, the owner of the premises on or where such activity occurs, and any agent of the owner engaged in such activity or any participant in such activity, including

contractors and subcontractors. Any agency of the City of New York may also be a responsible party.

Sound Transmission Class (STC). The "Sound Transmission Class", or "STC rating", shall mean a single index number used to describe a solid panel or material's ability to prevent noise from transferring directly through it. Determination of a material's STC is done in accordance with ASTM Test Method E90.

<u>§28-109</u> Appendix - Federal Highway Administration Roadway Construction Noise Model User's Guide, Jan. 2006.

CA/T Equipment 50 ft Noise Emission Reference Levels and Usage Factors

- All noise levels expressed in A-weighted decibels with RMS "slow" time constant

		Impact	Usage Factor	Spec 721.560 Lmax @ 50ft	Actual Measured Lmax @ 50ft
Label ID	Equipment Description	<u>Device?</u>	(%)	(dBA, slow)	(dBA, slow)
A	All Other Equipment > 5 HP	No	50	85	n/a
В	Auger Drill Rig	No	20	85	84
С	Backhoe	No	40	80	78
D	Bar Bender	No	20	80	80
Е	Blasting	Yes	N/A	94	n/a
F	Boring Jack Power Unit	No	50	80	83
G	Chain Saw	No	20	85	84
Н	Clam Shovel (dropping)	Yes	20	93	87
I	Compactor (ground)	No	20	80	83
J	Compressor (air)	No	40	80	78
K	Concrete Batch Plant	No	15	83	83
L	Concrete Mixer Truck	No	40	85	79
M	Concrete Pump Truck	No	20	82	81
N	Concrete Saw	No	20	90	90
O	Crane	No	16	85	81
P	Dozer	No	40	85	82
Q	Drill Rig Truck	No	20	84	79
R	Drum Mixer	No	50	80	80
S	Dump Truck	No	40	84	76
T	Excavator	No	40	85	81
U	Flat Bed Truck	No	40	84	74
V	Front End Loader	No	40	80	79
W	Generator	No	50	82	81

X	Generator (<25KVA, VMS signs)	No	50	70	73
Y	Gradall	No	40	85	83
Z	Grader	No	40	85	85
AA	Grapple (on backhoe)	No	40	85	87
AB	Horizontal Boring Hydr. Jack	No	25	80	82
AC	Hydra Break Ram	Yes	10	90	90
AD	Impact Pile Driver	Yes	20	95	101
AE	Jackhammer	Yes	20	85	89
AF	Man Lift	No	20	85	75
AG	Mounted Impact Hammer (hoe ram)	Yes	20	90	90
AH	Pavement Scarafier	No	20	85	90
ΑI	Paver	No	50	85	77
AJ	Pickup Truck	No	40	55	75
AK	Pneumatic Tools	No	50	85	85
AL	Pumps	No	50	77	81
AM	Refrigerator Unit	No	100	82	73
AN	Rivet Buster/chipping gun	Yes	20	85	79
AO	Rock Drill	No	20	85	81
AP	Roller	No	20	85	80
AQ	Sand Blasting	No	20	85	96
AR	Scraper	No	40	85	84
AS	Shears (on backhoe)	No	40	85	96
AT	Slurry Plant	No	100	78	78
AU	Slurry Trenching Machine	No	50	82	80
AV	Soil Mix Drill Rig	No	50	80	80
AW	Tractor	No	40	84	84
AX	Vacuum Excavator (Vac-truck)	No	40	85	85
AY	Vacuum Street Sweeper	No	10	80	82
AZ	Ventilation Fan	No	100	85	79
BA	Vibrating Hopper	No	50	85	87
BB	Vibratory Concrete Mixer	No	20	80	80
BC	Vibratory Pile Driver	No	20	95	101
BD	Warning Horn	No	5	85	83
BE	Water Jet deleading	No	20	85	92
BF	Welder / Torch	No	40	73	74

APPENDIX B
Local Laws of the City of New York -
New York City Noise Code
11

LOCAL LAWS OF THE CITY OF NEW YORK FOR THE YEAR 2005

No.	113

Introduced by Council Members Gennaro, Avella, Comrie, Fidler, Jackson, Provenzano, Recchia, Weprin, Liu, Addabbo Jr. and The Public Advocate (Ms. Gotbaum) (by request of the Mayor). Passed under a Mayor's Message of Necessity.

A LOCAL LAW

To amend the administrative code of the city of New York, in relation to the noise control code and the repeal of subchapters 4, 5 and 6 of chapter 2 of title 24 of such code.

Be it enacted by the Council as follows:

Section 1. Section 24-202 of the administrative code of the city of New York, as amended by local law number 22 for the year 2002, is amended to read as follows:

§24-202 Declaration of policy. It is hereby declared to be the public policy of the city to reduce the ambient [noise] sound level in the city, so as to preserve, protect and promote the public health, safety and welfare, and the peace and quiet of the inhabitants of the city, prevent injury to human, plant and animal life and property, foster the convenience and comfort of its inhabitants, and facilitate the enjoyment of the natural attractions of the city. It is the public policy of the city that every person is entitled to ambient [noise] sound levels that are not detrimental to life, health and enjoyment of his or her property. It is hereby declared that the making, creation or maintenance of excessive and unreasonable noises within the city affects and is a menace to public health, comfort, convenience, safety, welfare and the prosperity of the people of the city. For the purpose of controlling and reducing such noises, it is hereby declared to be the policy of the city to set the unreasonable and prohibited noise standards and decibel levels contained herein and to consolidate certain of its noise control legislation into this code. The necessity for legislation by enactment of the provisions of this chapter is hereby declared as matter of legislative determination.

This code shall be liberally construed so as to effectuate the purposes described in this section. Nothing herein shall be construed to abridge the emergency powers of the board of health or the right of the department of health and mental hygiene to engage in any of its necessary or proper activities. [Nothing herein shall abridge the powers and responsibilities of the] It is the intent of the council that the police department [to] as well as other agencies of the city designated by the commissioner of the department of environmental protection shall have the authority to enforce the provisions of this code and police officers and designated employees of the department of environmental

protection and of such other city agencies shall have the power to issue summonses, appearance tickets and notices of violation for violations of this code.

- §2. Section 24-203 of such code is amended to read as follows:
- §24-203 General definitions. When used in the New York city noise control code the following terms shall have the following meanings:
- [(a)] (1) "A" level means the [total] sound level [of all noise] as measured with a sound level meter using the "A" weighting network. The unit of measurement is the $[db(\Lambda)] dB(\Lambda)$. This frequency weighting network for the measurement of sound levels shall comply with standards established by the American National Standards Institute specifications for sound level meters S1.4-1971, as amended or S1.4-1983, as amended.
- [(b)] (2) Activity means any act or combination of acts which actually results in the production of sound.
- [(c)] (3) Air compressor means a device which draws in air or gas, compresses it, and delivers it at a higher pressure.
- [(d) Aircraft means any device that is used or intended to be used for flight in the air but does not include any such device used only in the service of a government or political subdivision thereof unless such device is engaged in carrying persons or property for commercial purposes. Aircraft includes but is not limited to:
 - 1. subsonic transport aircraft;
 - 2. subsonic turbojet-powered aircraft;
 - 3. aircraft capable of flying at supersonic speeds;
 - 4. rotocraft;
 - 5. vertical take-off and landing aircraft (VTOL aircraft);
 - 6. short take-off and landing aircraft (STOL aircraft); and
 - 7. aircraft capable of landing or taking off on water.]
- [(e)] (4) Air horn means a device intended to produce a sound signal by means of compressed air or gas or exhaust gas.
- [(f)] (5) Airport means an area of land or water that is used or intended to be used for the landing and take off of aircraft, and includes its buildings and facilities, if any.
- [(g)] (6) Ambient [noise] sound means [the all-encompassing noise associated with a given environment, being usually a composite of sounds from many sources near and far] the sound level at a given location that exists as a result of the combined contribution in that location of all sound sources, excluding the contribution of a source or sources under investigation for violation of this code and excluding the contribution of extraneous sound sources. For purposes of the enforcement of this code, the ambient sound level of a given location may be determined based upon measurements taken at a comparable site (which includes but is not limited to comparable physical locations and time of day) in the nearby area.
- [(h)] (7) Apparatus means any mechanism which prevents, controls, detects, measures or records the production of sound.
- (8) Audible status indicator means any sound reproduction device on a motor vehicle that emits or causes to be emitted any continuous or near continuous sound (exceeding 5 seconds if tonal in nature or any duration if verbal in nature) for the purpose of warning that an audible burglar alarm has been installed on such motor vehicle and is operational or for creating the appearance that such an alarm has been installed on such motor vehicle and is operational.
- [(i)] (9) Authorized emergency vehicle means [every ambulance and every vehicle operated by a police department, fire department, fire patrol, chief or assistant chief of a fire department, county or deputy county fire coordinator, county or assistant county fire

marshal, sheriff, or by a chief, assistant chief or deputy chief of a police department, a regular paid deputy sheriff or a motor vehicle of the New York city housing authority when engaged in the performance of duty as a peace officer, or by an authorized public utility company when on emergency calls, every state-owned vehicle operated by a law enforcement officer of the conservation department when engaged in performance of duty in enforcement of the environmental conservation law, and every vehicle operated by a bridge authority or bridge and tunnel authority when on emergency calls] an authorized emergency vehicle as defined by section 101 of the vehicle and traffic law.

- [(j)] (10) Board means the environmental control board of the city of New York.
- [(k)] (11) Building means a building as defined in [article two of subchapter two of chapter one of title twenty-seven of the code] section 27-232 of the administrative code.
- [(1)] (12) Building aperture means any designed opening in a building to which a person may reasonably have access including but not limited to any door, gate, window, skylight or hatch.
- [(m)] (13) Burglar alarm means any sound signal device designed and intended to produce a sound signal upon unauthorized entrance by a person into a building or motor vehicle.
- [(n)] (14) "C" level means the [total] sound level [of all noise] as measured with a sound level meter using the "C" weighting network. The unit of measurement is the [db(C)]dB(C). This frequency weighting network for the measurement of sound levels shall comply with standards established by the American National Standards Institute specifications for sound level meters \$1.4-1971, as amended or \$1.4-1983, as amended.
 - [(o)] (15) Certificate means an operating or temporary operating certificate.
 - [(p)] (16) Charter means the New York city charter including all of its amendments.
- [(q)] (17) Circulation device means any device which circulates a gas or fluid, including but not limited to any air conditioner, pump, cooling tower, fan or blower.
- [(r)] (18) Claxon means any manually, mechanically, or electrically powered device, other than an emergency signal device, including but not limited to a motor vehicle horn, which is intended to, and when operated actually does, emit a sound signal.
 - [(s)] (19) This code means the New York city noise control code.
- [(t)] (20) Commissioner means commissioner of environmental protection or his or her authorized representative.
- [(u)] (21) Construction or construction work means any or all activity[, except tunneling,] necessary or incidental to the erection, demolition, assembling, altering, installing or equipping of buildings, public or private highways, roads, premises, parks, utility lines including such lines in already-constructed tunnels, or other property, including land clearing, grading, excavating and filling.
- [(v)] (22) Construction device means any device designed and intended for use in construction including, but not limited to any air compressor, pile driver, [manual tool] sledgehammer, bulldozer, pneumatic hammer, steam shovel, derrick, crane, steam or electric hoist, construction vehicle or pneumatic or electric tool.
- [(w)] (23) Construction material means any material, regardless of composition, designed and customarily used in construction including but not limited to any rails, pillars, columns, beams, bricks, flooring, wall, ceiling or roofing material, gravel, sand, cement or asphalt.
- [(x)] (24) Container means any receptacle, regardless of contents, manufactured from wood, metal, plastic, paper or any other material including but not limited to any barrel, basket, box, crate, tub, bottle, can or refuse container.

- [(y)] (25) Decibel[. The decibel is one-tenth of a bel. Thus, the decibel is a unit of level when the base of the logarithm is the tenth root of ten, and the quantities concerned are proportional to power.] means the practical unit of measurement for sound pressure level; the number of decibels of a measured sound is equal to 20 times the logarithm to the base 10 of the ratio of the sound pressure to the pressure of a reference sound (20 micropascals); abbreviated "dB".
- [(z)] (26) Device means any mechanism which is intended to or which actually produces sound when operated or handled.
 - [(aa)] (27) Department means the department of environmental protection.
- [(bb)] (28) Dwelling means any building *lawfully* occupied in whole or in part as the temporary or permanent residence of one or more natural persons.
- [(cc)] (29) Dynamic insertion loss means the difference between two sound pressure levels which are measured at the same point in space before and after a muffler is inserted between the measurement point and the sound source under operating conditions.
- [(dd)] (30) Emergency means a public calamity or an exposure of any person or property to imminent danger.
- [(ee)] (31) Emergency signal device means any gong, siren whistle, or siren or any air horn or any similar device the use of which on authorized emergency vehicles is permitted by subdivision twenty-six of section three hundred seventy-five of the vehicle and traffic law.
- [(ff)] (32) Exhaust source means a system which removes and transports air or gas from a device.
- (33) Extraneous sound is sound that is intense, intermittent, not representative of the relatively steady sound levels at a given location and not attributable to a source or sources under investigation for violation of this code. Such sound includes but is not limited to sirens of passing emergency vehicles, unusually loud motor vehicle braking (screeching) or exhaust noise, people shouting, animal vocalization, passing aircraft, horn honking, car door slamming and passing trains. Notwithstanding the foregoing provision, sounds that are individually persistent or controlling of the sound level at a given location shall not be considered to be extraneous sounds if they constitute more than 50 percent of the duration of an ambient or total sound level measurement such as for example the sound of a passing aircraft at a specific location if airplanes regularly pass over such location and the proximity of such passing aircraft to the location, its sound level, and the duration of such sound level, control the sound level at the given location at the time the sound source under investigation is being measured. For the purposes of the enforcement of this code, extraneous sounds are excluded when measuring the ambient sound level at a given location and when measuring the sound level of a source or sources under investigation for violation of this code except where such sounds are themselves under investigation for violation of this code.
- (34) Impulsive sound is sound that is of short duration, where each peak of sound lasts 2 seconds or less. The sound is characterized by abrupt onset and rapid decay. As used in this code, the term impulsive sound shall not include music.
- [(gg)] (35) Internal combustion engine means a device for the production of energy by means of the combustion under pressure of fossil fuel.
- [(lhh)] (36) Lawn care device means any device powered mechanically, by electricity, by gasoline, by diesel fuel or by any other fuel, which is intended to be used or is actually used for the mowing of grass, the cutting or chipping of trees, tree roots or tree branches, or the clearing of leaves or other vegetation from lawns, sidewalks, public

streets or public highways and shall include, but not be limited to, such devices as lawn mowers and lawn mower attachments, lawn edgers, leaf blowers, leaf vacuums, mulchers and chippers.

- (37) Lmax means the maximum measured sound level at any instant in time.
- [(ii)] (38) Motor vehicle means any device which is propelled by an engine in or upon which a person or material may be transported on the ground and which is intended to be operated upon a public highway.
- [(jj)] (39) Muffler means an apparatus generally consisting of but not limited to a series of chambers or baffles for the purpose of transmitting gases while reducing sound levels.
 - [(kk) Noise means an erratic, intermittent, or statistically random oscillation.]
- [(11)] (40) Owner means and includes the owner of the freehold of the premises or lesser estate therein, or mortgagee thereof, a lessee or agent of any of the above persons, a lessee of a device or his or her agent, a tenant, operator, or any other person who has regular control of a device or an apparatus.
- [(mm)] (41) Paving breaker means any powered construction device intended to cut or trench pavement, subbase macadam, gravel, concrete or hard ground.
- [(nn)] (42) Person means any individual, partnership, company, corporation, association, firm, organization, governmental agency, administration or department, or any other group of individuals, or any officer or employee thereof.
- (43) Personal audio device means a portable sound reproduction device as normally and customarily used for personal purposes including but not limited to a personal radio, phonograph, television receiver, tape recorder or compact disc player. For the purposes of this definition such term shall include a sound reproduction device installed in or operated from a motor vehicle whether or not portable.
- (44) Plainly audible sound means any sound for which any of the content of that sound, such as, but not limited to comprehensible musical rhythms, is communicated to a person using his or her unaided hearing faculties. For the purposes of the enforcement of this code, the detection of any component of music, including but not limited to the rhythmic bass by a person using his or her unaided hearing faculties is sufficient to verify plainly audible sound. It is not necessary for such person to determine the title, specific words or artist of such music. In the case of motor vehicles the detection of the sound of a muffler or of an exhaust by a person using his or her unaided hearing faculties is sufficient to verify plainly audible sound. Plainly audible sound does not require measurement with a sound level meter.
- [(00)] (45) Power tool means any device powered mechanically, by electricity, by gasoline, by diesel fuel or by any other fuel, which is intended to be used or is actually used for, but shall not be limited to, the performance of such functions as cutting, nailing, stapling, sawing, vacuuming or drilling.
- (46) Public right-of-way means a public highway, road, street, avenue, alley, driveway, path, sidewalk, roadway or any other public place or public way.
- [(pp)] (47) Railroad means a railroad, other than a rapid transit railroad or street railroad, operated for public use in the conveyance of persons or property for compensation, with all bridges, ferries, tunnels, equipment, switches, spurs, tracks, stations and terminal facilities used, operated or owned by or in connection therewith.
- [(qq)] (48) Rapid transit railroad means a rapid transit railroad used for local service in the transportation of passengers as a common carrier for hire together with the appurtenances, facilities and equipment thereof.

- (49) Receiving property means real property, including but not limited to buildings, grounds, offices and dwelling units, from which sound levels from sound sources outside such property may be measured. For the purposes of this definition, individual offices or dwelling units within a building may constitute a receiving property.
- [(17)] (50) Refuse [compacting] collection vehicle means a motor vehicle designed or used to [compact and] remove, collect, or transport refuse, solid waste or recyclables.
- [(ss)] (51) Sound means an oscillation in pressure stress, particle displacement, particle velocity, etc., in a medium with internal forces (e.g., elastic, viscous), or the superposition of such propagated oscillation which evokes an auditory sensation.
- [(tt)] (52) Sound level meter means any instrument including a microphone, an amplifier, an output meter, and frequency weighting networks for the measurement of noise and sound levels in a specified manner and which complies with standards established by the Amercian National Standards Institute specifications for sound level meters \$1.4-1971, as amended or \$1.4-1983, as amended.
- [(uu)] (53) Sound pressure level (decibels) means [a sound that is] an expression of the acoustic pressure calculated as twenty times the logarithm to the base ten of the ratio of the root mean square of the pressure of the sound to the reference pressure, [2 x 10-4 microbars] 20 micropascals.
- [(vv)] (54) Sound reproduction device means a device intended primarily for the production or reproduction of sound, including but not limited to any musical instrument, radio receiver, television receiver, tape recorder, phonograph or *electronic* sound amplifying system.
- [(ww)] (55) Sound signal means any sound produced by a sound signal device designed to transmit information.
- [(xx)] (56) Sound signal device means a device designed to produce a sound signal when operated, including but not limited to any claxon, air horn, whistle, bell, gong, siren, but not an emergency signal device.
- [(yy)] (57) Sound source means any activity or device [as herein defined] that emits sound.
 - [(zz)] (58) This code means the New York city noise control code.
- (59) Total sound level means that measured sound level that represents the combined sound level of the source or sources under investigation and the ambient sound level. Total sound level measurements shall exclude extraneous sound sources.
- [(aaa)] (60) Tunnel means an underground passage which is intended for use as a railway, aqueduct, road, sewer or major utility artery.
- [(bbb)] (61) Tunneling means any activity necessary or incidental to the construction of any tunnel, including the sinking of shafts to tunnel or to an intermediate level and the surface activities required to sink the shafts and construct the tunnel.
- [(ccc)]) (62) Unreasonable noise means any excessive or unusually loud sound that disturbs the peace, comfort or repose of a reasonable person of normal sensitivities, injures or endangers the health or safety of a reasonable person of normal sensitivities or which causes injury to plant or animal life, or damage to property or business.
- (63) Refuse collection facility means any structure, building or other premises at which solid waste is received for the purpose of subsequent transfer to another location regardless of whether such solid waste is subject to any processing or reduction in volume at such structure, building or premises.
- [(ddd) Zone means any zone as defined in the zoning resolution of the city of New York, except that zone shall not mean any ambient noise quality zone under subchapter

five or subchapter six of this chapter of this code or any noise sensitive zone under subchapter four of this chapter of this code

- (ddd) Nursing home means a facility providing therein nursing care to sick, invalid, infirm, disabled, or convalescent persons in addition to lodging and board or health-related service, or any combination of the foregoing, and in addition thereto, providing nursing care and health-related service, or either of them, to persons who are not occupants of the facility.
- (eee) Audible status indicator means any sound reproduction device on a motor vehicle that emits or causes to be emitted any continuous or near continuous sound for the purpose of warning that an audible burglar alarm has been installed on such motor vehicle and is operational or for creating the appearance that such an alarm has been installed on such motor vehicle and is operational.]
- §3 Sections 24-204, 24-205, 24-206 and 24-207 of the administrative code of the city of New York, sections 24-204, 24-205 and 24-207 as amended by local law number 18 for the year 1993, are amended to read as follows:
- §24-204 General powers of the commissioner. (a) Subject to the provisions of this code, the commissioner may take such action as may be necessary to abate a sound source which causes or may cause, by itself or in combination with any other sound source or sources, an unreasonable or prohibited noise. The commissioner may exercise or delegate any of the functions, powers and duties vested in him or her or in the department by this code.
- (b) The commissioner shall promulgate such rules as are necessary to effectuate the purposes of this code, including, without limitation, rules setting forth specifications for the operation, installation, best available technology, or manufacture of sound generating equipment or devices, or sound mitigation equipment or devices.
- (c) The commissioner shall promulgate such rules as are necessary with regard to standards and procedures to be followed in the measurement of sound pressure levels governed by the provisions of this code, provided that such standards and procedures are substantially in compliance with any similar standards and procedures promulgated by the American National Standards Institute, International Standards Organization, Society of Automotive Engineers, Compressed Air and Gas Institute, American Society of Heating, Refrigeration, and Air Conditioning Engineers, American Refrigeration Institute or any generally recognized professional standard-setting organization.
- (d) The police department, as well as other agencies of the city designated by the commissioner, shall have the authority to enforce the provisions of this code and police officers and designated employees of the department and of such other city agencies shall have the power to issue summonses, appearance tickets and notices of violation for violations of this code.
- §24-205 Investigations and studies by the commissioner. (a) The commissioner may make or cause to be made any investigation or study which in his or her opinion is desirable for the purpose of enforcing this code or controlling or abating an unreasonable or prohibited noise. For such purposes, the commissioner may make tests, conduct hearings, compel the attendance of witnesses, and take their testimony under oath and may compel the production of books, papers and other things reasonably necessary to the matter under consideration.
- (b) The commissioner shall study and propose strategies to control and/or reduce sound levels associated with airports, rapid transit and railroad operations and within twenty-four months of the effective date of this section shall report to the mayor his or

her findings and recommendations, specifically identifying those recommendations that may only be implemented through state or federal legislation or rules.

- (c) The commissioner, in conjunction with the police department, shall study noise abatement strategies for audible motor vehicle burglar alarms and within twenty-four months of the effective date of this section shall report to the mayor his or her findings and recommendations.
- (d) The commissioner, in conjunction with the police department, shall study on an ongoing basis emerging technology in acoustical measurement and shall periodically report to the mayor his or her findings and recommendations regarding the testing and potential use of equipment for enforcement of this code. In conjunction with such study, the commissioner may issue a request for expressions of interest to determine new and emerging technological solutions for accurate and efficient measurement of sounds as enumerated in this code.
- (e) The commissioner shall study the impact of motor vehicle back-up warning devices installed on motor vehicles on ambient sound levels and within twenty-four months of the effective date of this section shall report to the mayor his or her findings and recommendations, specifically identifying those recommendations that may only be implemented through state or federal legislation.
- §24-206 Testing by order of the commissioner. (a) If the commissioner has reasonable cause to believe that any device is in violation of this code, the commissioner may order the owner of the device to conduct such tests as are necessary in the opinion of the commissioner to determine whether the device or its operation is in violation of this code and to submit the test results to the commissioner within ten days after the tests are completed.
- (b) Such tests shall be conducted in a manner approved by the commissioner. If any part of the test is conducted at a place other than the site where the device is located, that part of the test shall be certified by a laboratory acceptable to the commissioner. The commissioner may require that the entire test results shall be reviewed and certified by (i) a professional engineer with acoustical experience as specified in the rules of the department or (ii) a noise consultant with qualifications of education and/or acoustical experience as set forth in the rules of the department.
- (c) [The owner shall notify the commissioner of the time and place of a test at least seven days before the commencement of such test. Reasonable facilities shall be made available for the commissioner to witness the test.
- (d)] If in the opinion of the commissioner, tests by the department are necessary, the commissioner may order the owner to provide such access to the device as the commissioner may reasonably request, to provide a power source suitable to the points of testing, and to provide allied facilities, exclusive of sound level meter. These provisions shall be made at the expense of the owner of the device. The owner shall be furnished with copies of the analytical results of the data collected.
- (d) If after the analysis of such testing, it is determined by the commissioner that such device or devices generate sound levels that exceed the limits of this code, the commissioner may make recommendations for modifications and/or mitigation measures to bring such device or devices into compliance.
- (e) The commissioner may issue a separate notice of violation for every 24-hour period of noncompliance with the orders of the commissioner issued pursuant to this section.

- §24-207 Inspection. (a) The department may inspect at any reasonable time and in a reasonable manner any device which creates or may create unreasonable *or prohibited* noise including but not limited to the premises where the device is used.
- (b) The department may inspect at any reasonable time and in a reasonable manner any record relating to a use of a device which creates or may create unreasonable or prohibited noise.
- (c) No person shall refuse entry or access into the public areas of a multiple dwelling or a place of business to an authorized employee of the department or other authorized city employee who presents appropriate credentials, nor shall any person refuse entry or access into any other portion of a [premise] premises to an authorized employee of the department or other authorized city employee who presents appropriate credentials and a [search] warrant for such inspection.
- (d) No person shall refuse to allow an authorized employee of the department or other authorized city employee who presents appropriate credentials to perform reasonable sound testing on any device or devices, including but not limited to requiring the temporary shutting down of said device or devices for the purposes of such testing except that upon a showing that the inspection would produce a noticeable interruption of services that would cause discomfort to employees or customers or require a building engineer or other professional to work with the equipment, such authorized employee shall reschedule the inspection for a more convenient time.
 - §4. Subdivision (a) of section 24-208 of such code is amended to read as follows:
- (a) The commissioner may require the written registration of air compressors, paving breakers, refuse compacting vehicles and rapid transit railroads, including but not limited to its rolling stock, track and trackbeds, passenger stations, circulation devices rated 300,000 BTUs or higher, tunnels, elevated structures, yards, depots and garages. A period of sixty days shall be allowed for the filing of such registration measured from the date such registration is required by the commissioner or with respect to devices installed after such requirement is instituted measured from the date of installation. However, in cases of emergency, the commissioner may designate a shorter period of time.
 - §5. Section 24-211 of such code is amended to read as follows:
- §24-211 Display of permits[,] and certificates [and other notices; removal or mutilation prohibited]. Any tunneling permit or certificate required by this code shall be displayed in the vicinity of the device on the premises designated on the tunneling permit or certificate or in the vicinity of the place where the device will be operated or supervised.
- §6. Paragraph (1) of subdivision (b) of section 24-213 of such code is amended to read as follows:
- (1) Either by mailing the notice, order or decision directed to the person at his or her principal place of business or home address; or
 - §7. Section 24-217 of such code is amended to read as follows:
- §24-217 Exemptions. The provisions of this code shall not apply to the operation or use of any organ, bell, chimes or other similar instrument [by] from on or within any church, synagogue, mosque or [school] other house of worship.
 - §8. Such code is amended by adding a new section 24-217.1 to read as follows:
- §24-217.1 Measurements. Unless otherwise specifically provided, all sound level measurements under this code shall be taken in Lmax with the sound level meter set to slow response.

- §9. Section 24-218 of such code, as amended by local law number 18 for the year 1993, is amended to read as follows:
- §24-218 General prohibitions. (a) No person shall make, continue or cause or permit to be made or continued any unreasonable noise[, except that this section shall not apply to any sound from any source where the decibel level of such sound is within the limits prescribed by another section of this title and where there is compliance with all other applicable requirements of law with respect to such sound].
- (b) Unreasonable noise shall include but shall not be limited to sound, attributable to any device, that exceeds the following prohibited noise levels:
- (1) Sound, other than impulsive sound, attributable to the source, measured at a level of 7 dB(A) or more above the ambient sound level at or after 10:00 p.m. and before 7:00 a.m., as measured at any point within a receiving property or as measured at a distance of 15 feet or more from the source on a public right-of-way.
- (2) Sound, other than impulsive sound, attributable to the source, measured at a level of 10 dB(A) or more above the ambient sound level at or after 7:00 a.m. and before 10:00 p.m., as measured at any point within a receiving property or as measured at a distance of 15 feet or more from the source on a public right-of-way.
- (3) Impulsive sound, attributable to the source, measured at a level of 15 dB(A) or more above the ambient sound level, as measured at any point within a receiving property or as measured at a distance of 15 feet or more from the source on a public right-of-way. Impulsive sound levels shall be measured in the A-weighting network with the sound level meter set to fast response. The ambient sound level shall be taken in the A-weighting network with the sound level meter set to slow response.
- (c) Notwithstanding the provisions of subdivision b of this section, where a particular sound source or device is subject to decibel level limits and requirements specifically prescribed for such source or device elsewhere in this code, the decibel level limits set forth in this section shall not apply to such sound source or device.
- (d) The decibel level limits set forth in this section shall not apply to sound attributable to construction devices and activities.
- (e) Where the commissioner finds that sound from any refuse collection facility regulated by the department of sanitation exceeds the decibel level limits set forth in this section, the commissioner shall order the operator of such facility to submit a certification by a professional engineer as to whether or not the facility is in compliance with the noise standards required by the department of sanitation rules (16 RCNY Ch. 4) and if not in compliance, the mitigation measures that will be undertaken to bring such facility into compliance. The testing and certification must be submitted to the department and to the department of sanitation within forty-five days after the issuance of such order. A facility that complies with an order issued pursuant to this section and with any required mitigation measures shall be deemed to be in compliance with the decibel limits of this section. With respect to any refuse collection facility owned or operated by the department of sanitation such facility shall be deemed to be in compliance with the decibel level limits of this section if it is in compliance with a best management practices plan developed in conjunction with the department. A notice of violation may only be issued for a refuse collection facility pursuant to this section where the operator of such facility fails to comply with an order of the commissioner issued pursuant to this subdivision or the mitigation measures set forth in a certification.
- $\S10$. Subchapters 4, 5 and 6 of chapter 2 of title 24 of such code are REPEALED and new subchapters 4, 5 and 6 are added to read as follows:

Construction Noise Management

- §24-219 Noise mitigation rules. (a) The commissioner shall adopt rules prescribing noise mitigation strategies, methods, procedures and technology that shall be used at construction sites whenever any one or more of the construction devices or activities listed below are employed or performed:
 - (1) air compressors.
 - (2) pile drivers.
 - (3) sledgehammers.
 - (4) bulldozers.
 - (5) pneumatic hammers.
 - (6) steam shovels.
 - (7) derricks.
 - (8) cranes.
 - (9) steam or electric hoists.
 - (10) off-road construction vehicles other than trucks.
 - (11) pumps.
 - (12) pneumatic tools.
 - (13) blasting.
 - (14) power tools.
 - (15) tunneling machines.
 - (16) construction devices with internal combustion engines.
 - (17) construction devices that emit impulsive sound.
 - (18) construction devices that create vibration.
 - (19) metal plates used in street construction to temporarily cover excavations.
 - (20) any other construction devices or activities specified in such rules.
 - (b) Such rules shall include but shall not be limited to:
 - (1) The use of perimeter fences with acoustical insulation, where appropriate.
 - (2) The use of portable barriers with acoustical insulation, where appropriate.
 - (3) The use of acoustical blanket insulation, where appropriate.
- (4) Testing of exhaust mufflers and certification, in a form and manner to be specified in the rules, that mufflers meet factory specifications for noise emissions at maximum loading at the commencement of construction at the site.
 - (5) The development of generic noise mitigation plans, where appropriate.
- (6) Additional mitigation measures for sensitive receptors such as hospitals and schools, where appropriate.
- (c) The commissioner shall appoint an advisory committee, which shall include, but shall not be limited to, representatives of utility companies and the construction industry, including those industries related to heavy construction, persons with acoustical expertise and/or expertise regarding the health effects of noise, a representative of the city council and employees of the department and of other relevant city agencies. The committee shall provide advice and recommendations to the department relating to construction noise mitigation and shall assist the department in the development of the noise mitigation rules required by this section. The commissioner shall consult with the committee regarding any proposed amendments of such rules. In the development of such rules the commissioner shall consider factors such as the availability, cost and safety of proposed noise mitigation measures.
- §24-220 Noise mitigation plan. (a) Each person, corporation or other business entity performing construction work in the city shall adopt and implement a noise mitigation plan for each construction site in accordance with the provisions of this

subchapter and such rules whenever any one or more of the construction devices or activities listed above or in the department's rules are employed or performed at the site.

- (b) Such plan shall be adopted prior to the commencement of construction at the site or, with respect to emergency work, as defined in the department's rules, within three days thereafter, and shall apply to all work at the site throughout the construction process. The plan shall provide in detail the noise mitigation strategies, methods, procedures and technology, as prescribed in the rules of the department or specifically approved by the commissioner in accordance with section 21-221 of this code, for each device or activity employed or performed at the site. Each permit holder or other person in charge of such construction site will be accountable for compliance with such rules and shall ensure that each person performing construction work at the site shall be aware of the plan and shall be responsible for complying with those provisions that affect his or her work.
- (c) A copy of the plan shall be kept at the construction site and shall be made available for inspection upon the request of persons authorized to enforce the provisions of this code.
- (d) The plan shall be amended whenever additional devices or activities unforeseen at the commencement of construction are employed at the site or at the direction of the commissioner in accordance with section 24-223 of this subchapter.
- (e) A plan need not be filed with or approved by the department prior to the commencement of construction if it conforms in all respects to the rules of the department with respect to construction devices and activities employed or performed at the construction site. A plan that deviates in any respect from such rules or an alternative noise mitigation plan required to be certified in conjunction with a undue hardship application pursuant to paragraph (5) of subdivision (e) of section 24-223 shall be subject to the prior approval of the commissioner in accordance with section 24-221 of this code.
- (f) This section shall not apply to construction work in connection with the alteration or repair of an existing one or two family owner-occupied dwelling classified in occupancy group J-3 or a convent or rectory.
- §24-221 Alternative noise mitigation plan. (a) Upon application, the commissioner may approve an alternative noise mitigation plan for a particular construction site that deviates from strict compliance with the noise mitigation rules. Application for approval of such plan shall be submitted to the department at least ten business days prior to the commencement of construction or as soon as practicable but no later than 24 hours prior to the commencement of construction in a form and manner and accompanied by such information and documentation as shall be set forth in the rules of the department. The commissioner may approve such alternative noise mitigation plan if he or she finds that:
- (1) strict compliance with the noise mitigation rules would not be possible or would create an undue hardship because of the location or unique characteristics of the site or of the construction devices or activities to be employed or performed at the site; and
- (2) the alternative noise mitigation strategies, methods, procedures or equipment proposed are consistent with the purposes and policies of this code.
- (b) Notwithstanding the foregoing provisions, with respect to construction sites where construction is performed pursuant to a permit issued prior to the effective date of this section or in the case of construction by or on behalf of a city agency where construction is performed under a contract bid out prior to the effective date of this section, application for approval of an alternative noise mitigation plan may be

submitted within 60 days after the effective date of this section. The commissioner may approve such plan if he or she finds that:

- (1) strict compliance with the noise mitigation rules would not be possible or would create an undue hardship because of the location or unique characteristics of the site or of the construction devices or activities employed or performed at the site, or
- (2) strict compliance with such rules would be unreasonable or unduly burdensome with respect to construction work that is imminent or ongoing on the effective date of this section, or
- (3) with respect to city construction projects, the implementation of contract modifications to achieve strict compliance with such rules would result in unreasonable delay and/or increased expenditure for a necessary public improvement, and
- (4) the alternative noise mitigation strategies, methods, procedures or equipment proposed are consistent with the purposes and policies of this code.
- (c) Where the commissioner rejects an alternative noise mitigation plan, an applicant may appeal such rejection in accordance with the rules of the department. An alternative plan shall not be in effect unless and until it has been approved by the commissioner except that where a timely alternative plan has been filed with the commissioner for approval, a construction site in compliance with such alternative plan shall be deemed to be in compliance with this section unless and until such plan is rejected by the commissioner and for a reasonable time thereafter as determined by the commissioner.
- §24-222 After hours and weekend limits on construction work. Except as otherwise provided in this subchapter, it shall be unlawful to engage in or to cause or permit any person to engage in construction work other than on weekdays between the hours of 7 a.m. and 6 p.m. A person may however perform construction work in connection with the alteration or repair of an existing one or two family owner-occupied dwelling classified in occupancy group J-3 or a convent or rectory on Saturdays and Sundays between the hours of 10 a.m. and 4 p.m. provided that such dwelling is located more than 300 feet from a house of worship.
- §24-223 After hours work authorization. (a) Notwithstanding section 24-222 of this subchapter, an agency authorized to issue permits for construction work may, along with such permit, issue an after hours work authorization for the work site. Such after hours authorization may permit construction work to be performed at the site before 7 a.m. or after 6 p.m. on weekdays and/or on Saturdays and/or Sundays subject to the conditions and restrictions set forth in this section.
- (b) The agency issuing such authorization must obtain a certification from its permittee that the permittee has developed a noise mitigation plan for the site in accordance with this subchapter and that such plan is in compliance with the noise mitigation rules. In the case of emergency work such certification shall be submitted within 3 days after the commencement of the work.
- (c) If after hours work at the site is not being performed in compliance with such plan or where no plan is in effect, the department or the agency issuing such authorization, at the request of the commissioner or on its own account, may take appropriate action, including but not limited to the refusal to renew such after hours authorization.
- (d) Where there is full compliance with the noise mitigation plan yet nevertheless aggregate sound levels from the site where an after hours authorization is in effect exceed 8dB(A) above the ambient sound level as measured in any residential receiving property dwelling unit (with windows and doors that may affect the measurement

closed), the commissioner may request the person performing the work to confer with representatives of the department regarding additional noise mitigation measures that may be employed at the site to reduce aggregate sound levels. After such conference the commissioner may direct amendment of the noise mitigation plan for the site. Failure to respond to a request for a conference or to amend the noise mitigation plan within the time prescribed in a notice issued by the department shall be a violation of this code.

- (e) Authorization for after hours construction work may only be issued in the following circumstances:
- (1) Emergency work. Agencies shall authorize such after hours construction work for emergency conditions, inside or outside the property line, involving a threat to public safety or causing or likely to cause the imminent interruption of service required by law, contract or franchise. An emergency authorization issued pursuant to this paragraph shall expire as determined by the agency but no later than the ninetieth day after its issuance and shall be renewable in accordance with agency procedures while the emergency continues.
- (2) Public safety. Agencies may authorize such after hours work, inside or outside of the property line, where the agency determines that the work cannot reasonably or practicably be performed on weekdays between the hours of 7 a.m. and 6 p.m. because of traffic congestion and/or concern for worker and/or public safety. An authorization issued pursuant to this paragraph shall expire as determined by the agency but no later than the ninetieth day after its issuance and shall be renewable in accordance with agency procedures.
- (3) City construction projects. Agencies may authorize after hours work by or on behalf of city agencies for projects that are judicially mandated or the subject of consent orders and/or where a project is necessary in the public interest including but not limited to facilities, equipment, and infrastructure for the provision of water, sewerage, sanitation, transportation and other services necessary for the health or safety of the public. An authorization issued pursuant to this paragraph for a city construction project shall remain in effect for the duration of the project.
- (4) Construction activities with minimal noise impact. The commissioner shall promulgate rules setting forth a list of construction activities with minimal noise impact and specific noise mitigation measures applicable to such activities. Agencies may authorize the performance of such construction activities after hours in accordance with such rules.
- (5) Undue hardship. Agencies may authorize after hours work if the commissioner certifies that the permit holder has substantiated a claim of undue hardship resulting from unique site characteristics, unforeseen conditions, scheduling commitments and/or financial considerations outside the control of the permit holder and that the applicant has received approval from the department of an alternative noise mitigation plan pursuant to section 24-221 of this subchapter, specifying the activities and devices that will be used for such after hours construction and setting forth the additional mitigation measures, above and beyond those measures otherwise required for such devices and activities pursuant to the department's rules, that the applicant will use to significantly limit noise emissions from the site of such after hours work. Applications for such certification shall be submitted to the department in a form and manner to be set forth in the rules of the department. The applicant for an after hours authorization under this paragraph shall submit such certification to the issuing agency.
- §24-224 Construction work without noise mitigation plan unlawful. It shall be unlawful to perform work at any construction site in the city that is not in compliance

with a noise mitigation plan where such plan is required pursuant to this subchapter and with the noise mitigation rules adopted pursuant to this subchapter. Notwithstanding any other provision of this code, construction work performed in accordance with a noise mitigation plan that is in full compliance with this subchapter and such rules shall be deemed to be in compliance with all decibel level limits set forth in other subchapters of this code. The provisions of this subchapter shall supercede all other provisions of this code relating to construction activities or devices that are inconsistent with or in conflict therewith.

SUBCHAPTER 5 PROHIBITED NOISE SPECIFIC NOISE SOURCES – SOUND LEVEL STANDARD

- §24-225 Refuse collection vehicles. (a) No person shall sell, offer for sale, operate or permit to be operated a refuse collection vehicle, equipped with a compacter, that produces a maximum sound level when the compacting mechanism is in the compacting cycle but not engaged in compacting a load that exceeds 80 dB(A), when measured by a sound level meter set for slow response at a distance of 35 feet or more from the compacting unit.
- (b) It shall be inflawful to operate or cause to be operated a refuse collection vehicle, including such a vehicle equipped with a compacter, within 50 feet of any residential receiving property at or after 11:00 p.m. and before 7:00 a.m. if the aggregate sound, not including impulsive sound, generated by the collection and compacting activities exceeds 85 dB(A) when measured by a sound level meter set to slow response at a distance of 35 feet or more from the vehicle. On and after July 1, 2012 such aggregate sound shall not exceed 80 dB(A). The provisions of this subdivision shall not apply to the operation of refuse collection vehicles during an emergency such as a storm or other event that causes delays in refuse collection.
- §24-226 Air compressors. (a) No person shall operate or cause to be operated an air compressor unless it is equipped with an appropriate muffler with no exhaust leaks.
- (b) No person shall sell, offer for sale for use within the city of New York, or operate or permit to be operated an air compressor that, when operated, produces a maximum sound level, when measured at a distance of one meter or more from the nearest major surface of such air compressor, exceeding 80 dB(A) for sizes greater than 350 cfm or exceeding 75 dB(A) for sizes 350 cfm or less.
- (c) Except for construction work outside the property line on a public right-of-way, no person shall operate or permit to be operated an air compressor so as to generate sound levels in excess of 75 dB(A) as measured at any receiving property.
- §24-227 Circulation devices. (a) No person shall operate or permit to be operated a circulation device in such a manner as to create a sound level in excess of 42 dB(A) when measured inside a receiving property dwelling unit. The measurement shall be taken with the window or terrace door open at a point three feet from the open portion of the window or terrace door.
- (b) On and after the effective date of this section, when a new circulation device is installed on any building lot or an existing device on any building lot is replaced, the cumulative sound from all circulation devices on such building lot owned or controlled by the owner or person in control of the new device being installed or the existing device being replaced shall not exceed 45 dB(A), when measured as specified in subdivision a of this section. For a period of two years after the effective date of this section, this subdivision shall not apply to the replacement of a circulation device that was installed

on any building lot prior to the effective date of this section by a device of comparable capacity.

- (c) Except as otherwise provided in subdivision b of this section, with respect to circulation devices installed on any building lot prior to the effective date of this section, the sound level limit of 42 dB(A) referred to in subdivision a of this section shall apply to each individual device except that if the cumulative sound from all devices owned or controlled by the same person on a building lot exceeds 50 dB(A), when measured as specified in subdivision a of this section, the commissioner may order the owner or person in control of such devices to achieve a 5 dB(A) reduction in such cumulative sound level within not more than 12 months after the issuance of such order.
- §24-228 Construction, exhausts and other devices. (a) No person shall operate or use or cause to be operated or used a construction device or combination of devices in such a way as to create an unreasonable noise. For the purposes of this section unreasonable noise shall include but shall not be limited to sound that exceeds the following prohibited noise levels:
- (1) Sound, other than impulsive sound, attributable to the source or sources, that exceeds 85 dB(A) as measured 50 or more feet from the source or sources at a point outside the property line where the source or sources are located or as measured 50 or more feet from the source or sources on a public right-of-way.
- (2) Impulsive sound, attributable to the source, that is 15 dB(A) or more above the ambient sound level as measured at any point within a receiving property or as measured at a distance of 15 feet or more from the source on a public right-of-way. Impulsive sound levels shall be measured in the A-weighting network with the sound level meter set to fast response. The ambient sound level shall be taken in the A-weighting network with the sound level meter set to slow response.
- (b) Where a particular sound source or device is subject to decibel level limits and requirements specifically prescribed for such source or device elsewhere in this code, such specific decibel limits shall apply to such device or source. However, if aggregate sound levels from a construction site exceed the limits set forth in this section, compliance with such specific decibel limits shall not be a defense in any proceeding relating to a violation of this section.
- §24-228.1 Exhausts No person shall cause or permit discharge into the open air of the exhaust of any device, including but not limited to any steam engine, diesel engine, internal combustion engine, power tools, compressors or turbine engine, so as to create an unreasonable noise. For the purposes of this section unreasonable noise shall include but shall not be limited to sound that exceeds the prohibited noise levels set forth in section 24-228.
- §24-229 Containers and construction material. (a) No person shall handle or transport or cause to be handled or transported on any public right-of-way any container or any construction material in such a way as to create an unreasonable noise. For the purposes of this section unreasonable noise shall include but shall not be limited to the following prohibited noise levels:
- (1) Sound, other than impulsive sound, attributable to the source measured at a level of 10 dB(A) or more above the ambient sound level, as measured at any point within a receiving property or as measured at a distance of 15 feet or more from the source on a public right-of-way.
- (2) Impulsive sound, attributable to the source, measured at a level of 15 dB(A) or more above the ambient sound level, as measured at any point within a receiving property or as measured at a distance of 15 feet or more from the source on a public

right-of-way. Impulsive sound levels shall be measured in the A-weighting network with the sound level meter set to fast response. The ambient sound level shall be taken in the A-weighting network with the sound level meter set to slow response.

- (b) This section shall not apply to the operation of refuse collection vehicles regulated pursuant to section 24-225.
- §24-230 Paving breakers. (a) No person shall operate or cause to be operated a paving breaker, other than one operated electrically or hydraulically, unless a pneumatic discharge muffler certified by the manufacturer of such muffler to provide a dynamic insertion loss of 5 dB(A) of the sound released from the air discharge of such paving breaker is installed on such air discharge.
- (b) No person shall sell, offer for sale for use within the city of New York, operate or permit to be operated a paving breaker that when operated produces a maximum sound level that exceeds 95 dB(A), when measured at a distance of one meter or more from a face of such paving breaker.
- §24-231 Commercial music. (a) No person shall make or cause or permit to be made or caused any music originating from or in connection with the operation of any commercial establishment or enterprise when the level of sound attributable to such music, as measured inside any receiving property dwelling unit:
 - (1) is in excess of 42 dB(A) as measured with a sound level meter; or
- (2) is in excess of 45 dB in any one-third octave band having a center frequency between 63 hertz and 500 hertz (ANSI bands numbers 18 through 27, Inclusive), in accordance with American National Standards Institute standard \$1.6-1984; or
- (3) causes a 6 dB(C) or more increase in the total sound level above the ambient sound level as measured in decibels in the "C" weighting network provided that the ambient sound level is in excess of $62 \, dB(C)$.
- (b) (1) The commissioner may recommend to the board that there shall be no civil penalty imposed for a first violation of this section if, within 30 days after the issuance of such violation or, if applicable, within the time granted by the commissioner pursuant to paragraph two of this subdivision, the respondent admits liability for the violation and files a certification with the department in a form and manner and containing such information and documentation as shall be prescribed in the department's rules that (i) permanent improvements or modifications have been made to the establishment, including but not limited to the installation of appropriate sound insulation, isolators, suspension mounting and/or sound mitigation devices or materials and (ii) appropriate sound measurements taken in accordance with the department's rules substantiate that the establishment is in full compliance with the sound levels set forth in this section. If the commissioner accepts such certification of compliance, he or she shall recommend to the board that no civil penalty shall be imposed for the violation. Such violation may nevertheless serve as a predicate for purposes of imposing penalties for subsequent violations of this section.
- (2) Where the completion of appropriate permanent improvements or modifications and testing within 30 days after the issuance of the violation would cause the respondent undue hardship, the respondent may apply to the commissioner for additional time to submit an appropriate certification of compliance, but not more than 30 days. Application for such additional time must be submitted to the commissioner within 30 days after the issuance of the violation along with an admission of liability and appropriate documents in support of the claim of undue hardship.
- (3) Nothing in this subdivision shall be construed to prohibit enforcement personnel from issuing additional notices of violation, summonses or appearance tickets where

sound levels exceed the limits set forth in subdivision a of this section during the periods of time set forth in paragraphs one and two of this subdivision for submission of a certification of compliance for a first violation.

- (c) In any proceeding under this section it shall be an affirmative defense that the receiving property dwelling unit was not lawfully occupied at the time of the violation.
- (d) The commissioner may grant a variance from strict application of the limits set forth in subdivision (a) of this section for a commercial establishment or enterprise that was in operation at the same site prior to the date of enactment of the local law that added this section if he or she finds that there are practical difficulties or unnecessary hardship in the application of such provisions in the specific case, provided that as a condition to the grant of any such variance, sufficient evidence or data is submitted by an applicant that there are physical conditions or zoning district conditions, including irregularity in lot size characteristics and zoning changes, and that as a result of such physical or zoning district conditions, practical difficulties or unnecessary hardship arise in complying with such provisions. In granting a variance the commissioner may impose such terms and conditions as he or she deems necessary to carry out the intent of this section to minimize noise emissions from the site. Application for a waiver shall be submitted in such form and manner as shall be provided by rules of the department and shall include in detail proposed measures which the applicant proposes will minimize sound from the site. A variance granted pursuant to this subdivision shall not be transferable but shall expire upon a change in ownership, size or location of the commercial establishment or enterprise in accordance with the rules of the department. Violation of the conditions of any variance shall be deemed to be a violation of this section.

§24-232 Allowable decibel levels-octave band measurement. (a) No person shall cause or permit a sound source operating in connection with any commercial or business enterprise to exceed the decibel levels in the designated octave bands shown below as measured within a receiving property as specified therein.

Octave Band		Maximum Sound Pressure Levels (dB) as measured within a receiving property as specified below			
Frequency (Hz)	Residential receiving property for mixed use buildings and residential buildings (as measured within any room of the residential portion of the building with windows open, if possible).	Commercial receiving property (as measured within any room containing offices within the building with windows open, if possible).			
31.5	70	74			
63	61	64			
125	53	56			
250	46	50			
500	40	45			
1000	36	41			
2000	34	39			
4000	33	38			
8000	32	37			

- (b) All sources that are within the A-scale limits prescribed by any other section of this code must also comply with the octave band decibel levels as specified herein. Compliance with this section does not constitute a defense to violation of decibel limits set by any other section of this code.
- (c) Measurements performed on residential property shall not be taken in non-living areas such as closets and crawlspaces.
- (d) This section shall not apply to impulsive sound, music or construction devices or activities.
- (e) This section shall not apply to any utility structure in existence prior to January 1, 2004. For the purposes of this subdivision the term "utility structure" means any electric substation owned or operated by an electric, gas, or steam utility subject to the jurisdiction of the New York state public service commission.
- (f) This section shall not apply to any refuse collection facility owned, operated or regulated by the department of sanitation.

SUBCHAPTER 6 SPECIFIC NOISE SOURCES PLAINLY AUDIBLE AND OTHER STANDARDS

- §24-233 Personal audio devices. (a) No person shall operate or use or cause to be operated or used any personal audio device in such a manner as to create an unreasonable noise.
- (b) For the purposes of this section unreasonable noise shall include but shall not be limited to:
- (1) the operation or use of a personal audio device on or in any public right-of-way so that sound emanating from such device is plainly audible to another individual at a distance of 25 feet or more from the source.
- (2) the operation or use of a personal audio device from on or inside a motor vehicle, whether moving, parked, stopped or standing, on or in any public right-of-way so that sound emanating from such device is plainly audible to another individual outside of such motor vehicle at a distance of 25 feet or more from the source.
- (c) Nothing in this section shall be construed to permit the operation or use of a personal audio device where such operation or use would otherwise be prohibited pursuant to section 10-108 or 24-244 of the administrative code.
- §24-234 Operation or use of sound reproduction device in or on rapid transit railroad, onnibus or ferry. It shall be unlawful to operate or use a sound reproduction device in or on any rapid transit railroad, omnibus or ferry, other than a personal audio device with personal earphones such that sound from such earphones is not plainly audible to another individual at a distance of 5 feet or more from the source.
- §24-235 Animals. No person having charge, care, custody, or control of any animal shall cause or permit such animal to cause unreasonable noise including, but not limited to, any sound that is plainly audible at any location within any residential receiving property as set forth below:
- (a) At or after 7 a m. and before 10 p.m., continuously for a period of 10 minutes or more.
- (b) At or after 10 p.m. and before 7 a.m., continuously for a period of 5 minutes or more.
- §24-236 Motor vehicles. (a) Motor vehicles, other than motorcycles, with a maximum gross weight of 10,000 lbs. or less. No person shall cause or permit any motor vehicle, other than a motorcycle, with a maximum gross weight of 10,000 lbs. or less to

operate on a public right-of-way where the muffler or exhaust generates a sound that is plainly audible to another individual at a distance of 150 feet or more from the motor vehicle.

- (b) Motorcycles. No person shall cause or permit any motorcycle to operate on a public right-of-way where the muffler or exhaust generates a sound that is plainly audible to another individual at a distance of 200 feet or more from the motorcycle.
- (c) Motor vehicles with a maximum gross weight greater than 10,000 lbs. No person shall cause or permit any motor vehicle with a maximum gross weight greater than 10,000 lbs. to operate on a public right-of-way where the muffler or exhaust generates a sound that is plainly audible to another individual at a distance of 200 feet or more from the motor vehicle, except when compression brake systems are used in an emergency to stop the vehicle.
- (d) (1) No person operating a motor vehicle containing a compression brake system or systems shall apply such compression brake system or systems except when such system or systems are used in an emergency to stop the vehicle.
- (2) The department is authorized to post signs at every entry point of the city containing the following information: THE USE OF COMPRESSION BRAKE SYSTEMS IS PROHIBITED ON STREETS WITHIN NEW YORK CITY WHERE THE SPEED LIMIT IS 35 MILES PER HOUR OR LESS EXCEPT IN CASE OF AN EMERGENCY.
- (e) No person shall cause or permit the total sound from a motor vehicle operating on any public right-of-way to exceed the sound level set forth in section 386 of the vehicle and traffic law and the rules adopted pursuant to such section.
- (f) Subdivisions a, b, c and paragraph one of subdivision d of this section may only be enforced on streets where the speed limit is 35 miles per hour or less.
- §24-237 Sound signal devices. (a) No person shall operate or use or cause to be operated or used any claxon installed on a motor vehicle, except as a sound signal of imminent danger or in connection with use as an audible motor vehicle burglar alarm as provided in section 24-238 of this code.
- (b) No person shall operate or use or cause to be operated or used an air horn or gong installed on any motor vehicle other than as provided in section 24-241 of this code.
- (c) No person shall operate or use or cause to be operated or used any steam whistle attached to any stationary boiler, except to give notice of the time to start and stop work or as a sound signal of imminent danger.
- (d) No person shall operate or use or cause to be operated or used on any public right-of-way any electrically operated or electronic sound signal device (other than a safety device, such as but not limited to a car horn or back up signal, that is actually used for its intended purpose) attached to, on or in a motor vehicle, wagon or manually propelled cart from which food or any other items are sold or offered for sale when the vehicle is stopped, standing or parked. For the purposes of this subdivision the term "stopped" means the halting of a vehicle, whether occupied or not, except when necessary to avoid conflict with other traffic or in compliance with a police officer or other authorized enforcement officer or a traffic control sign or signal. The terms "standing" and "parked" shall be as defined in the vehicle and traffic law.
- §24-238 Audible burglar alarm and audible status indicator. (a) No owner of a building or of a motor vehicle shall have in operation an audible burglar alarm thereon unless such burglar alarm shall be capable of and shall automatically terminate its operation within fifteen minutes of its being activated in the case of a building, and three

minutes of its being activated in the case of a motor vehicle. No audible burglar alarm on a motor vehicle shall be capable of being activated except by:

- (i) direct physical contact with that motor vehicle; or
- (ii) through the use of an individual remote activation device, that is activated from no further than 15 feet away from such vehicle and, that is designed to be used with the audible burglar alarm system of a particular vehicle which alarm shall be capable of and shall terminate its audible response within three minutes of its being activated.
- (b) No owner of a motor vehicle shall have in operation an audible status indicator on such motor vehicle.
- \$24-239 Audible burglar alarm or audible status indicator may be disconnected. (a) Notwithstanding the provisions of section 24-238, any member of the police department shall have the right to take such steps as may be reasonable and necessary to disconnect any audible burglar alarm or audible status indicator that is installed on a motor vehicle at any time during the period of its activation.
- (b) The operator of any motor vehicle on which an audible burglar alarm or audible status indicator has been installed shall when parked on a public highway or parking lot open to the public, prominently display the number and telephone number of the owner's local police precinct where information shall be on file to permit communication with the owner of such vehicle.
- §24-240 Removal of vehicle with audible burglar alarm or audible status indicator.
 (a) Notwithstanding the provisions of section 24-239, any member of the police department may arrange for the removal of a motor vehicle from a public highway or parking lot open to the public, when:
- (i) an audible burglar alarm installed on such vehicle is operated in violation of this code or an audible status indicator is operated on such vehicle; and
- (ii) all reasonable and necessary steps to disconnect such alarm or audible status indicator have been taken without success. Authorized personnel of the department or the department of transportation may request a member of the police department to arrange for removal of such vehicle. When such removal is requested, the notice of violation for operation of an audible burglar alarm in violation of this section or for operation of an audible status indicator shall state that a member of the police department took all reasonable and necessary steps to disconnect such alarm or such audible status indicator without success. Such removal may be accomplished by utilizing any existing city-operated tow-program, rotation tow program established pursuant to section 20-519 of the code or such other procedures as may be established. The cost of towing and storage of such motor vehicle shall be the responsibility of the owner or other person who claims such vehicle.
- (b) An opportunity for a hearing before the board shall be provided to the owner of a motor vehicle removed pursuant to this section within five business days after a request for a hearing is made to determine whether there was a basis for such removal. The board shall render a decision within two business days following the conclusion of the hearing. If it is determined that there was no basis for removal of a vehicle pursuant to this section, the owner of such vehicle may recover from the city any amounts paid by such owner for towing and storage.
- §24-241 Emergency signal devices. (a) No person shall operate or use or cause to be operated or used any emergency signal device, except on an authorized emergency vehicle when such vehicle is in the act of responding to an emergency; provided that such device shall not be operated for a period of time longer than is necessary to respond to such emergency. Notwithstanding the foregoing, such a device on a motor

vehicle shall be lawful if designed and used solely as an audible motor vehicle burglar alarm in accordance with section 24-238 and a device attached to a vehicle for the purpose of providing an audible warning when the vehicle is backing up shall be permitted even though the audible warning may consist of a gong or bell sound.

- (b) No person shall operate or permit to be operated an emergency signal device installed on an authorized emergency vehicle that when operated at the maximum level creates a sound level in excess of 90 dB(A) when measured at a distance of fifty feet from the center of the forward face of such vehicle. Within one year after the effective date of this subdivision and every two years thereafter, emergency signal devices installed on authorized emergency vehicles shall be tested and certification shall be submitted, in a form approved by the department, that such devices meet the standard set forth in this subdivision for operation at maximum level. Notwithstanding the foregoing provisions, where compliance with the provisions of this subdivision would create an undue hardship, the owner or operator of an authorized emergency vehicle may submit a plan to the commissioner for emergency signal devices to meet the standard set forth in this subdivision within two years after the effective date of this subdivision. Such plan shall be submitted within one year after the effective date of this subdivision in lieu of the required certification. This subdivision shall not apply to authorized emergency vehicles of the police department, fire department or authorized emergency vehicles responding to medical emergencies.
- §24-242 Lawn care devices. (a) No person shall operate or use or cause to be operated or used any lawn care device:
- (1) On weekdays before eight a.m. and after seven p.m. or sunset, whichever occurs later; or
- (2) On weekends and New York state and federal holidays before nine a.m. and after six p.m.; or
- (3) At any time in such a way as to create an unreasonable noise. For the purposes of this section unreasonable noise shall include but shall not be limited to an aggregate sound level of 75 dB(A) or more, attributable to the source or sources, as measured at any point within a receiving property. The provisions of paragraph (1) of this subdivision shall not apply to an employee of the department of parks and recreation or an agent or contractor of the department of parks and recreation who operates or uses or causes to be operated or used any lawn care device between the hours of seven a.m. and eight a.m. in any location more than three hundred feet from any building that is lawfully occupied for residential use. The distance of three hundred feet shall be measured in a straight line from the point on the exterior wall of such building nearest to any point in the location at which such lawn care device is operated or used or caused to be operated or used.
- (b) No person shall operate or use or cause to be operated or used any leaf blower not equipped with a functioning muffler.
- §24-243 Snow blowers. The provisions of this code shall not apply to the operation of a snow blower for the purpose of complying with subdivision a of section 16-123 of the administrative code.
- §24-244 Sound reproduction devices. (a) Except as otherwise provided in section 10-108 of the code, no person shall operate or use or cause to be operated or used any sound reproduction device in such a manner as to create unreasonable noise.
- (b) No person shall operate or use or cause to be operated or used any sound reproduction device, for commercial or business advertising purposes or for the purpose of attracting attention to any performance, show, sale or display of merchandise, in

connection with any commercial or business enterprise (including those engaged in the sale of radios, television sets, compact discs or tapes), (i) outside or in front of any building, place or premises or in or through any aperture of such building, place or premises, abutting on or adjacent to a public street, park or place; (ii) in or upon any vehicle operated, standing or being in or on any public street, park or place; (iii) from any stand, platform or other structure; (iv) from any airplane or other device used for flying, flying over the city; (v) from any boat on the waters within the jurisdiction of the city; or (vi) anywhere on the public streets, public sidewalks, parks or places where sound from such sound reproduction device may be heard upon any public street, sidewalk, park or place. Nothing in this section is intended to prohibit incidental sounds emanating from a sporting or an entertainment or a public event for which a permit under section 10-108 of the code has been issued.

- §11. Paragraph (5) of subdivision (b) of section 24-257 of such code is amended to read as follows:
- (5) Impose a civil penalty in each instance in an amount as set out in table [V] I against any person who violates a provision of this code, or of any order, rule or regulation promulgated by the commissioner or the board. Each day during which such violation continues shall constitute a separate violation. The board may remit, in whole or in part, such a civil penalty if, at the conclusion of the hearing or at the time of the board determination under section 24-266 of this code, the respondent is no longer in violation of a provision of this code, or of any order, rule or regulation promulgated by the commissioner or the board;
- §12. Table V following paragraph (5) of section 24-257 of such code is REPEALED and a new table I is added following such paragraph (5) to read as follows:

TABLE I Civil Penalties **Violations** Third and related to Second Subsequent section and First Violation Violation* Violations* subdivision Maxi-Mini-Mini-Maxi-Mini-Maximum mum mum mum mum mum 24-216 (d) 2,625 650 5,250 1,300 7,875 1,950 2,000 1,050 24-218 1,000 350 700 3,000 24-218.1 50 50 50 50 50 50 24-220 1,400 440 2,800 880 4,200 1,320 24-222 3,500 875 7,000 1,750 10,500 2,625 24-223 10,500 3,500 875 7,000 1,750 2,625 24-224 3,500 875 7,000 1,750 10,500 2,625 24-225 1,400 440 2,800 4,200 1,320 880 24-226 1,400 440 2,800 880 4,200 1,320 24-227 875 220 1,750 440 2.625 660 24-228 1.400 440 2.800 880 4.200 1,320 24-22<mark>9</mark> 1,400 440 2,800 880 4,200 1,320 24-230 1,400 440 2,800 880 4,200 1,320 24-231 (a) 8,000 2,000 16,000 4,000 24,000 6,000 24-231 (b) 1,750 440 3.500 880 5,250 1,320 24-231 (c) 875 350 1750 700 2,625 1,050 24-232 1,400 440 2,800 4,200 1,320 880 24-233 (a) 175 50 350 100 525 150 24-233 (b) (1) 175 50 350 100 525 150

		24	4			
24-233 (b) (2)	350	100	700	200	1,050	300
24-234	175	50	350	100	525	150
2 4 -2 3 5	175	50	350	100	525	150
24-236 (a)	525	150	1050	300	1,575	450
24-236 (b) (c) (d)	1,440	440	2,800	880	4,200	1,320
24-237 (a)	1,000	150	2,000	300	3,000	450
24-237 (b)	<i>875</i>	220	1,750	440	2, 6 25	660
24-237 (c)	875	220	1,750	440	2,625	660
24-237 (d)	1,000	350	2,000	700	3,000	1,050
24-238	875	220	1,750	440	2,625	660
24-239 (b)	350	100	700	200	1,050	300
24-241	1,400	440	2,800	<i>880</i>	4,200	1,320
24-242	875	220	1,750	440	2,625	660
24-244	1750	440	3,500	880	5,250	1,320
24-245	2,625	660	5,250	1,320	7,875	1,980
All remaining sections						
and subdivisions	875	220	1.750	440	2.625	660

* By the same respondent of the same provision of law, order, rule or regulation and, if the respondent is the owner, agent, lessee or other person in control of the premises with respect to which the violation occurred, at the same premises (all violations committed within two years).

- §13. Paragraph (3) of subdivision (c) of section 24-257 of such code is amended to read as follows:
- (3) order any person not in possession of [a variance] an after hours work authorization issued pursuant to [subdivision (b) of section 24-224] section 24-223 of this code to cease and desist from construction activities other than during the permissible hours specified in [subdivision (a) of section 24-224] section 24-222 of this code and the board may also seal any device used in such construction activities;
 - §14. Subdivision (f) of section 24-257 of such code is amended to read as follows:
- (f) (1) The board may order any person to cease and desist from an activity which it reasonably believes causes unreasonable noise which creates imminent peril to the public health and well being, or to cease and desist from an activity which it reasonably believes constitutes a willful or continued violation of any provision of this code or order or regulation, promulgated by the commissioner or board. Such order shall be effective upon service thereof. Any party affected by such an order may request a hearing on written notice, and he or she shall be afforded a hearing, within twenty-four hours after service of such request, pursuant to section 24-263 of this code. If such an accelerated hearing is not requested, then a hearing shall be afforded within ten days of the issuance of the order. The board shall issue its final decision and order thereon within three days from the conclusion of a hearing held pursuant to this subdivision.
- [(2) The board may rescind in whole or in part a variance issued by an agency of the city of New York pursuant to subdivision (b) of section 24-224 of this code. Such order shall be effective upon service thereof upon such agency and upon the person to whom such variance was issued.]
 - §15. Section 24-258 of such code is amended to read as follows:
- § 24-258 The board. (a) The board shall be convened by the chairperson or in the chairperson's absence the assistant commissioner of [air resources] *environmental compliance*, or at the request of any three members thereof.
- (b) If a member of the board has presided over the initial hearing, he or she shall not be disqualified from reviewing the hearing.

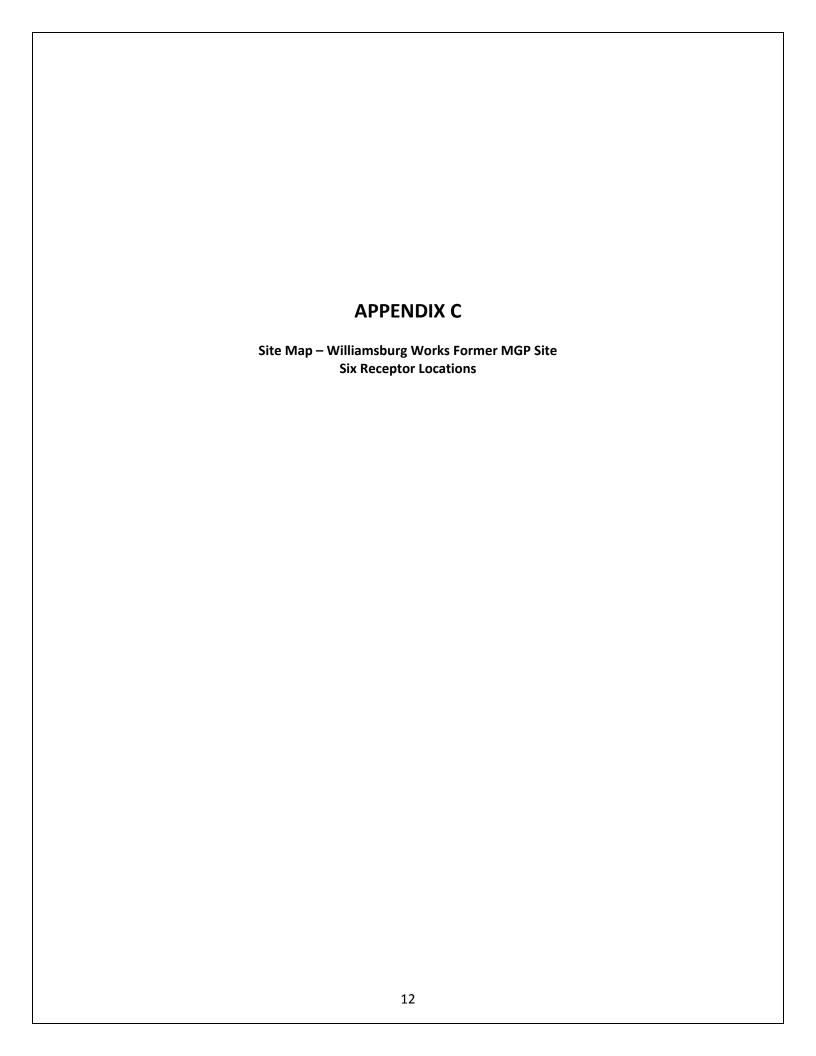
- (c) Five members of the board, at least two of who shall not be city officials, shall constitute a quorum.
- §16. All actions and proceedings, civil or criminal, or administrative proceedings commenced under or by virtue of any provision repealed by this local law and pending immediately prior to the taking effect of such repeal may be prosecuted and defended to final effect in the same manner as they might if such provisions were not so repealed.
- §17. On or prior to January 1, 2007 the commissioner of environmental protection shall promulgate noise mitigation rules in accordance with section 24-219 of the administrative code, as added by section 10 of this local law.
- §18. This local law shall take effect on July 1, 2007 provided that prior to such effective date agencies may promulgate rules or take other administrative actions necessary for the timely implementation of this local law including the appointment of any advisory committee and provided further that section 17 of this local law shall take effect immediately upon its enactment into law.

THE CITY OF NEW YORK, OFFICE OF THE CITY CLERK, s.s.:

I hereby certify that the foregoing is a true copy of a local law of the City of New York, passed by the Council on December 21, 2005 and approved by the Mayor on December 29, 2005.

VICTOR L. ROBLES, City Clerk of the Council

CERTIFICATION PURSUANT TO MUNICIPAL HOME RULE LAW §27


Pursuant to the provisions of Municipal Home Rule Law §27, I hereby certify that the enclosed Local Law (Local Law 113 of 2005, Council Int. No. 397-A) contains the correct text and:

Received the following vote at the meeting of the New York City Council on December 21, 2005: 47 for, 0 against, 0 not voting.

Was signed by the Mayor on December 29, 2005.

Was returned to the City Clerk on December 30, 2005.

JEFFREY D. FRIEDLANDER, Acting Corporation Counsel

Ambient Sound Monitoring Locations

Ambient Vibration Study
Williamsburg Works
Former MGP Site
50 Kent Avenue Parcel
Brooklyn, New York

Prepared for:

Mr. Colin Wasteneys URS Corporation 77 Goodell Street Buffalo, New York 14203

Prepared by:

Vibra-Tech Engineers, Inc. 109 E. First Street Hazleton, Pennsylvania 18201 (800) 233-6181

Ambient Vibration Study Williamsburg Works Former MGP Site

Introduction

An ambient vibration study was carried out by Vibra-Tech Engineers, Inc. in the area surrounding the former MGP site at 50 Kent Avenue, Brooklyn, New York. The study was authorized by Mr. Colin Wasteneys of URS Corporation for the purpose of measuring ambient vibration levels around the perimeter of the 50 Kent Avenue Parcel prior to the start of the project. Vibration measurements were taken from April 23 to April 29, 2012.

Scope and Conditions of Monitoring

Vibration Monitoring

Six (6) Vibra-Tech Multiseis seismograph systems equipped with triaxial geophones were installed to record vibrations during this study. The seismograph systems are laboratory calibrated on an annual basis. A calibration check was completed by a technician prior to the study and the systems were programmed to check the calibration after each day of recording. Table 1 below gives the location, seismograph serial number, description, and GPS coordinate of the remote seismographs utilized during this study. A map showing monitoring locations is located in Appendix A.

Table 1. Monitoring Locations for the Ambient Vibration Study Conducted from April 23-29, 2012

Location	Seismograph Serial Number	Description	GPS
1	BD8002	20 N. 12 th Street Block 2287 - South Corner	N 40° 43′ 24.02″ W 73° 57′ 38.02″
2	BF11110	Block 2294 Lot 1 - North Side of Building	N 40° 43′ 22.24″ W 73° 57′ 36.30″
3	BD6674	51 Kent Avenue - North Corner	N 40° 43′ 20.67″ W 73° 57′ 33.76″
4	BD8340	35 Kent Avenue Block 2288 Lot 1 - North Corner	N 40° 43′ 22.62″ W 73° 57′ 31.43″
5	BF14209	Block 2277 Lot 1 - South of Building	N 40° 43′ 24.27″ W 73° 57′ 33.02
6	BF10975	20 N. 12 th Street Block 2287 - Northeast Corner	N 40° 43′ 25.49″ W 73° 57′ 36.07″

Instrumentation

The seismographs used directly measure particle velocity in three mutually perpendicular planes of motion. The seismographs have a range up to 10 in/sec. Each system has a sample rate of 1,024 samples per second per channel. The entire system is calibrated internally prior to each recording in addition to an annual shake table calibration.

The seismographs were programmed to monitor and record the highest peak particle velocity at 1 minute intervals at 1,024 samples/second/channel.

Vibration and Vibration Measurements

The measurement of vibration involves quantifying the rate and amount of oscillation occurring in a vibrating body. The rate of motion, or the number of vibrations occurring in a given time frame, usually one second, is called the frequency of the motion, which is described as the number of cycles/second (cps) or Hertz (Hz).

The amount of movement associated with a vibration can be measured in terms of displacement, velocity, or acceleration. Displacement is a measure of the physical distance traveled from a position of equilibrium or base line. Velocity is a measure of the speed at which the displacement occurred and acceleration is a measure of the change in velocity occurring during the vibration event. The relationships between displacement, velocity, and acceleration are also dependent upon the frequency of the motions measured. For this project Vibra-Tech will provide the results in terms of peak particle velocity.

In order to completely describe the ground motion, three perpendicular components of the motion must be measured. The longitudinal component (L) is a measurement in a direct line from the source to the monitoring location. The remaining components are vertical (V) and transverse (T), which is perpendicular to the longitudinal component.

Results of the Monitoring

Daily Summary for Each Location

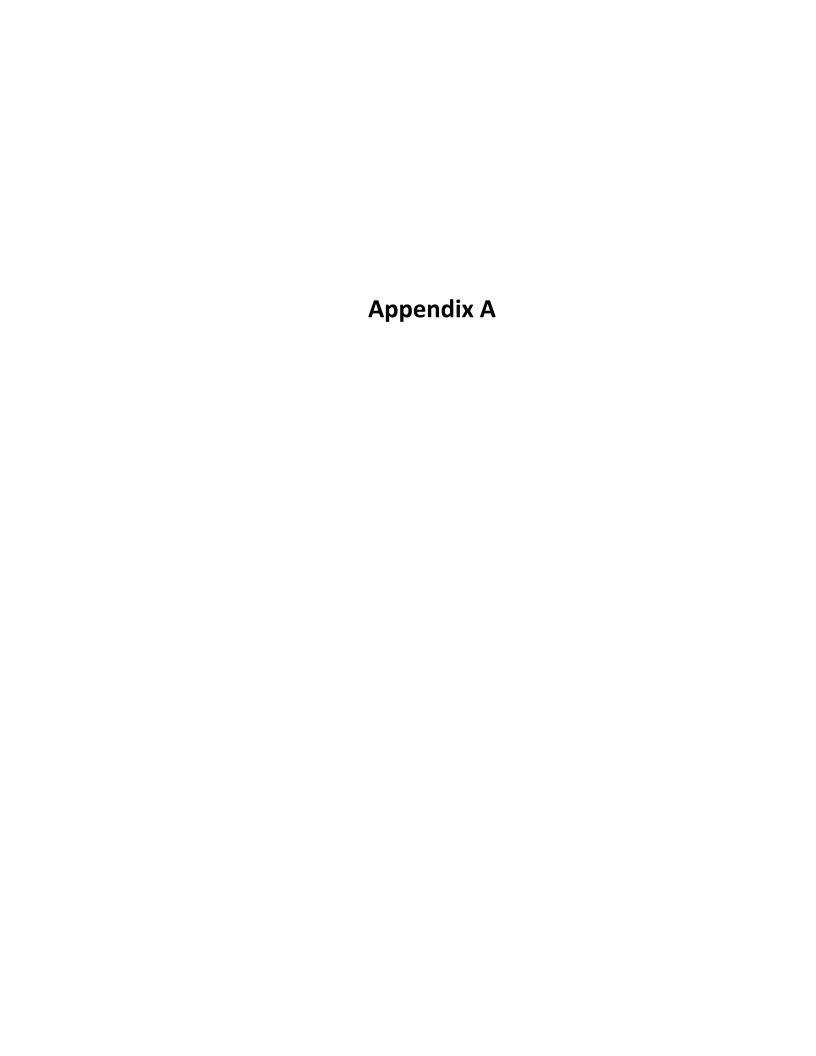
A summary of the peak particle velocity vibration data collected from the six monitoring locations can be found in Table 2. Table 2 shows the peak particle velocity in inches per second for each channel at each location and the percentage of data measured at specified frequencies for each channel at each location. The results from the vibration monitoring are displayed in graphical format in Appendix B of this report. Each sheet (event report) contains three plots representing vibration amplitudes for each plane of motion.

Table 2: Ambient Vibration Data Measured at Each Location - April 23 through April 29, 2012

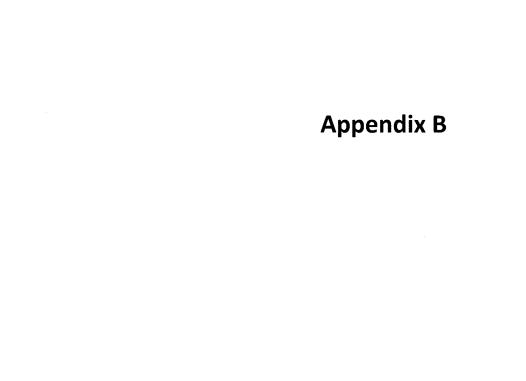
	Measured	Percent o	Percent of Measured Frequency		
Geophone Location	Peak Particle Velocity (in/sec)	< 20 Hz	20-40 Hz	> 40 Hz	
Location #1	0.020 (L)	0 .00% (L)	0 .00% (L)	100% (L)	
20 N. 12th Street	0.015 (T)	0.04% (T)	0.05% (T)	99.91% (T)	
Block 2287 - Southwest Corner	0.040 (V)	0.06% (V)	0.29% (V)	99.65% (V)	
Location #2	0.040 (L)	0.03% (L)	0.28% (L)	99.69% (L)	
Block 2294 Lot 1	0.020 (T)	0.29% (T)	0.55% (T)	99.16% (T)	
North Side of Building	0.055 (V)	0.00% (V)	0.09% (V)	99.91% (V)	
Location #3	0.085 (L)	0.01% (L)	0.02% (L)	99.97% (L)	
51 Kent Avenue	0.040 (T)	0.04% (T)	0.22% (T)	99.74% (T)	
North Corner	0.090 (V)	0.03% (V)	0.09%(V)	99.88% (V)	
Location #4	0.015 (L)	0.00% (L)	0.01% (L)	99.99% (L)	
35 Kent Avenue	0.030 (T)	59.46% (T)	12.49% (T)	28.05% (T)	
Block 2288 Lot 1 - North Corner	0.080 (V)	6.96% (V)	30.74% (V)	62.30% (V)	
Location #5	0.025 (L)	0.01% (L)	0.03% (L)	99.96% (L)	
Block 2277 Lot 1	0.015 (T)	0.00%(T)	0.01% (T)	99.99% (T)	
7 feet South of Building	0.060 (V)	0.01% (V)	0.03% (V)	99.96% (V)	
Location #6	0.035 (L)	0.00% (L)	0.00% (L)	100% (L)	
20 N. 12th Street	0.045 (T)	0.00% (T)	0.00% (T)	100% (T)	
Block 2287 - Northeast Corner	0.100(V)	0.00% (V)	0.00% (V)	100% (V)	

Conclusion

Please refer to our original seismograph records in Appendix A for specific recording locations and intensities. If you have any questions or we may be of further assistance, please contact our office.


Sincerely,

VIBRA-TECH ENGINEERS, INC.


Mark Edwards

Vibration and Sound Analyst

Douglas Rudenko Vice President

Event Report

Battery Level 6.9 Volts

Calibration

File Name

Serial Number BD8002 V 7.04-8.0 MultiSeis Plus

J002E91F.751

February 8, 2012 by Vibra-Tech Inc.

Histogram Start Time

11:42:41 April 22, 2012 Histogram Finish Time 23:59:00 April 22, 2012 Number of Intervals

Range Sample Rate 736 at 1 minute Geo:10.00 in/s

1024sps

Job Number:

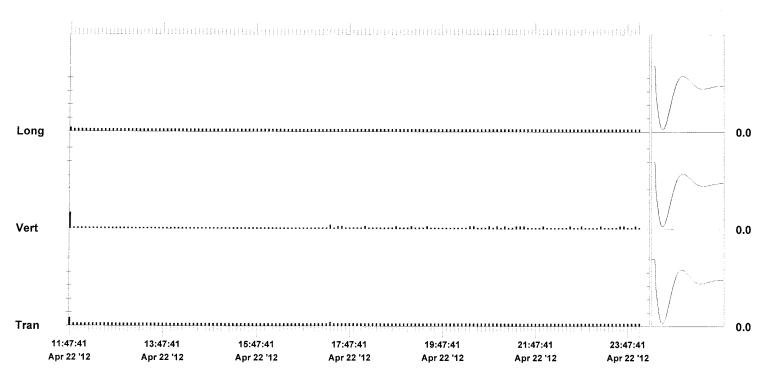
Notes Location: Location #1

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes

Post Event Notes


Microphone Disabled PSPL N/A **ZC Frea** N/A

Channel Test N/A

	Tran	Vert	Long	
PPV	0.0300	0.0600	0.0150	in/s
ZC Freq	73	>100	>100	Hz
Date	Apr 22 '12	Apr 22 '12	Apr 22 '12	
Time	11:43:41	11:43:41	11:43:41	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.6	7.3	7.3	Hz
Overswing Ratio	3.9	4.4	4.2	

Peak Vector Sum 0.0673 in/s on April 22, 2012 at 11:43:41

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

Histogram Finish Time 23:59:00 April 23, 2012 **Number of Intervals**

Range Sample Rate Job Number: 00:00:10 April 23, 2012 1438 at 1 minute

Geo:10.00 in/s 1024sps

Serial Number BD8002 V 7.04-8.0 MultiSeis Plus Battery Level Calibration

File Name

6.9 Volts

February 8, 2012 by Vibra-Tech Inc.

J002E92D.CA1

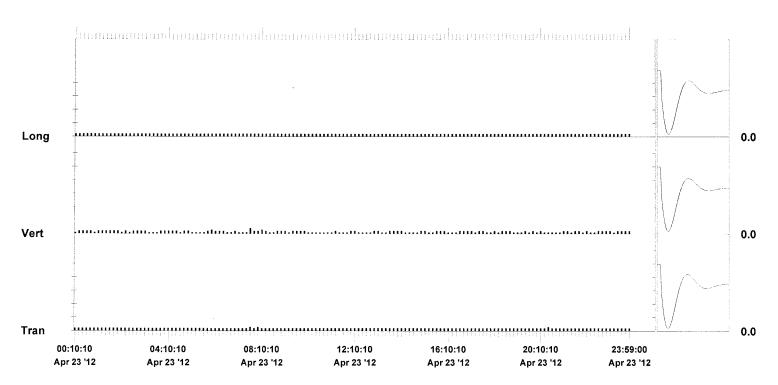
Notes

Location: Location #1

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0200	0.01000	in/s
ZC Freq	18	17	>100	Hz
Date	Apr 23 '12	Apr 23 '12	Apr 23 '12	
Time	07:38:10	07:38:10	00:01:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.4	7.4	Hz
Overswing Ratio	3.9	4.3	4.2	

Peak Vector Sum 0.0255 in/s on April 23, 2012 at 07:38:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

00:00:10 April 24, 2012 Histogram Finish Time 23:59:00 April 24, 2012

Number of Intervals Range Sample Rate

1438 at 1 minute Geo: 10.00 in/s

1024sps

Job Number:

File Name

Serial Number BD8002 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts Calibration

February 8, 2012 by Vibra-Tech Inc.

J002E948.0A1

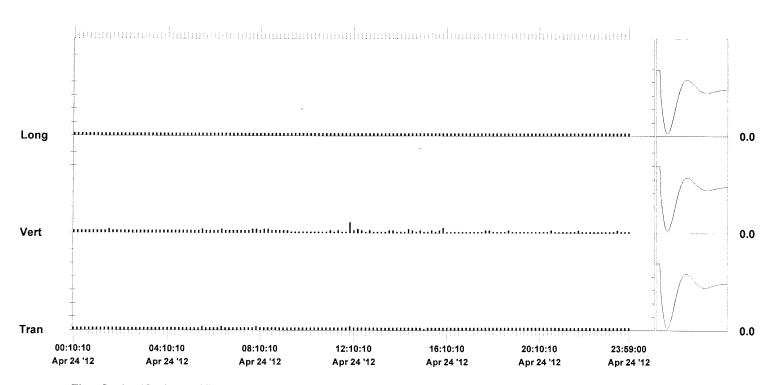
Notes

Location: Location #1

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0400	0.01000	in/s
ZC Freq	18	>100	>100	Hz
Date	Apr 24 '12	Apr 24 '12	Apr 24 '12	
Time	05:31:10	11:59:10	00:01:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.6	7.3	7.3	Hz
Overswing Ratio	3.8	4.3	4.1	

Peak Vector Sum 0.0439 in/s on April 24, 2012 at 11:59:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Dynamic Geo Cal.

Printed: May 1, 2012 (V 7.03 - 7.01)

Event Report

Histogram Start Time

Histogram Finish Time 23:59:00 April 25, 2012

Number of Intervals Range

Sample Rate Job Number: 00:00:10 April 25, 2012 1438 at 1 minute

Geo:10.00 in/s

1

1024sps

Calibration File Name

Serial Number BD8002 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts

February 8, 2012 by Vibra-Tech Inc.

J002E962.OA1

Notes

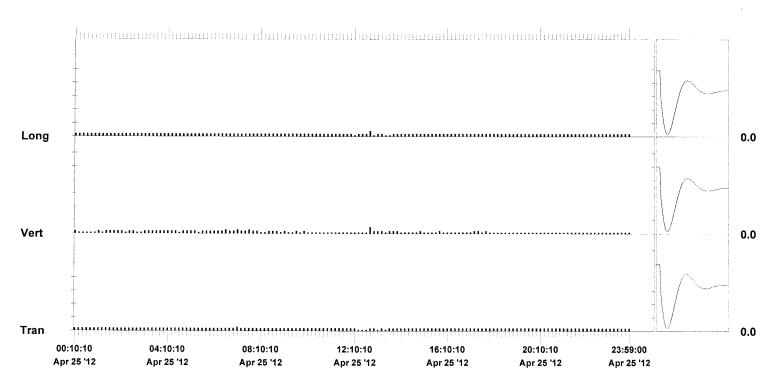
Location: Location #1

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes

Post Event Notes


Microphone Disabled **PSPL** N/A **ZC Freq** N/A

Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0250	0.0200	in/s
ZC Freq	22	>100	>100	Hz
Date	Apr 25 '12	Apr 25 '12	Apr 25 '12	
Time	07:01:10	12:48:10	12:48:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.4	7.4	Hz
Overswing Ratio	3.8	4.3	4.1	

Peak Vector Sum 0.0255 in/s on April 25, 2012 at 12:48:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

00:00:10 April 26, 2012 Histogram Finish Time 23:59:00 April 26, 2012 Number of Intervals

1438 at 1 minute Geo:10.00 in/s

1024sps

Sample Rate Job Number:

1

Serial Number BD8002 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts Calibration

File Name

February 8, 2012 by Vibra-Tech Inc.

J002E97X.CA1

Notes

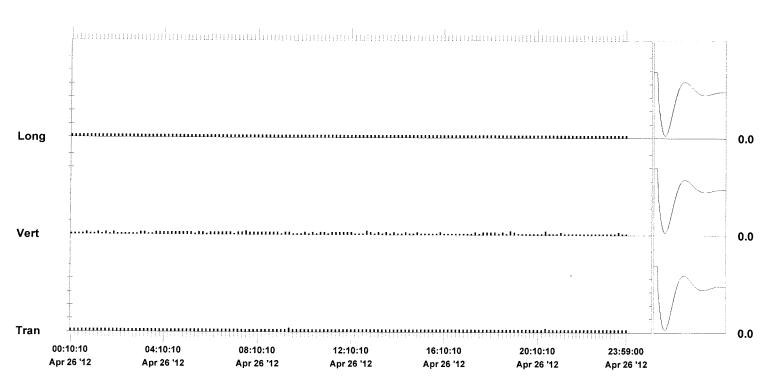
Range

Location: Location #1

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0150	0.01000	in/s
ZC Freq	>100	23	>100	Hz
Date	Apr 26 '12	Apr 26 '12	Apr 26 '12	
Time	09:25:10	07:39:10	00:01:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.6	7.3	7.3	Hz
Overswing Ratio	3.8	4.3	4.1	

Peak Vector Sum 0.0187 in/s on April 26, 2012 at 07:39:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Dynamic Geo Cal.

Printed: May 1, 2012 (V 7.03 - 7.01)

Format Copyrighted 1996-2003 Instantel Inc.

Event Report

Histogram Start Time

Histogram Finish Time Number of Intervals

Range Sample Rate Job Number:

00:00:10 April 27, 2012 23:59:00 April 27, 2012 1438 at 1 minute Geo:10.00 in/s 1024sps

Battery Level 6.9 Volts Calibration File Name

Serial Number BD8002 V 7.04-8.0 MultiSeis Plus

February 8, 2012 by Vibra-Tech Inc. J002E99S.0A1

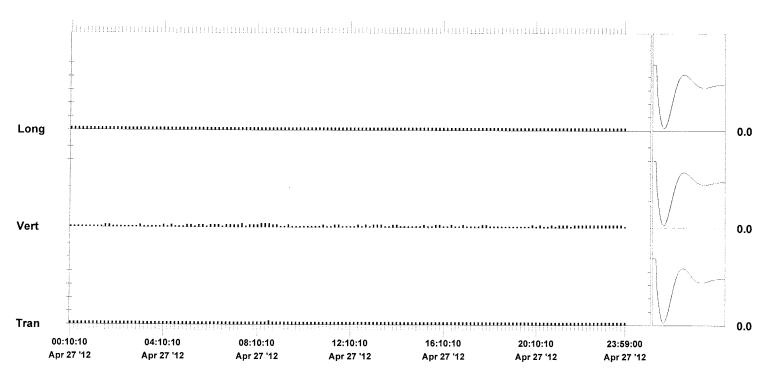
Notes

Location: Location #1

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0150	0.01000	in/s
ZC Freq	18	15	>100	Hz
Date	Apr 27 '12	Apr 27 '12	Apr 27 '12	
Time	08:36:10	07:22:10	00:01:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.4	7.4	Hz
Overswing Ratio	3.8	4.3	4.1	

Peak Vector Sum 0.0187 in/s on April 27, 2012 at 07:22:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

00:00:10 April 28, 2012 Histogram Finish Time 23:59:00 April 28, 2012 Number of Intervals

Range Geo:10.00 in/s Sample Rate 1024sps

1438 at 1 minute

Calibration File Name

Serial Number BD8002 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts

February 8, 2012 by Vibra-Tech Inc.

J002E9BM.OA1

Notes

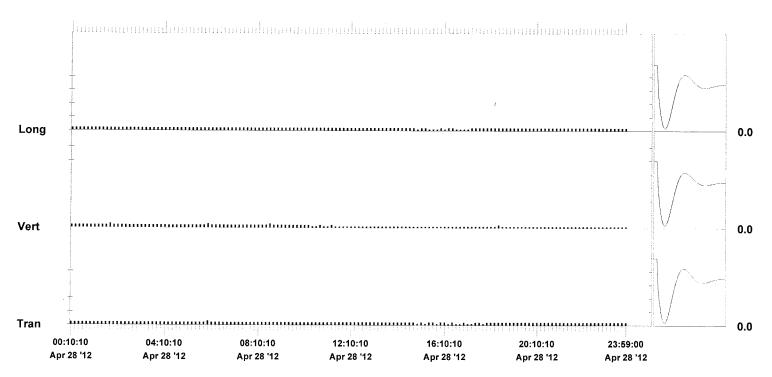
Job Number:

Location: Location #1

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0150	0.01000	in/s
ZC Freq	24	39	>100	Hz
Date	Apr 28 '12	Apr 28 '12	Apr 28 '12	
Time	05:59:10	01:44:10	00:01:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.4	7.4	Hz
Overswing Ratio	3.8	4.3	4.1	

Peak Vector Sum 0.0187 in/s on April 28, 2012 at 01:44:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

Histogram Finish Time 23:59:00 April 29, 2012 Number of Intervals

Range Sample Rate 00:00:10 April 29, 2012 1438 at 1 minute

Geo: 10.00 in/s 1024sps

Calibration

File Name

Serial Number BD8002 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts

February 8, 2012 by Vibra-Tech Inc. J002E9DH.CA1

Job Number:

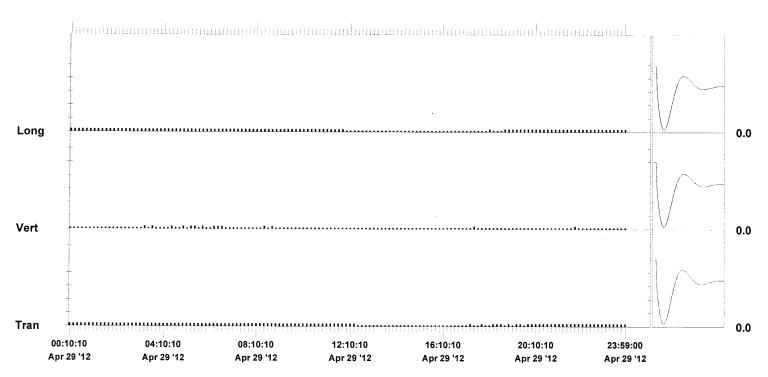
Notes

Location: Location #1

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Frea N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.01000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 29 '12	Apr 29 '12	Apr 29 '12	
Time	00:01:10	03:18:10	00:01:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.6	7.3	7.3	Hz
Overswing Ratio	3.8	4.3	4.1	

Peak Vector Sum 0.0173 in/s on April 29, 2012 at 06:15:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Dynamic Geo Cal.

Printed: May 1, 2012 (V 7.03 - 7.01)

Event Report

Histogram Start Time

00:00:10 April 30, 2012 Histogram Finish Time 10:40:55 April 30, 2012 Number of Intervals

Range Sample Rate 640 at 1 minute

1024sps

Job Number:

Geo:10.00 in/s

1

Serial Number BD8002 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts

Calibration File Name

February 8, 2012 by Vibra-Tech Inc.

J002E9FC.0A1

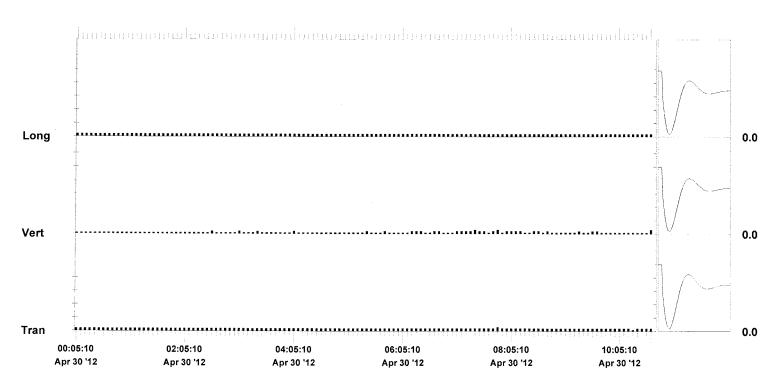
Notes

Location: Location #1

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0150	0.01000	in/s
ZC Freq	23	27	>100	Hz
Date	Apr 30 '12	Apr 30 '12	Apr 30 '12	
Time	07:47:10	07:24:10	00:01:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.4	7.3	Hz
Overswing Ratio	3.8	4.3	4.1	

Peak Vector Sum 0.0187 in/s on April 30, 2012 at 07:24:10

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

Histogram Finish Time 23:59:00 April 22, 2012 Number of intervals

Range Sample Rate Job Number:

12:23:01 April 22, 2012 695 at 1 minute

Geo: 10.00 in/s 1024sps

1

Serial Number BF11110 V 7.04-8.0 MultiSeis Plus Battery Level 6.9 Volts Calibration

File Name

February 8, 2012 by Vibra-Tech Inc.

M110E91H.2D1

Notes

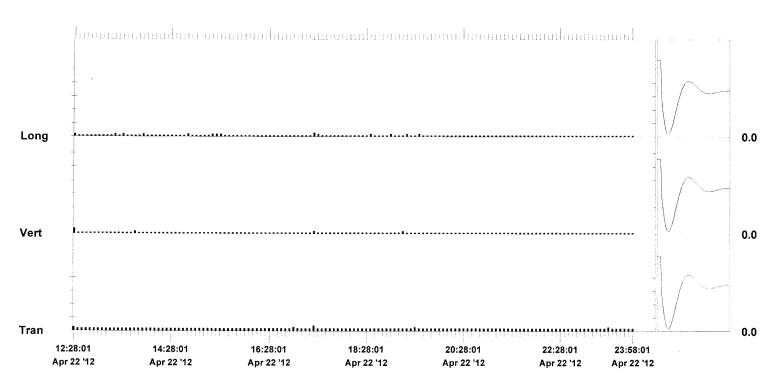
Location:

Location #2

URS - Williamsburg Works Client: User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0200	0.0200	0.0150	in/s
ZC Freq	20	>100	22	Hz
Date	Apr 22 '12	Apr 22 '12	Apr 22 '12	
Time	17:21:01	12:24:01	17:21:01	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.4	7.4	7.4	Hz
Overswing Ratio	4.0	3.8	4.3	

Peak Vector Sum 0.0229 in/s on April 22, 2012 at 17:21:01

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

Histogram Finish Time 23:59:00 April 23, 2012 Number of Intervals

Range Sample Rate Job Number: 00:00:10 April 23, 2012 1438 at 1 minute

Geo: 10.00 in/s 1024sps

1

Serial Number BF11110 V 7.04-8.0 MultiSeis Plus Battery Level 6.9 Volts Calibration

File Name

February 8, 2012 by Vibra-Tech Inc.

M110E92D.CA1

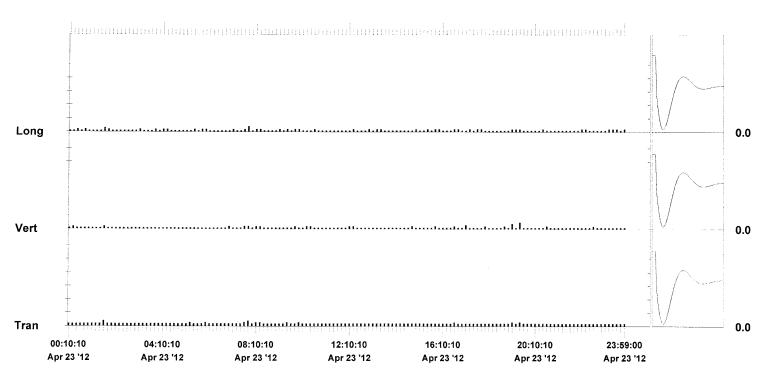
Notes

Location: Location #2

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0200	0.0250	0.0200	in/s
ZC Freq	18	>100	22	Hz
Date	Apr 23 '12	Apr 23 '12	Apr 23 '12	
Time	01:33:10	19:21:10	07:42:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.4	7.4	7.4	Hz
Overswing Ratio	4.0	3.8	4.3	

Peak Vector Sum 0.0255 in/s on April 23, 2012 at 07:42:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

Histogram Finish Time 23:59:00 April 24, 2012

Number of Intervals Range

Sample Rate Job Number: 00:00:10 April 24, 2012 1438 at 1 minute Geo:10.00 in/s

1024sps

1

Calibration File Name

Serial Number BF11110 V 7.04-8.0 MultiSeis Plus Battery Level 6.9 Volts

February 8, 2012 by Vibra-Tech Inc.

M110E948.0A1

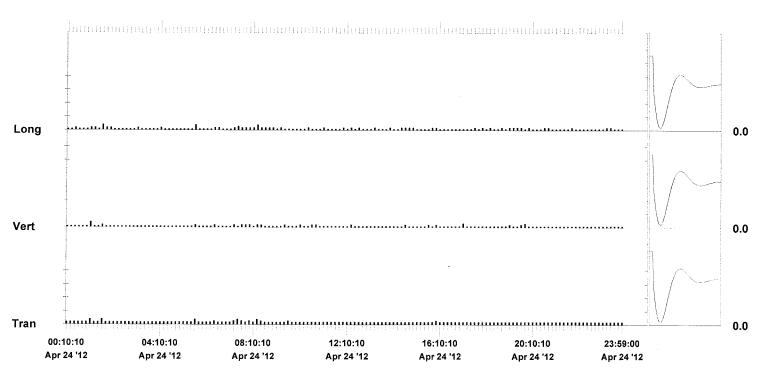
Notes

Location: Location #2

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0200	0.0200	0.0200	in/s
ZC Freq	28	43	21	Hz
Date	Apr 24 '12	Apr 24 '12	Apr 24 '12	
Time	01:01:10	01:01:10	01:37:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.4	7.4	7.4	Hz
Overswing Ratio	4.0	3.8	4.3	

Peak Vector Sum 0.0255 in/s on April 24, 2012 at 01:01:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

Histogram Finish Time **Number of Intervals**

Range Sample Rate Job Number:

00:00:10 April 25, 2012 23:59:00 April 25, 2012 1438 at 1 minute

Geo:10.00 in/s

1024sps

1

Serial Number BF11110 V 7.04-8.0 MultiSeis Plus Battery Level 6.9 Volts

Calibration

File Name

February 8, 2012 by Vibra-Tech Inc.

M110E962.OA1

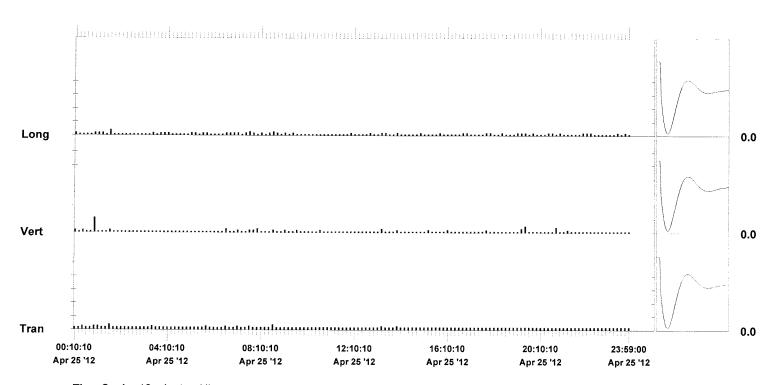
Notes

Location: Location #2

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

Tran	Vert	Long	
0.0200	0.0550	0.0200	in/s
18	39	19	Hz
Apr 25 '12	Apr 25 '12	Apr 25 '12	
01:39:10	01:00:10	01:39:10	
Passed	Passed	Passed	
7.4	7.4	7.4	Hz
4.0	3.8	4.3	
	0.0200 18 Apr 25 '12 01:39:10 Passed 7.4	0.0200 0.0550 18 39 Apr 25 '12 Apr 25 '12 01:39:10 01:00:10 Passed Passed 7.4 7.4	0.0200 0.0550 0.0200 18 39 19 Apr 25 '12 Apr 25 '12 Apr 25 '12 01:39:10 01:00:10 01:39:10 Passed Passed 7.4 7.4 7.4

Peak Vector Sum 0.0555 in/s on April 25, 2012 at 01:00:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

00:00:10 April 26, 2012 Histogram Finish Time 23:59:00 April 26, 2012 Number of Intervals

Range Sample Rate Job Number: 1438 at 1 minute Geo:10.00 in/s

1024sps

1

Serial Number BF11110 V 7.04-8.0 MultiSeis Plus Battery Level

Calibration

File Name

6.8 Volts February 8, 2012 by Vibra-Tech Inc.

M110E97X.CA1

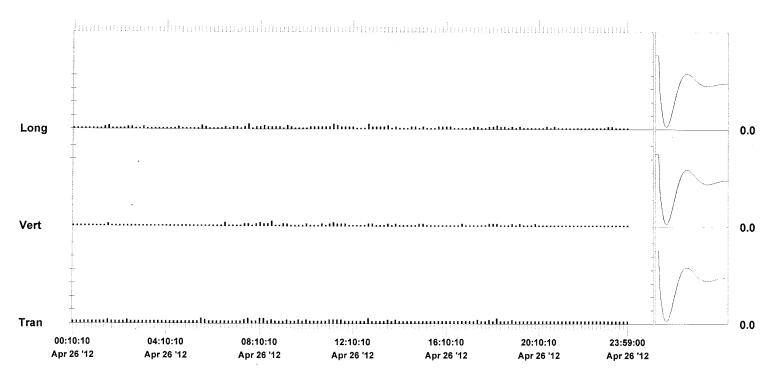
Notes

Location: Location #2

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0200	0.0200	0.0200	in/s
ZC Freq	20	51	21	Hz
Date	Apr 26 '12	Apr 26 '12	Apr 26 '12	
Time	05:37:10	08:39:10	07:39:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.4	7.4	7.4	Hz
Overswing Ratio	4.0	3.8	4.3	

Peak Vector Sum 0.0255 in/s on April 26, 2012 at 11:19:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

${f V}$ ibra - ${f T}$ ech

Event Report

Histogram Start Time

00:00:10 April 27, 2012 Histogram Finish Time 23:59:00 April 27, 2012 **Number of Intervals**

Range Sample Rate Job Number: 1438 at 1 minute Geo:10.00 in/s

1024sps

Serial Number BF11110 V 7.04-8.0 MultiSeis Plus Battery Level 6.9 Volts

Calibration

File Name

February 8, 2012 by Vibra-Tech Inc.

M110E99S.0A1

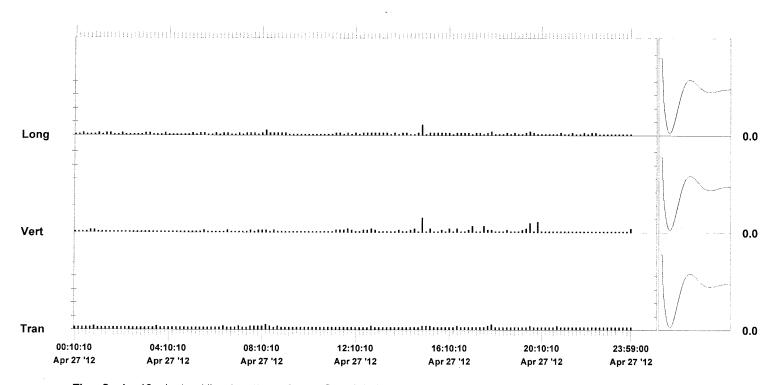
Notes

Location: Location #2

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0200	0.0550	0.0400	in/s
ZC Freq	20	>100	>100	Hz
Date	Apr 27 '12	Apr 27 '12	Apr 27 '12	
Time	08:12:10	14:55:10	14:55:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.4	7.4	7.4	Hz
Overswing Ratio	4.0	3.8	4.4	

Peak Vector Sum 0.0680 in/s on April 27, 2012 at 14:55:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

${f V}$ ibra - ${f T}$ ech

Event Report

Histogram Start Time

Histogram Finish Time 23:59:00 April 28, 2012 **Number of Intervals**

Range Sample Rate Job Number: 00:00:10 April 28, 2012 1438 at 1 minute Geo:10.00 in/s

1024sps

Calibration File Name

Serial Number BF11110 V 7.04-8.0 MultiSeis Plus

Battery Level 6.9 Volts

February 8, 2012 by Vibra-Tech Inc.

M110E9BM.OA1

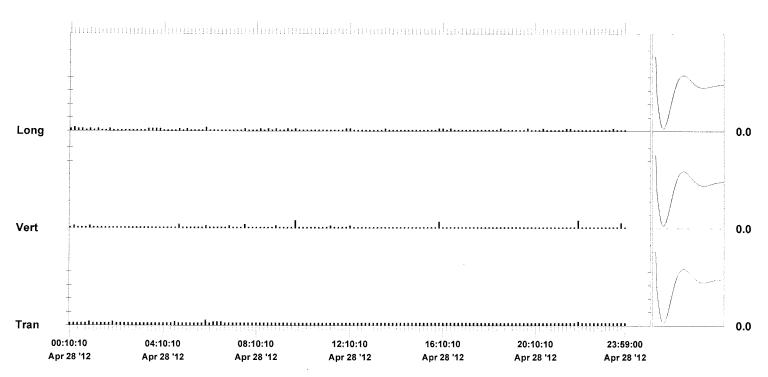
Notes

Location: Location #2

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0200	0.0300	0.0150	in/s
ZC Freq	18	>100	47	Hz
Date	Apr 28 '12	Apr 28 '12	Apr 28 '12	
Time	05:59:10	09:41:10	00:15:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.4	7.4	7.4	Hz
Overswing Ratio	4.0	3.8	4.3	

Peak Vector Sum 0.0304 in/s on April 28, 2012 at 09:41:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

Histogram Finish Time 23:59:00 April 29, 2012 **Number of Intervals**

Range Sample Rate

Job Number:

00:00:10 April 29, 2012 Geo:10.00 in/s

1024sps

1438 at 1 minute

Serial Number BF11110 V 7.04-8.0 MultiSeis Plus Battery Level 6.9 Volts Calibration

File Name

February 8, 2012 by Vibra-Tech Inc.

M110E9DH.CA1

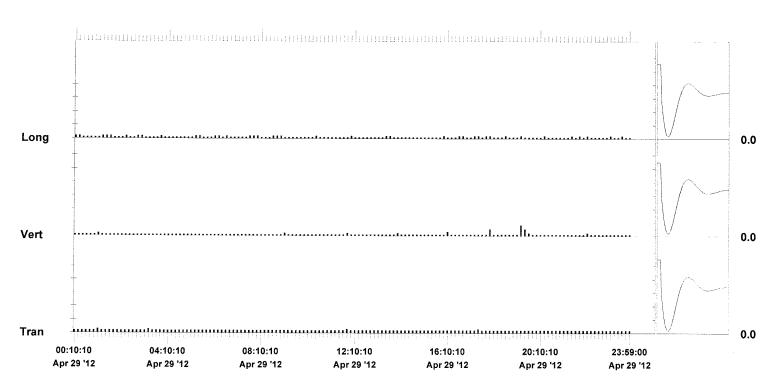
Notes

Location: Location #2

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0400	0.01000	in/s
ZC Freq	>100	47	>100	Hz
Date	Apr 29 '12	Apr 29 '12	Apr 29 '12	
Time	01:03:10	19:20:10	00:04:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.4	7.4	7.4	Hz
Overswing Ratio	4.0	3.8	4.3	

Peak Vector Sum 0.0403 in/s on April 29, 2012 at 19:20:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

00:00:10 April 30, 2012 Histogram Finish Time 10:58:37 April 30, 2012

Number of intervals Range

658 at 1 minute Geo:10.00 in/s

1024sps

Sample Rate Job Number:

Battery Level 6.8 Volts Calibration File Name

Serial Number BF11110 V 7.04-8.0 MultiSeis Plus

February 8, 2012 by Vibra-Tech Inc.

M110E9FC.0A1

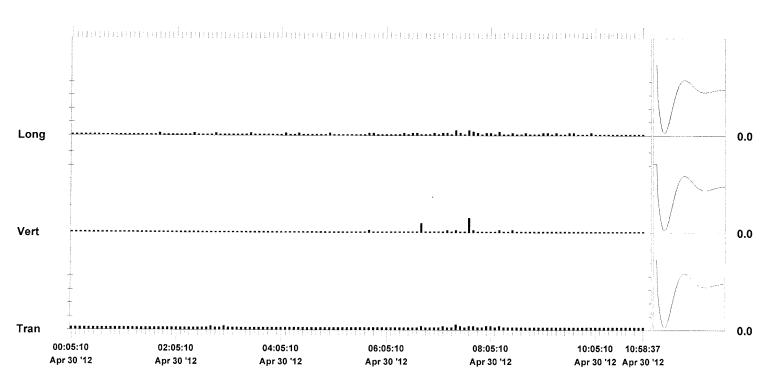
Notes

Location: Location #2

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0200	0.0550	0.0200	in/s
ZC Freq	18	37	22	Hz
Date	Apr 30 '12	Apr 30 '12	Apr 30 '12	
Time	07:24:10	07:39:10	07:24:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.3	7.4	7.3	Hz
Overswing Ratio	4.0	3.8	4.3	

Peak Vector Sum 0.0559 in/s on April 30, 2012 at 07:39:10

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time Histogram Finish Time 19:30:00 April 22, 2012

Number of Intervals

Range Sample Rate Job Number:

12:58:50 April 22, 2012 392 at 1 minute

Geo:10.00 in/s 1024sps

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts

Calibration File Name

June 27, 2011 by Vibra-Tech Inc.

H674E91I.Q21

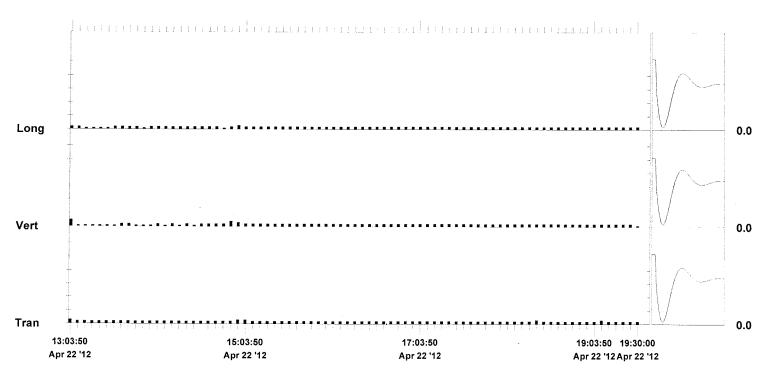
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC** Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV ZC Freq Date Time	0.0150 >100 Apr 22 '12 13:02:50	0.0250 >100 Apr 22 '12 13:02:50	0.0150 >100 Apr 22 '12 14:57:50	in/s Hz
Dynamic Geo Cal. Frequency Overswing Ratio	Passed 7.7 3.9	Passed 7.7 3.7	Passed 7.5 4.0	Hz

Peak Vector Sum 0.0255 in/s on April 22, 2012 at 13:02:50

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time Number of Intervals

19:35:20 April 22, 2012 Histogram Finish Time 20:00:00 April 22, 2012 25 at 1 minute

Geo: 10.00 in/s

1024sps

Sample Rate Job Number: 1 Calibration File Name

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

Battery Level 6.9 Volts

June 27, 2011 by Vibra-Tech Inc.

H674E921.2W1

Notes

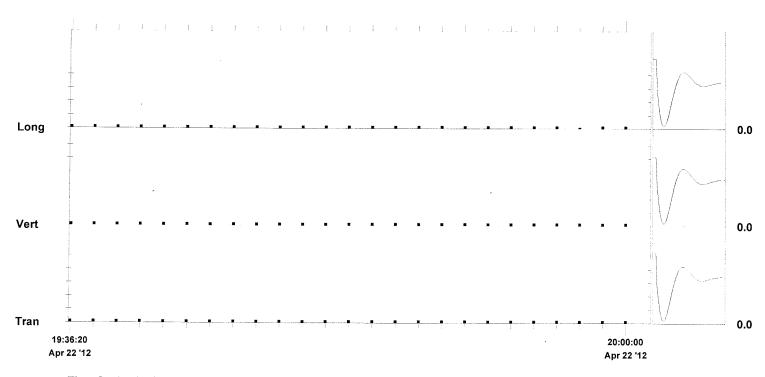
Range

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled PSPL N/A ZC Freq N/A Channel Test N/A

Tran	Vert	Long	
0.01000	0.01000	0.01000	in/s
>100	>100	>100	Hz
Apr 22 '12	Apr 22 '12	Apr 22 '12	
19:36:20	19:36:20	19:36:20	
Passed	Passed	Passed	
7.7	7.7	7.6	Hz
3.9	3.7	3.9	
	0.01000 >100 Apr 22 '12 19:36:20 Passed 7.7	0.01000 0.01000 >100 >100 Apr 22 '12 Apr 22 '12 19:36:20 19:36:20 Passed Passed 7.7 7.7	0.01000 0.01000 0.01000 >100 >100 >100 >100 Apr 22 '12 Apr 22 '12 Apr 22 '12 19:36:20 19:36:20 19:36:20 Passed Passed Passed 7.7 7.7 7.6

Peak Vector Sum 0.0150 in/s on April 22, 2012 at 19:36:20

N/A: Not Applicable

Time Scale: 1 minute /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

20:05:19 April 22, 2012 Histogram Finish Time 23:59:00 April 22, 2012 Number of Intervals

Range Sample Rate 233 at 1 minute Geo:10.00 in/s

1024sps

Job Number: 1

File Name

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus Battery Level 6.8 Volts

Calibration

June 27, 2011 by Vibra-Tech Inc.

H674E922.GV1

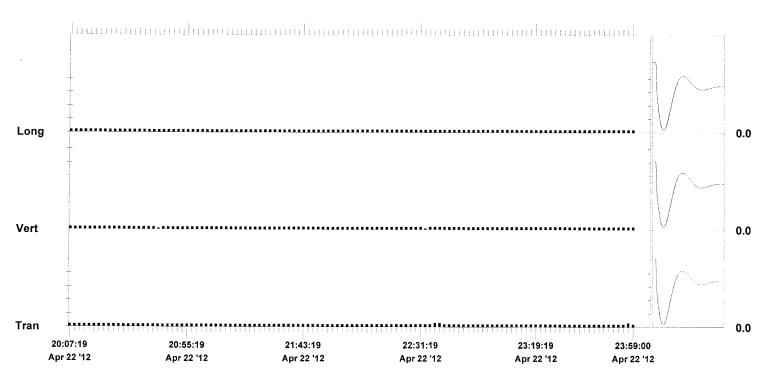
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.01000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 22 '12	Apr 22 '12	Apr 22 '12	
Time	22:36:19	20:06:19	20:06:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.7	7.6	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0166 in/s on April 22, 2012 at 22:38:19

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Dynamic Geo Cal.

Printed: May 1, 2012 (V 7.03 - 7.01)

Event Report

Battery Level

Calibration

File Name

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

H674E92D.CA1

June 27, 2011 by Vibra-Tech Inc.

6.8 Volts

Histogram Start Time

00:00:10 April 23, 2012 Histogram Finish Time 05:30:00 April 23, 2012

Number of Intervals Range Sample Rate

330 at 1 minute Geo: 10.00 in/s

1024sps

Job Number: 1

Notes

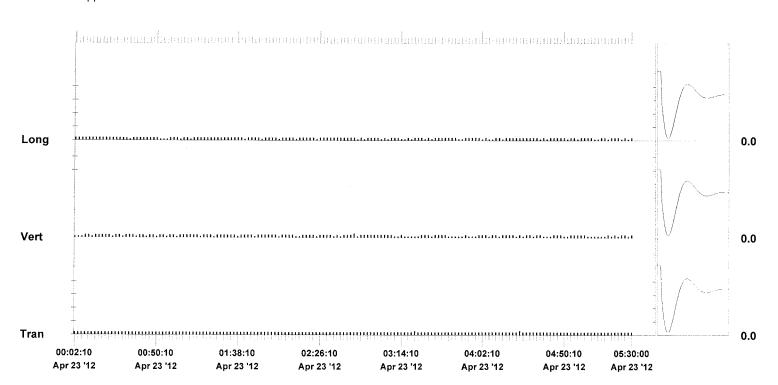
Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes

Post Event Notes


Microphone N/A N/A

Disabled **PSPL ZC Freq** Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0150	0.01000	in/s
ZC Freq	>100	43	>100	Hz
Date	Apr 23 '12	Apr 23 '12	Apr 23 '12	
Time	03:22:10	02:45:10	00:01:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.7	7.5	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0166 in/s on April 23, 2012 at 02:45:10

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

05:35:20 April 23, 2012 Histogram Finish Time 19:30:00 April 23, 2012

Number of Intervals Range Sample Rate

Job Number:

835 at 1 minute Geo: 10.00 in/s 1024sps

Calibration File Name

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts

June 27, 2011 by Vibra-Tech Inc.

H674E92S.UW1

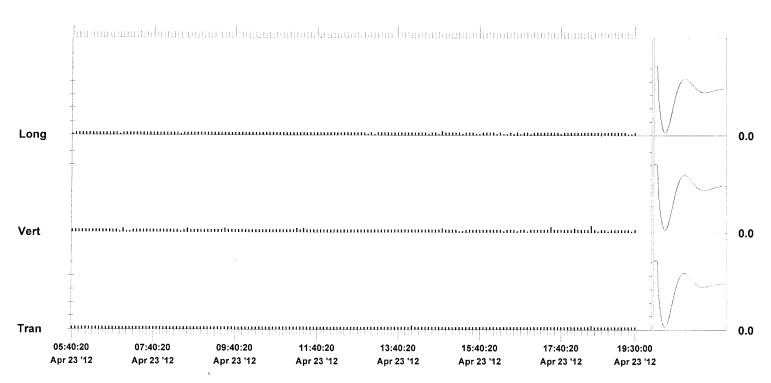
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

Tran	Vert	Long	
0.0150	0.0250	0.0150	in/s
>100	85	47	Hz
Apr 23 '12	Apr 23 '12	Apr 23 '12	
13:56:20	18:25:20	14:45:20	
Passed	Passed	Passed	
7.7	7.6	7.5	Hz
3.9	3.7	3.9	
	0.0150 >100 Apr 23 '12 13:56:20 Passed 7.7	0.0150 0.0250 >100 85 Apr 23 '12 Apr 23 '12 13:56:20 18:25:20 Passed Passed 7.7 7.6	0.0150 0.0250 0.0150 >100 85 47 Apr 23 '12 Apr 23 '12 Apr 23 '12 13:56:20 18:25:20 14:45:20 Passed Passed Passed 7.7 7.6 7.5

Peak Vector Sum 0.0274 in/s on April 23, 2012 at 18:25:20

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

Number of Intervals

Range Sample Rate Job Number:

19:35:20 April 23, 2012 Histogram Finish Time 20:00:00 April 23, 2012 25 at 1 minute

Geo: 10.00 in/s

1024sps

Calibration

File Name

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts

June 27, 2011 by Vibra-Tech Inc.

H674E93V.QW1

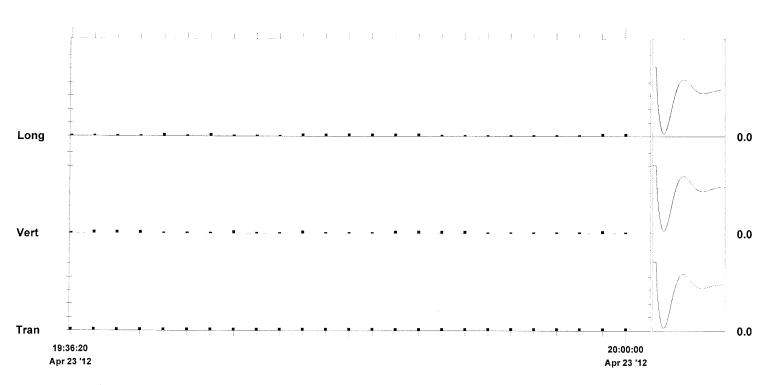
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.01000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 23 '12	Apr 23 '12	Apr 23 '12	
Time	19:36:20	19:37:20	19:40:20	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.7	7.5	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0150 in/s on April 23, 2012 at 19:42:20

N/A: Not Applicable

Time Scale: 1 minute /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

20:05:19 April 23, 2012 Histogram Finish Time 23:59:00 April 23, 2012 Number of Intervals

Range Sample Rate 233 at 1 minute Geo:10.00 in/s

1024sps

Job Number:

1

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

Battery Level 6.9 Volts

Calibration File Name

June 27, 2011 by Vibra-Tech Inc.

H674E93X.4V1

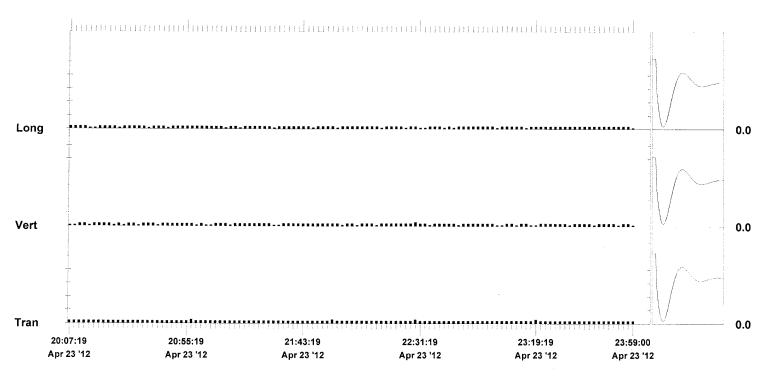
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0150	0.01000	in/s
ZC Freq	>100	57	>100	Hz
Date	Apr 23 '12	Apr 23 '12	Apr 23 '12	
Time	20:57:19	22:28:19	20:06:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.6	7.5	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0187 in/s on April 23, 2012 at 22:28:19

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

${f V}$ ibra - ${f T}$ ech

Event Report

Histogram Start Time

Number of Intervals

Range Sample Rate

Job Number:

00:00:10 April 24, 2012 Histogram Finish Time 05:30:00 April 24, 2012 330 at 1 minute

Geo:10.00 in/s 1024sps

1

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts Calibration

File Name

June 27, 2011 by Vibra-Tech Inc.

H674E948.0A1

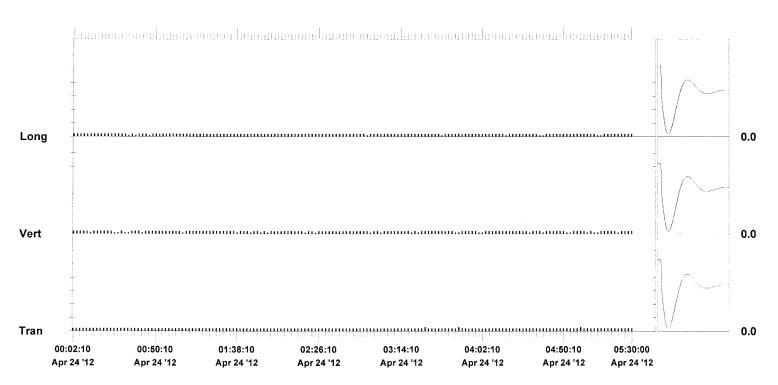
Notes

Location: Location #3

URS - Williamsburg Works Client: User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.01000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 24 '12	Apr 24 '12	Apr 24 '12	
Time	03:27:10	00:02:10	00:02:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.7	7.6	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0166 in/s on April 24, 2012 at 03:47:10

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

05:35:19 April 24, 2012 Histogram Finish Time 19:30:00 April 24, 2012

Number of Intervals Range Sample Rate

835 at 1 minute Geo:10.00 in/s

1024sps

Job Number:

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts

Calibration June 27, 2011 by Vibra-Tech Inc. File Name

H674E94N.IV1

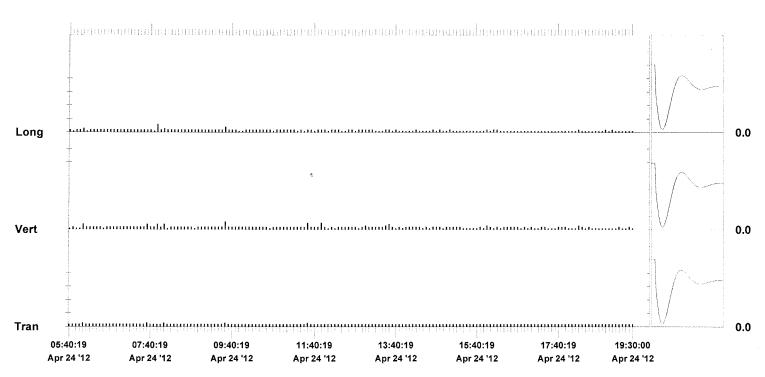
Notes

Location: Location #3

URS - Williamsburg Works Client: User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0300	0.0300	in/s
ZC Freq	51	73	19	Hz
Date	Apr 24 '12	Apr 24 '12	Apr 24 '12	
Time	05:56:19	09:26:19	07:50:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.6	7.5	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0320 in/s on April 24, 2012 at 09:26:19

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

Number of Intervals

Range Sample Rate Job Number:

19:35:19 April 24, 2012 Histogram Finish Time 20:00:00 April 24, 2012

Geo:10.00 in/s

25 at 1 minute

1024sps

1

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts

Calibration File Name

June 27, 2011 by Vibra-Tech Inc.

H674E95Q.EV1

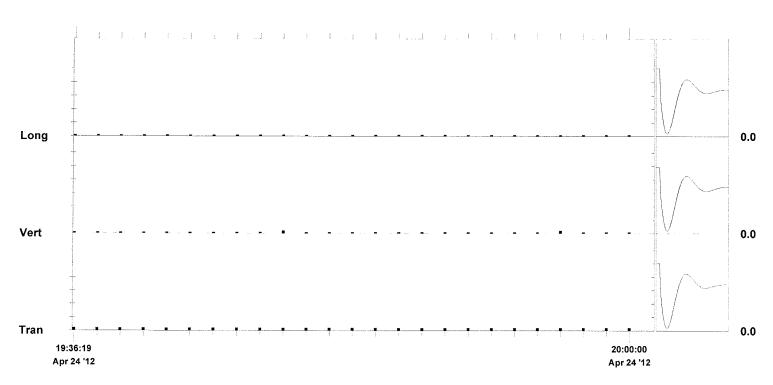
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV:	0.01000	0.01000	0.00500	in/s
ZC Freq	>100	>100	N/A	Hz
Date	Apr 24 '12	Apr 24 '12	Apr 24 '12	
Time	19:36:19	19:45:19	19:36:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.6	7.5	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0122 in/s on April 24, 2012 at 19:36:19

N/A: Not Applicable

Time Scale: 1 minute /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

Histogram Finish Time 23:59:00 April 24, 2012 **Number of intervals**

Range Sample Rate Job Number: 20:05:19 April 24, 2012 233 at 1 minute

Geo:10.00 in/s

1024sps

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts

Calibration

File Name

June 27, 2011 by Vibra-Tech Inc.

H674E95R.SV1

Notes

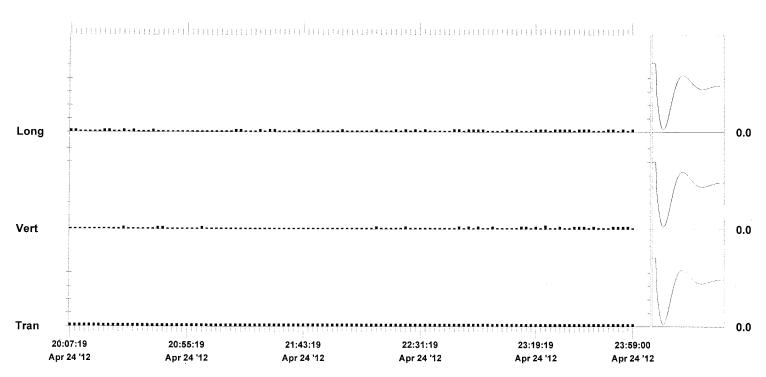
Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes

Post Event Notes


Microphone Disabled N/A N/A

PSPL ZC Freq Channel Test N/A

•	Tran	Vert	Long	
PPV	0.01000	0.0150	0.01000	in/s
ZC Freq	>100	64	>100	Hz
Date	Apr 24 '12	Apr 24 '12	Apr 24 '12	
Time	20:06:19	23:22:19	20:07:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.6	7.5	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0187 in/s on April 24, 2012 at 23:22:19

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Battery Level 6.8 Volts

Calibration

File Name

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

H674E962.OA1

June 27, 2011 by Vibra-Tech Inc.

Histogram Start Time

00:00:10 April 25, 2012 Histogram Finish Time 05:30:00 April 25, 2012 Number of intervals

Range Sample Rate 330 at 1 minute Geo:10.00 in/s

1024sps

Job Number: 1

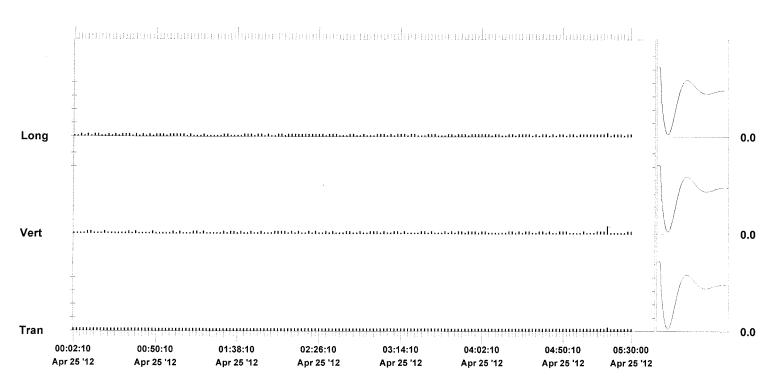
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0300	0.0150	in/s
ZC Freq	57	73	43	Hz
Date	Apr 25 '12	Apr 25 '12	Apr 25 '12	
Time	05:15:10	05:15:10	05:15:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.7	7.5	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0320 in/s on April 25, 2012 at 05:15:10

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Battery Level 6.8 Volts

Calibration

File Name

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

H674E96I.6W1

June 27, 2011 by Vibra-Tech Inc.

Histogram Start Time

Histogram Finish Time 19:30:00 April 25, 2012

Number of Intervals

Range Sample Rate Job Number: 05:35:20 April 25, 2012 835 at 1 minute

1024sps

1

Geo:10.00 in/s

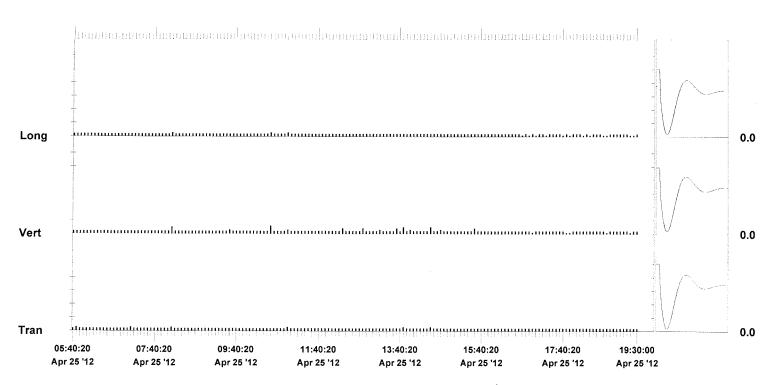
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0300	0.0150	in/s
ZC Freq	>100	57	>100	Hz
Date Time		Apr 25 '12 10:28:20		
Dynamic Geo Cal.	Passed	Passed	Passed	Hz
Frequency	7.7	7.6	7.5	
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0320 in/s on April 25, 2012 at 10:28:20

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

Number of Intervals

Range Sample Rate Job Number:

19:35:19 April 25, 2012 Histogram Finish Time 20:00:00 April 25, 2012 25 at 1 minute

Geo:10.00 in/s

1024sps

Calibration File Name

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts

June 27, 2011 by Vibra-Tech Inc.

H674E97L.2V1

Notes

Location:

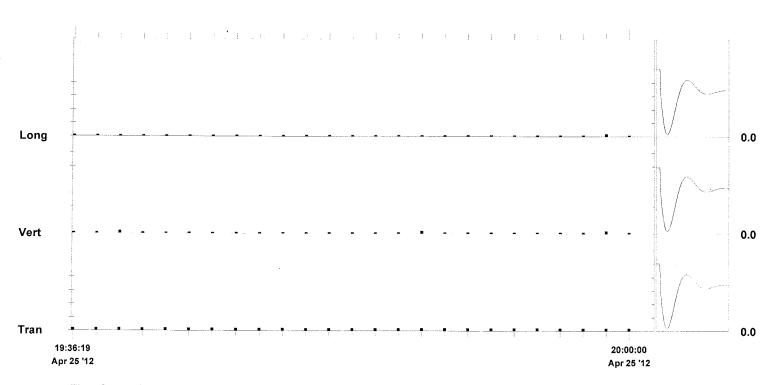
Location #3

Client:

URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.01000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 25 '12	Apr 25 '12	Apr 25 '12	
Time	19:36:19	19:38:19	19:59:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.6	7.5	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0122 in/s on April 25, 2012 at 19:36:19

N/A: Not Applicable

Time Scale: 1 minute /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

20:05:20 April 25, 2012 Histogram Finish Time 23:59:00 April 25, 2012 **Number of Intervals** 233 at 1 minute Range

Sample Rate Job Number: Geo:10.00 in/s

1024sps

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts

Calibration File Name

June 27, 2011 by Vibra-Tech Inc.

H674E97M.GW1

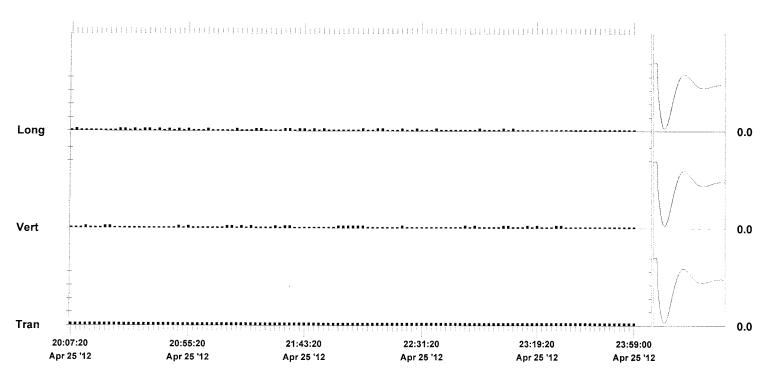
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.0.1000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 25 '12	Apr 25 '12	Apr 25 '12	
Time	20:06:20	20:13:20	20:08:20	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.6	7.5	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0150 in/s on April 25, 2012 at 21:12:20

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

00:00:10 April 26, 2012 Histogram Finish Time 05:30:00 April 26, 2012

Number of Intervals

330 at 1 minute Geo:10.00 in/s

Range Sample Rate 1024sps

Job Number:

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts Calibration

File Name

June 27, 2011 by Vibra-Tech Inc.

H674E97X.CA1

Notes

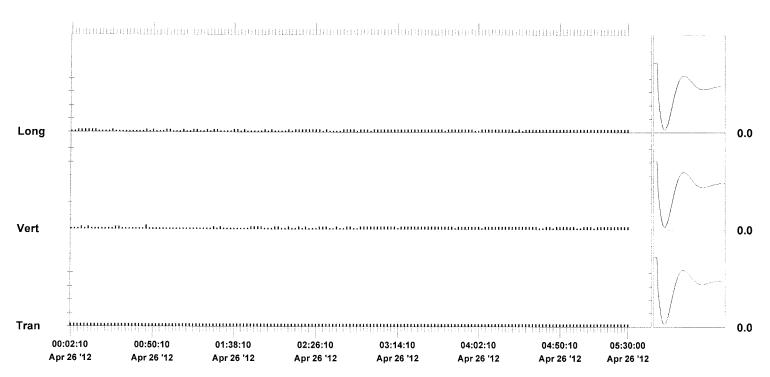
Location: Location #3

Client: URS - Williamsburg Works

User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.0150	0.01000	in/s
ZC Freq	>100	73	>100	Hz
Date	Apr 26 '12	Apr 26 '12	Apr 26 '12	
Time ·	00:01:10	00:45:10	00:06:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.6	7.5	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0187 in/s on April 26, 2012 at 00:45:10

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Dynamic Geo Cal.

Printed: May 1, 2012 (V 7.03 - 7.01)

Event Report

Battery Level 6.8 Volts

Calibration

File Name

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

H674E98C.UV1

June 27, 2011 by Vibra-Tech Inc.

Histogram Start Time

05:35:19 April 26, 2012 Histogram Finish Time 19:30:00 April 26, 2012 **Number of Intervals**

Range Sample Rate 835 at 1 minute Geo:10.00 in/s

1024sps

Job Number:

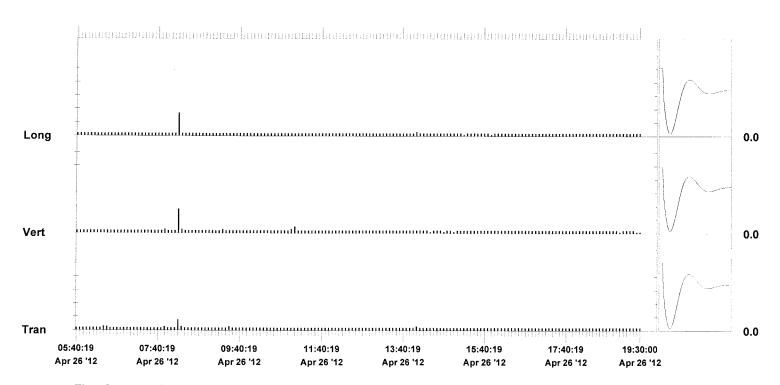
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0400	0.0900	0.0850	in/s
ZC Freq	39	39	34	Hz
Date	Apr 26 '12	Apr 26 '12	Apr 26 '12	
Time	08:08:19	08:09:19	08:08:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.6	7.5	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0951 in/s on April 26, 2012 at 08:08:19

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Dynamic Geo Cal.

Printed: May 1, 2012 (V 7.03 - 7.01)

Histogram Start Time

Number of Intervals

Range Sample Rate

19:35:19 April 26, 2012 Histogram Finish Time 20:00:00 April 26, 2012

25 at 1 minute Geo:10.00 in/s

1024sps

Job Number:

1

Battery Level 6.8 Volts

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

June 27, 2011 by Vibra-Tech Inc.

Calibration File Name

H674E99F.QV1

Notes

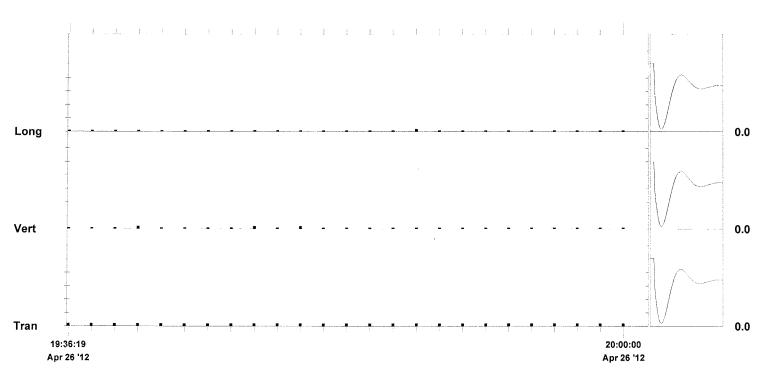
Location:

Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A N/A **ZC Freq** Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.01000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 26 '12	Apr 26 '12	Apr 26 '12	
Time	19:36:19	19:39:19	19:51:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.7	7.5	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0150 in/s on April 26, 2012 at 19:46:19

N/A: Not Applicable

Time Scale: 1 minute /div Amplitude Scale: Geo: 0.0500 in/s/div

Battery Level

Calibration

File Name

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

H674E99H.4W1

June 27, 2011 by Vibra-Tech Inc.

6.8 Volts

Histogram Start Time

Histogram Finish Time 23:59:00 April 26, 2012 Number of Intervals 233 at 1 minute Geo:10.00 in/s

Range Sample Rate

Job Number:

20:05:20 April 26, 2012

1024sps

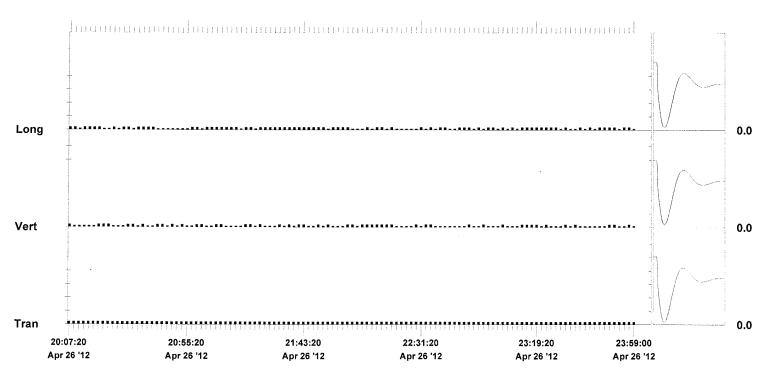
Location #3

Client: **URS - Williamsburg Works** User Name: Vibra-Tech Engineers, Inc.

General:

Notes Location:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.01000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date		Apr 26 '12		
Time	20:06:20	20:06:20	20:06:20	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.6	7.5	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0150 in/s on April 26, 2012 at 20:17:20

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

00:00:10 April 27, 2012 Histogram Finish Time 05:30:00 April 27, 2012

Number of Intervals Range Sample Rate

Job Number:

330 at 1 minute Geo: 10.00 in/s

1024sps

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts Calibration

File Name

June 27, 2011 by Vibra-Tech Inc.

H674E99S.0A1

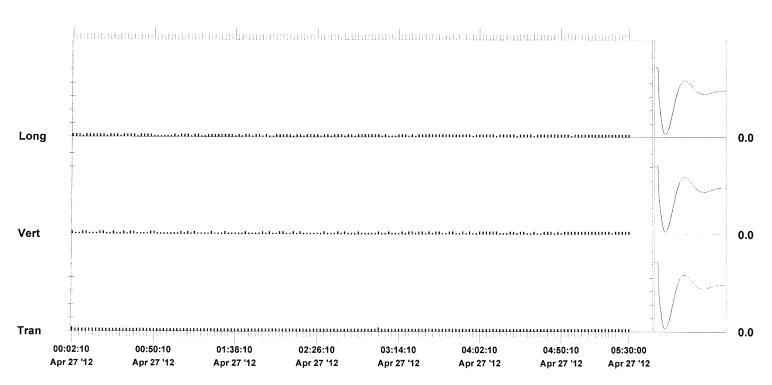
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.01000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 27 '12	Apr 27 '12	Apr 27 '12	
Time	00:01:10	00:02:10	00:01:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.7	7.5	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0158 in/s on April 27, 2012 at 00:01:10

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Histogram Start Time

Number of Intervals Range

05:35:18 April 27, 2012 Histogram Finish Time 19:30:00 April 27, 2012 835 at 1 minute

> Geo:10.00 in/s 1024sps

Sample Rate Job Number:

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts Calibration

June 27, 2011 by Vibra-Tech Inc. File Name

H674E9A7.IU1

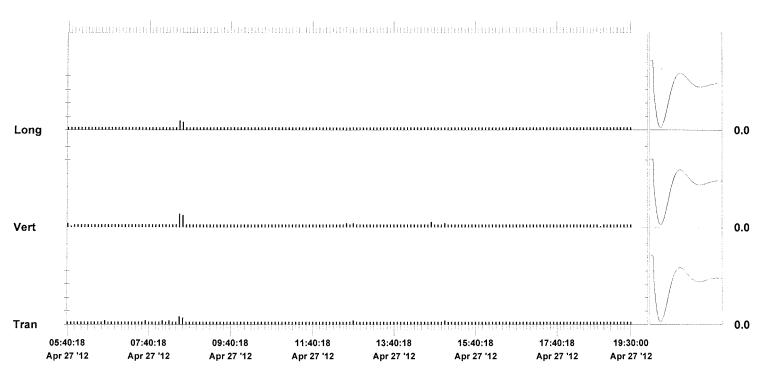
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0300	0.0500	0.0350	in/s
ZC Freq	57	. 85	64	Hz
Date	Apr 27 '12	Apr 27 '12	Apr 27 '12	
Time	08:24:18	08:24:18	08:24:18	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.6	7.5	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0524 in/s on April 27, 2012 at 08:24:18

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

Histogram Finish Time 20:00:00 April 27, 2012 **Number of Intervals**

Range Sample Rate Job Number: 19:35:18 April 27, 2012 25 at 1 minute

Geo:10.00 in/s

1024sps

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts Calibration

File Name

June 27, 2011 by Vibra-Tech Inc.

H674E9BA.EU1

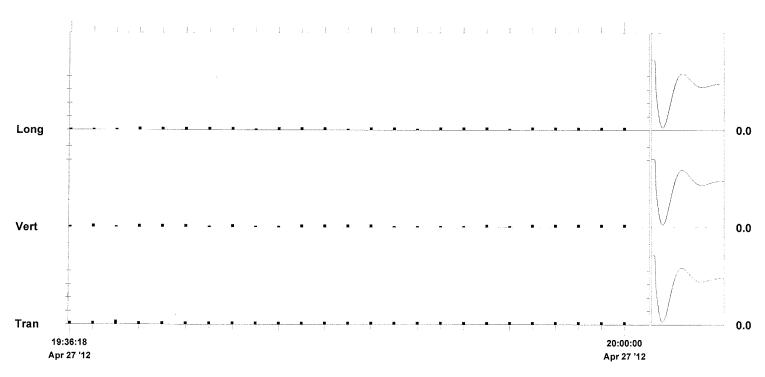
Notes

Location: Location #3

Client: **URS - Williamsburg Works** User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.01000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 27 '12	Apr 27 '12	Apr 27 '12	
Time	19:38:18	19:37:18	19:39:18	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.7	7.5	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0166 in/s on April 27, 2012 at 19:38:18

N/A: Not Applicable

Time Scale: 1 minute /div Amplitude Scale: Geo: 0.0500 in/s/div

Dynamic Geo Cal.

Printed: May 1, 2012 (V 7.03 - 7.01)

Event Report

Histogram Start Time

Histogram Finish Time 23:59:00 April 27, 2012 Number of intervals

Range Sample Rate Job Number: 233 at 1 minute Geo:10.00 in/s

1024sps

1

20:05:19 April 27, 2012

Battery Level 6.9 Volts

Calibration File Name

June 27, 2011 by Vibra-Tech Inc.

H674E9BB.SV1

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

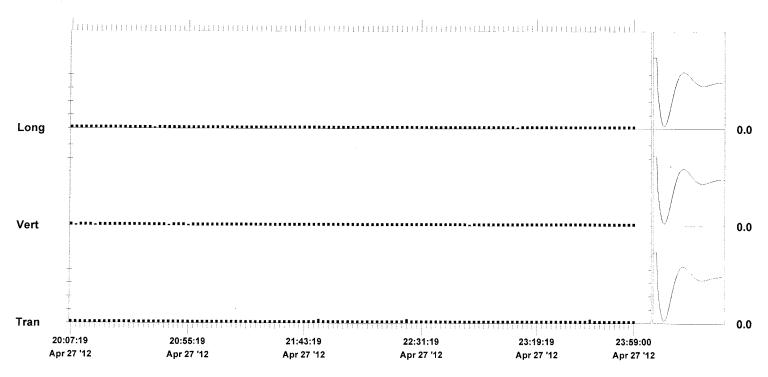
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.01000	0.01000	in/s
ZC Freq Date		>100 Apr 27 '12		Hz
Time Dynamic Geo Cal.	21:48:19 Passed	20:07:19 Passed	20:07:19 Passed	
Frequency Overswing Ratio	7.7 3.9	7.7 3.7	7.5 3.9	Hz
•		•	0.0	

Peak Vector Sum 0.0166 in/s on April 27, 2012 at 21:48:19

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

00:00:10 April 28, 2012 Histogram Finish Time 05:30:00 April 28, 2012

Number of Intervals Range Sample Rate

Job Number:

330 at 1 minute Geo:10.00 in/s

1024sps

1

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

Battery Level 6.9 Volts Calibration

File Name

June 27, 2011 by Vibra-Tech Inc.

H674E9BM.OA1

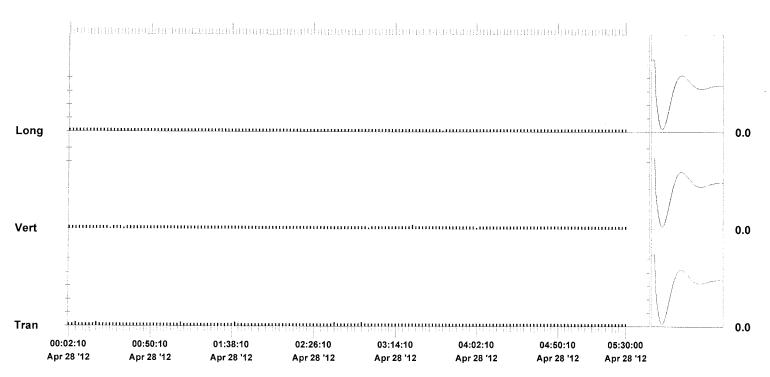
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0150	0.01000	in/s
ZC Freq	>100	57	>100	Hz
Date	Apr 28 '12	Apr 28 '12	Apr 28 '12	
Time	00:06:10	03:23:10	00:01:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.7	7.6	Hz
Overswing Ratio	3.9	3.7	4.0	

Peak Vector Sum 0.0187 in/s on April 28, 2012 at 03:23:10

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Histogram Start Time

Number of Intervals

Range Sample Rate Job Number:

05:35:18 April 28, 2012 Histogram Finish Time 19:30:00 April 28, 2012 835 at 1 minute

Geo:10.00 in/s 1024sps

Battery Level

Calibration

File Name

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

6.8 Volts

June 27, 2011 by Vibra-Tech Inc.

H674E9C2.6U1

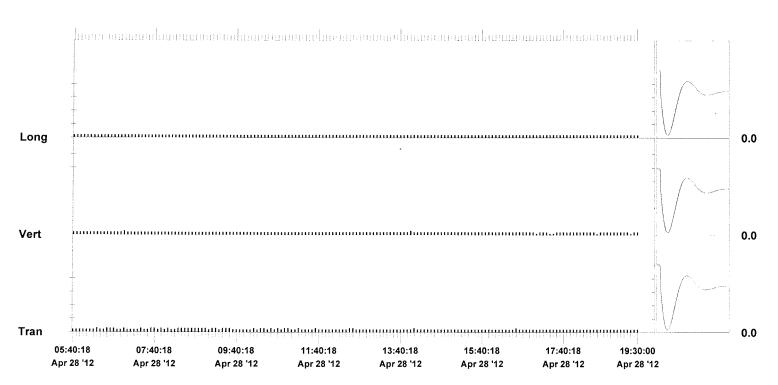
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV ZC Freq	0.0150 >100	0.0150 30	0.01000 >100	in/s Hz
Date Time		Apr 28 '12 06:55:18		
Dynamic Geo Cal. Frequency Overswing Ratio	Passed 7.7 3.9	Passed 7.6 3.7	Passed 7.5 3.9	Hz

Peak Vector Sum 0.0187 in/s on April 28, 2012 at 06:55:18

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

Histogram Finish Time 20:00:00 April 28, 2012 **Number of Intervals** 25 at 1 minute

Range Sample Rate Job Number: 19:35:19 April 28, 2012 Geo:10.00 in/s

1024sps

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts

Calibration File Name

June 27, 2011 by Vibra-Tech Inc.

H674E9D5.2V1

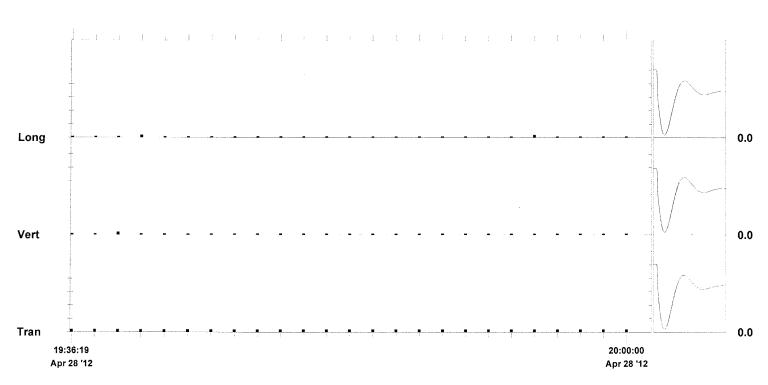
Notes

Location: Location #3

Client: **URS - Williamsburg Works** User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.01000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 28 '12	Apr 28 '12	Apr 28 '12	
Time	19:36:19	19:38:19	19:39:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.6	7.5	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0122 in/s on April 28, 2012 at 19:36:19

N/A: Not Applicable

Time Scale: 1 minute /div Amplitude Scale: Geo: 0.0500 in/s/div

${f V}$ ibra - ${f T}$ ech

Event Report

Histogram Start Time

Histogram Finish Time 23:59:00 April 28, 2012 Number of Intervals

Range Sample Rate Job Number: 20:05:19 April 28, 2012 233 at 1 minute

Geo:10.00 in/s 1024sps

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus Battery Level 6.8 Volts

Calibration

File Name

June 27, 2011 by Vibra-Tech Inc. H674E9D6.GV1

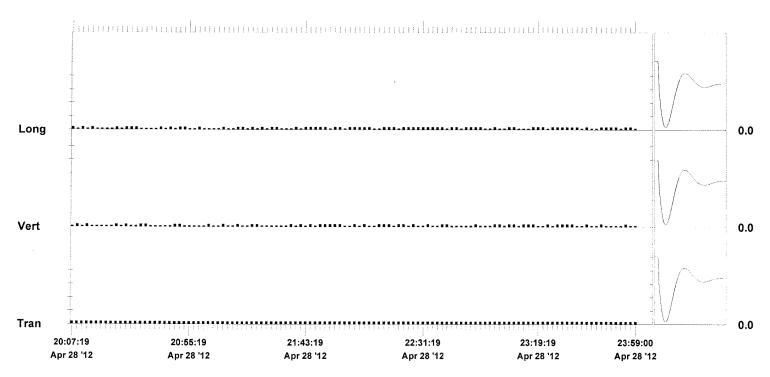
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.01000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 28 '12	Apr 28 '12	Apr 28 '12	
Time	20:06:19	20:09:19	20:06:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.7	7.5	Hz
Overswing Ratio	3.9	3.6	3.9	

Peak Vector Sum 0.0150 in/s on April 28, 2012 at 21:42:19

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Battery Level

Calibration

File Name

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

H674E9DH.CA1

June 27, 2011 by Vibra-Tech Inc.

6.8 Volts

Histogram Start Time 00:00:10 April 29, 2012 Histogram Finish Time 05:30:00 April 29, 2012

Number of Intervals 330 at 1 minute Range Geo:10.00 in/s

Job Number: 1

Sample Rate 1024sps

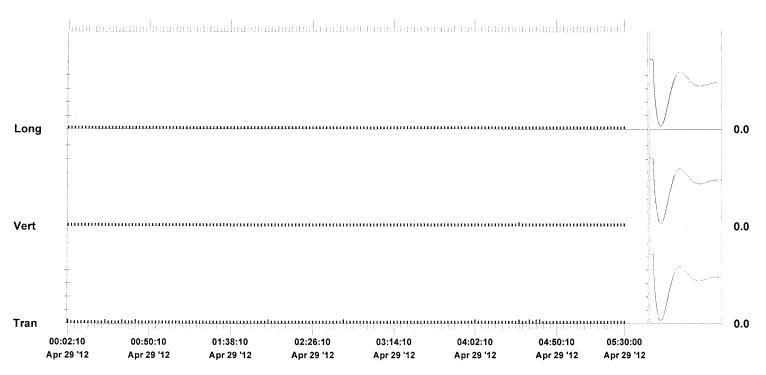
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0150	0.01000	in/s
ZC Freq	>100	47	>100	Hz
Date	Apr 29 '12	Apr 29 '12	Apr 29 '12	
Time	00:01:10	04:28:10	00:01:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.7	7.5	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0180 in/s on April 29, 2012 at 02:00:10

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Histogram Start Time

05:35:18 April 29, 2012 Histogram Finish Time 19:30:00 April 29, 2012

Number of Intervals Range

835 at 1 minute Geo:10.00 in/s

1024sps

Sample Rate Job Number:

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts

Calibration June 27, 2011 by Vibra-Tech Inc. File Name

H674E9DW.UU1

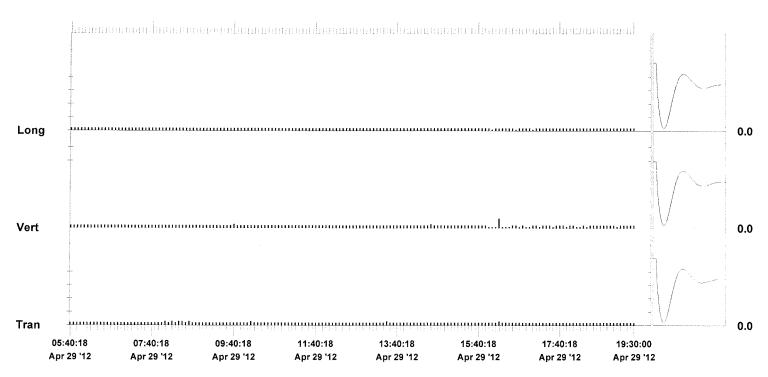
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0350	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 29 '12	Apr 29 '12	Apr 29 '12	
Time	08:00:18	16:07:18	05:36:18	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.8	7.7	7.6	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0367 in/s on April 29, 2012 at 16:07:18

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Vibra -Tech The Vibration Monitoring Experts

Event Report

Battery Level 6.8 Volts

Calibration

File Name

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

H674E9EZ.QV1

June 27, 2011 by Vibra-Tech Inc.

Histogram Start Time

Number of Intervals Range

19:35:19 April 29, 2012 Histogram Finish Time 20:00:00 April 29, 2012 25 at 1 minute Geo:10.00 in/s

1024sps

Sample Rate Job Number:

1

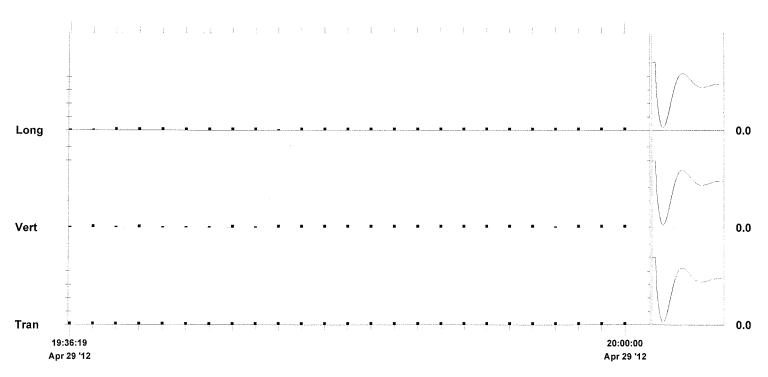
Notes

Location #3 Location:

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.01000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 29 '12	Apr 29 '12	Apr 29 '12	
Time	19:36:19	19:37:19	19:38:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.6	7.5	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0150 in/s on April 29, 2012 at 19:38:19

N/A: Not Applicable

Time Scale: 1 minute /div Amplitude Scale: Geo: 0.0500 in/s/div

Vibra -Tech The Vibration Monitoring Experts

Event Report

Histogram Start Time

Number of intervals

Range Sample Rate Job Number:

20:05:19 April 29, 2012 Histogram Finish Time 23:59:00 April 29, 2012 233 at 1 minute

> Geo:10.00 in/s 1024sps

1

Battery Level 6.8 Volts

Calibration

File Name

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

June 27, 2011 by Vibra-Tech Inc. H674E9F1.4V1

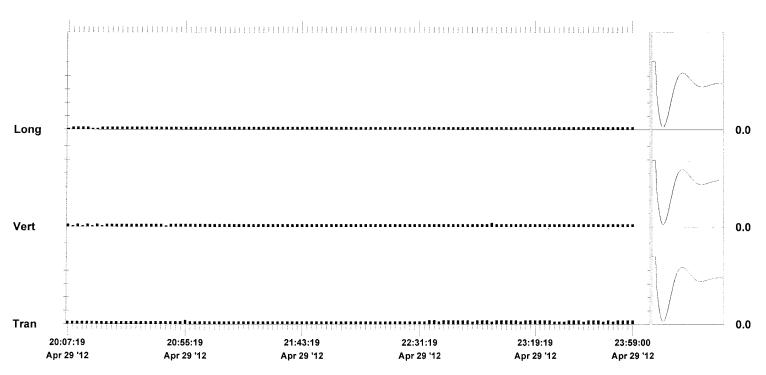
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0150	0.01000	in/s
ZC Freq	>100	73	>100	Hz
Date	Apr 29 '12	Apr 29 '12	Apr 29 '12	
Time	20:55:19	23:00:19	20:09:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.7	7.6	7.5	Hz
Overswing Ratio	3.9	3.6	3.9	

Peak Vector Sum 0.0206 in/s on April 29, 2012 at 22:34:19

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Histogram Start Time

Histogram Finish Time 05:30:00 April 30, 2012 **Number of Intervals**

Range Sample Rate Job Number: 00:00:10 April 30, 2012 330 at 1 minute

Geo:10.00 in/s 1024sps

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus Battery Level 6.9 Volts

Calibration File Name

June 27, 2011 by Vibra-Tech Inc.

H674E9FC.0A1

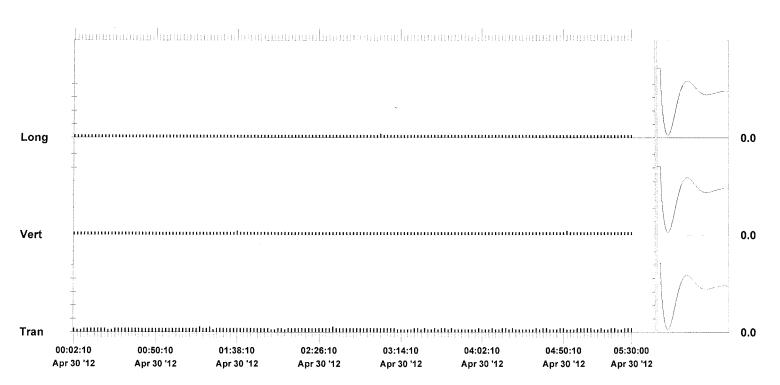
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0200	0.0150	0.0150	in/s
ZC Freq	>100	57	27	Hz
Date Time Dynamic Geo Cal.	Apr 30 12 01:15:10 Passed	Apr 30 '12 01:38:10 Passed	03:01:10	
Frequency	7.7	7.7	7.5	Hz
Overswing Ratio	3.9	3.7	3.9	

Peak Vector Sum 0.0229 in/s on April 30, 2012 at 02:34:10

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

05:35:18 April 30, 2012 Histogram Finish Time 11:10:38 April 30, 2012 **Number of Intervals**

Range Sample Rate 335 at 1 minute Geo:10.00 in/s

1024sps

Job Number:

Serial Number BD6674 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts Calibration

File Name

June 27, 2011 by Vibra-Tech Inc.

H674E9FR.IU1

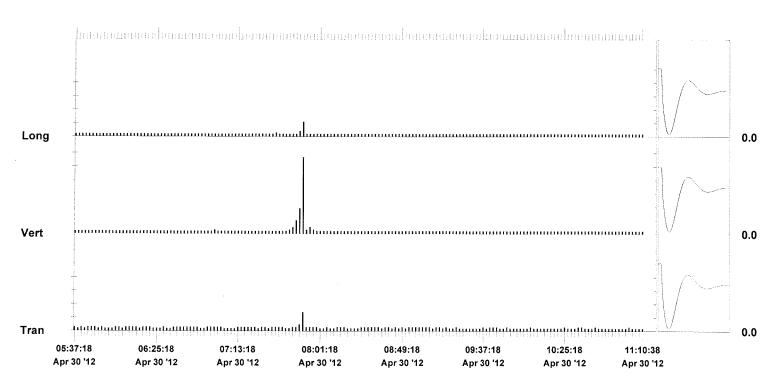
Notes

Location: Location #3

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

Tran	Vert	Long	
0.0700	0.285	0.0550	in/s
>100	>100	>100	Hz
Apr 30 '12	Apr 30 '12	Apr 30 '12	
07:51:18	07:51:18	07:51:18	
Passed	Passed	Passed	
7.8	7.7	7.6	Hz
3.9	3.7	3.9	
	0.0700 >100 Apr 30 '12 07:51:18 Passed 7.8	0.0700 0.285 >100 >100 Apr 30 '12 Apr 30 '12 07:51:18 07:51:18 Passed Passed 7.8 7.7	0.0700 0.285 0.0550 >100 >100 >100 Apr 30 '12 Apr 30 '12 Apr 30 '12 07:51:18 07:51:18 07:51:18 Passed Passed Passed 7.8 7.7 7.6

Peak Vector Sum 0.299 in/s on April 30, 2012 at 07:51:18

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Histogram Start Time

Number of Intervals

Range Sample Rate Job Number:

13:36:39 April 22, 2012 Histogram Finish Time 23:59:00 April 22, 2012 622 at 1 minute

> Geo:10.00 in/s 1024sps

Serial Number BD8340 V 7.04-8.0 MultiSeis Plus Battery Level 6.9 Volts

File Name

Calibration January 31, 2012 by Vibra-Tech Inc.

J340E91K.H31

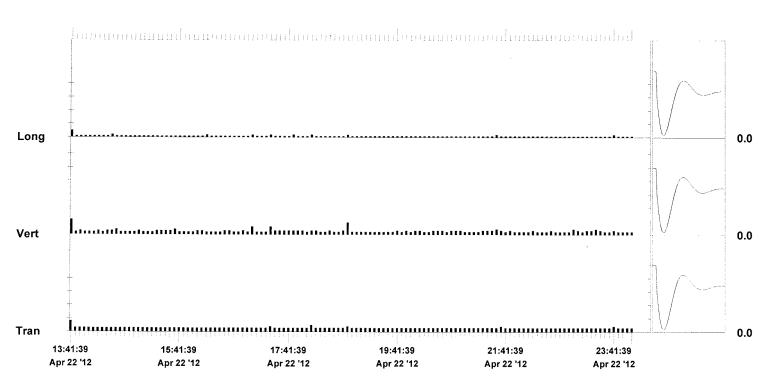
Notes

Location: Location #4

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

Tran	Vert	Long	
0.0400	0.0550	0.0250	in/s
>100	>100	>100	Hz
Apr 22 '12	Apr 22 '12	Apr 22 '12	
13:39:39	13:39:39	13:39:39	
Passed	Passed	Passed	
7.6	7.6	7.5	Hz
3.6	3.5	3.8	
	0.0400 >100 Apr 22 '12 13:39:39 Passed 7.6	0.0400 0.0550 >100 >100 Apr 22 '12 Apr 22 '12 13:39:39 13:39:39 Passed Passed 7.6 7.6	0.0400 0.0550 0.0250 >100 >100 >100 Apr 22 '12 Apr 22 '12 Apr 22 '12 13:39:39 13:39:39 13:39:39 Passed Passed Passed 7.6 7.5

Peak Vector Sum 0.0709 in/s on April 22, 2012 at 13:39:39

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Vibra -Tech The Vibration Monitoring Experts

Event Report

Histogram Start Time

Number of Intervals Range

00:00:10 April 23, 2012 Histogram Finish Time 23:59:00 April 23, 2012 1438 at 1 minute

Geo:10.00 in/s

1024sps

Sample Rate Job Number:

1

Battery Level

Serial Number BD8340 V 7.04-8.0 MultiSeis Plus

6.9 Volts

Calibration File Name

January 31, 2012 by Vibra-Tech Inc.

J340E92D.CA1

Notes

Location:

Location #4

Client: User Name:

URS - Williamsburg Works Vibra-Tech Engineers, Inc.

General:

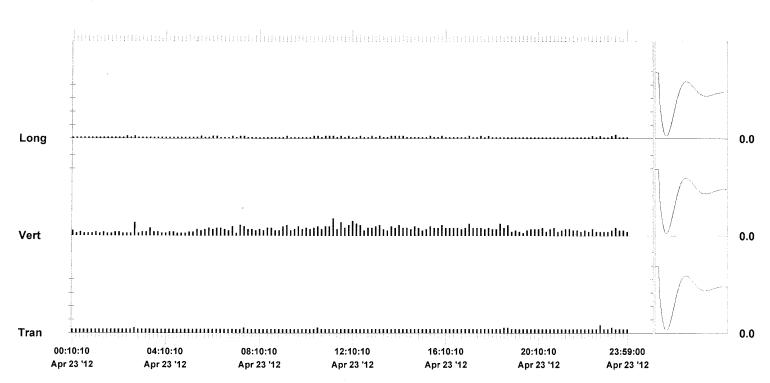
Extended Notes

Post Event Notes

Microphone **PSPL**

Disabled

ZC Freq


N/A

N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0300	0.0650	0.0150	in/s
ZC Freq	73	15	>100	Hz
Date	Apr 23 '12	Apr 23 '12	Apr 23 '12	
Time	22:41:10	11:11:10	23:21:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.6	7.6	7.5	Hz
Overswing Ratio	3.6	3.5	3.8	

Peak Vector Sum 0.0660 in/s on April 23, 2012 at 11:11:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Histogram Start Time

Number of intervals

Range Sample Rate Job Number:

00:00:10 April 24, 2012 Histogram Finish Time 23:59:00 April 24, 2012 1438 at 1 minute

> Geo:10.00 in/s 1024sps

1

File Name

Serial Number BD8340 V 7.04-8.0 MultiSeis Plus

Battery Level 6.9 Volts Calibration

January 31, 2012 by Vibra-Tech Inc.

J340E948.0A1

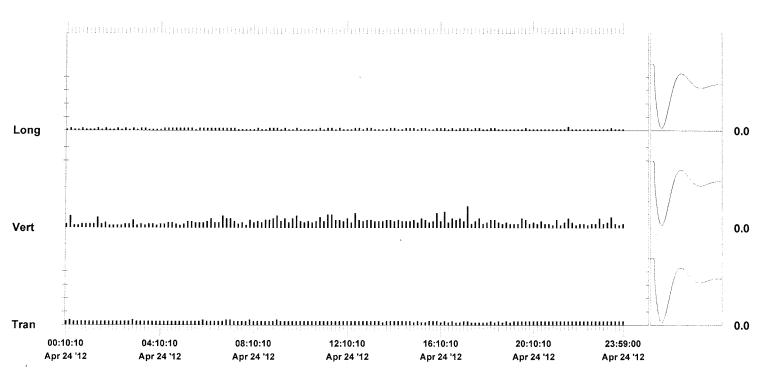
Notes

Location: Location #4

URS - Williamsburg Works Client: User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0200	0.0800	0.0150	in/s
ZC Freq	21	15	>100	Hz
Date	Apr 24 '12	Apr 24 '12	Apr 24 '12	
Time	00:19:10	17:12:10	21:34:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.6	7.6	7.5	Hz
Overswing Ratio	3.7	3.5	3.8	

Peak Vector Sum 0.0803 in/s on April 24, 2012 at 17:12:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

${f V}$ ibra - ${f T}$ ech

Event Report

Histogram Start Time

Histogram Finish Time Number of Intervals

Range Sample Rate Job Number: 00:00:10 April 25, 2012 23:59:00 April 25, 2012 1438 at 1 minute

1024sps

Geo:10.00 in/s

Battery Level Calibration File Name

6.9 Volts

January 31, 2012 by Vibra-Tech Inc.

Serial Number BD8340 V 7.04-8.0 MultiSeis Plus

J340E962.OA1

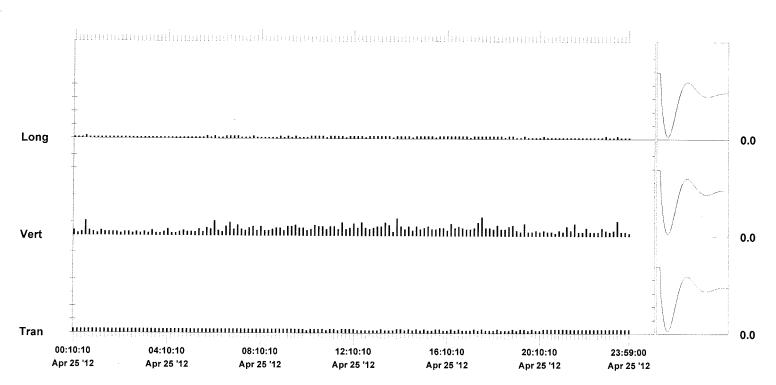
Notes

Location: Location #4

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0700	0.01000	in/s
ZC Freq	5.2	14	>100	Hz
Date	Apr 25 '12	Apr 25 '12	Apr 25 '12	
Time	00:01:10	17:35:10	00:33:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.6	7.6	7.5	Hz
Overswing Ratio	3.6	3.5	3.8	

Peak Vector Sum 0.0707 in/s on April 25, 2012 at 17:35:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Vibra -Tech The Vibration Monitoring Experts

Event Report

Histogram Start Time Histogram Finish Time

Number of intervals

Range Sample Rate Job Number:

00:00:10 April 26, 2012 23:59:00 April 26, 2012 1438 at 1 minute

Geo:10.00 in/s 1024sps

1

Battery Level Calibration File Name

Serial Number BD8340 V 7.04-8.0 MultiSeis Plus

6.8 Volts

January 31, 2012 by Vibra-Tech Inc.

J340E97X.CA1

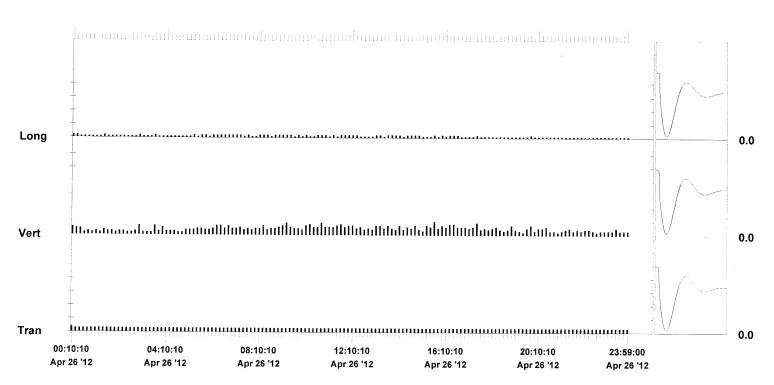
Notes

Location: Location #4

URS - Williamsburg Works Client: User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV ZC Freq	0.0200 >100	0.0500 18	0.01000 >100	in/s Hz
Date Time		Apr 26 '12 15:38:10		
Dynamic Geo Cal. Frequency Overswing Ratio	Passed 7.6 3.6	Passed 7.6 3.5	Passed 7.5 3.8	Hz

Peak Vector Sum 0.0505 in/s on April 26, 2012 at 15:38:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

00:00:10 April 27, 2012 23:59:00 April 27, 2012

Histogram Finish Time **Number of Intervals** 1438 at 1 minute Range Geo:10.00 in/s

Sample Rate Job Number: 1024sps

Serial Number BD8340 V 7.04-8.0 MultiSeis Plus

Battery Level 6.1 Volts

Calibration

File Name

January 31, 2012 by Vibra-Tech Inc.

J340E99S.0A1

Notes

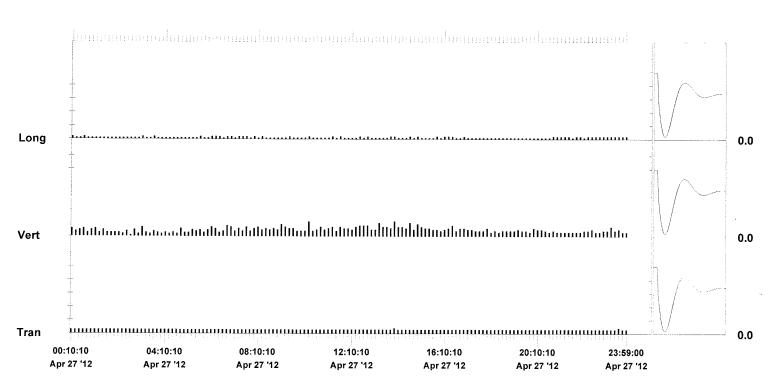
Location: Location #4

Client: URS - Williamsburg Works

User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0200	0.0550	0.01000	in/s
ZC Freq	28	18	>100	Hz
Date	Apr 27 '12	Apr 27 '12	Apr 27 '12	
Time	13:55:10	10:13:10	00:04:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.6	7.6	7.5	Hz
Overswing Ratio	3.6	3.5	3.8	

Peak Vector Sum 0.0555 in/s on April 27, 2012 at 10:13:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time Histogram Finish Time

Number of Intervals

Range Sample Rate Job Number: 00:00:10 April 28, 2012 23:59:00 April 28, 2012 1438 at 1 minute Geo:10.00 in/s 1024sps

Calibration File Name

Serial Number BD8340 V 7.04-8.0 MultiSeis Plus Battery Level 5.8 Volts (Battery Low)

January 31, 2012 by Vibra-Tech Inc.

J340E9BM.OA1

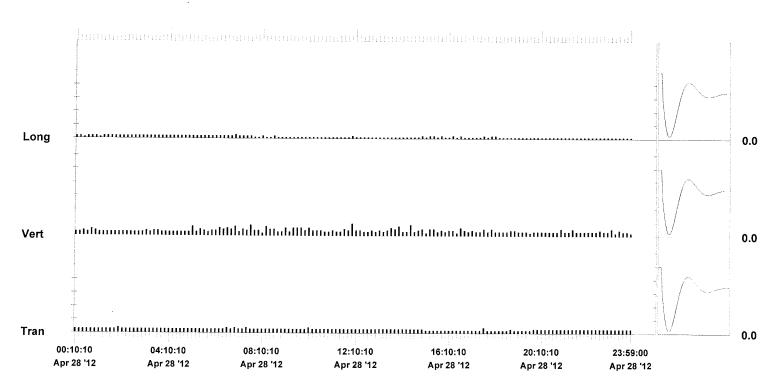
Notes

Location: Location #4

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0200	0.0450	0.0150	in/s
ZC Freq	<1.0	20	34	Hz
Date	Apr 28 '12	Apr 28 '12	Apr 28 '12	
Time	01:58:10	11:55:10	06:55:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.6	7.7	7.5	Hz
Overswing Ratio	3.6	3.5	3.8	

Peak Vector Sum 0.0456 in/s on April 28, 2012 at 11:55:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Vibra -Tech The Vibration Monitoring Experts

Event Report

Histogram Start Time Number of Intervals

00:00:10 April 29, 2012 Histogram Finish Time 06:29:10 April 29, 2012 389 at 1 minute

Geo:10.00 in/s

1024sps

Sample Rate Job Number:

Calibration File Name

Serial Number BD8340 V 7.04-8.0 MultiSeis Plus Battery Level 5.7 Volts (Battery Very Low) January 31, 2012 by Vibra-Tech Inc.

J340E9DH.CA1

Notes

Range

Location: Location #4

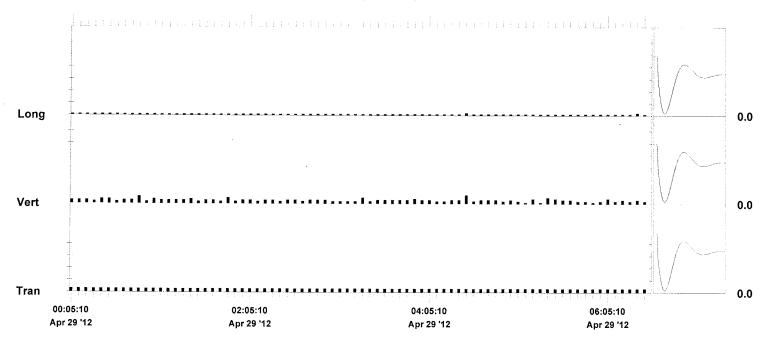
Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes

Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A


	Tran	Vert	Long	
PPV	0.0150	0.0350	0.01000	in/s
ZC Freq	5.8	15	73	Hz
Date	Apr 29 '12	Apr 29 '12	Apr 29 '12	
Time	00:01:10	04:28:10	04:28:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.6	7.7	7.5	Hz
Overswing Ratio	3.6	3.5	3.8	

Peak Vector Sum 0.0364 in/s on April 29, 2012 at 04:28:10

N/A: Not Applicable

Monitor Log

Apr 29 '12 00:00:10 Apr 29 '12 06:29:10 Event recorded. (Battery Low Exit)

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Dynamic Geo Cal.

Printed: May 1, 2012 (V 7.03 - 7.01)

${f V}$ ibra - ${f T}$ ech

Event Report

Histogram Start Time

Number of Intervals

14:01:00 April 22, 2012 Histogram Finish Time 23:59:00 April 22, 2012

598 at 1 minute Geo:10.00 in/s

Calibration

Serial Number BF14209 V 7.04-8.0 MultiSeis Plus

Battery Level 7.0 Volts

September 1, 2011 by Vibra-Tech Inc.

Range Sample Rate Job Number: 1024sps

File Name

P209E91L.LO1

Notes

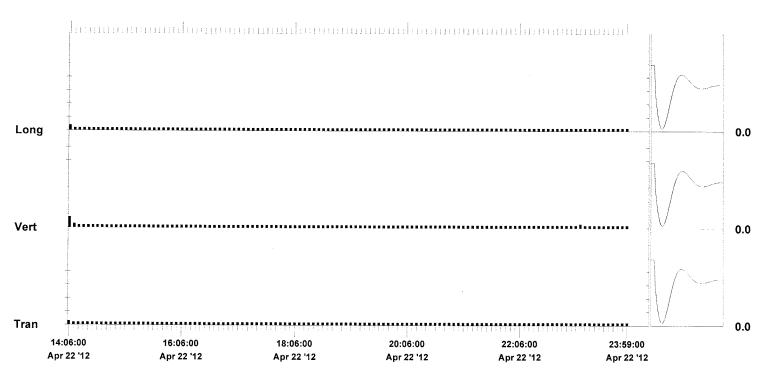
Location: Location #5

Client: URS - Williamsburg Works

User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

Tran	Vert	Long	
0.0150	0.0400	0.0200	in/s
>100	>100	85	Hz
Apr 22 '12	Apr 22 '12	Apr 22 '12	
14:03:00	14:03:00	14:03:00	
Passed	Passed	Passed	
7.5	7.4	7.6	Hz
3.8	3.6	3.9	
	0.0150 >100 Apr 22 '12 14:03:00 Passed 7.5	0.0150 0.0400 >100 >100 Apr 22 '12 Apr 22 '12 14:03:00 14:03:00 Passed Passed 7.5 7.4	0.0150 0.0400 0.0200 >100 >100 85 Apr 22 '12 Apr 22 '12 Apr 22 '12 14:03:00 14:03:00 14:03:00 Passed Passed Passed 7.5 7.4 7.6

Peak Vector Sum 0.0400 in/s on April 22, 2012 at 14:03:00

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Dynamic Geo Cal.

Printed: May 1, 2012 (V 7.03 - 7.01)

Event Report

Histogram Start Time

00:00:10 April 23, 2012 Histogram Finish Time 23:59:00 April 23, 2012

Number of Intervals Range

1438 at 1 minute Geo:10.00 in/s

1024sps

Sample Rate Job Number:

1

Serial Number BF14209 V 7.04-8.0 MultiSeis Plus

File Name

7.0 Volts

Battery Level Calibration

September 1, 2011 by Vibra-Tech Inc.

P209E92D.CA1

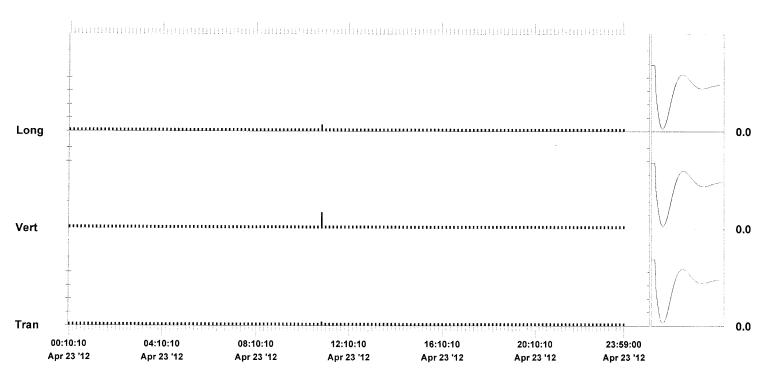
Notes

Location: Location #5

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0600	0.0250	in/s
ZC Freq	>100	16	47	Hz
Date	Apr 23 '12	Apr 23 '12	Apr 23 '12	
Time	10:56:10	10:56:10	10:56:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.4	7.5	Hz
Overswing Ratio	3.9	3.6	3.9	

Peak Vector Sum 0.0616 in/s on April 23, 2012 at 10:56:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time **Number of Intervals**

00:00:10 April 24, 2012 Histogram Finish Time 23:59:00 April 24, 2012 1438 at 1 minute

Battery Level 6.9 Volts Calibration

Serial Number BF14209 V 7.04-8.0 MultiSeis Plus

File Name

September 1, 2011 by Vibra-Tech Inc.

P209E948.0A1

Range Sample Rate Job Number:

Geo:10.00 in/s 1024sps

Notes

Location: Location #5

Client: User Name:

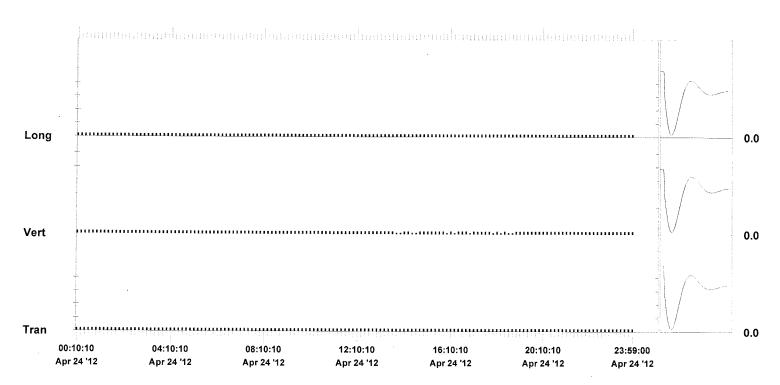
URS - Williamsburg Works Vibra-Tech Engineers, Inc.

1

General:

Extended Notes

Post Event Notes


Microphone Disabled

PSPL	N/A	
ZC Freq	N/A	
Channel Test	N/A	

	Tran	Vert	Long	
PPV	0.01000	0.01000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 24 '12	Apr 24 '12	Apr 24 '12	
Time	00:01:10	00:01:10	00:01:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.4	7.6	Hz
Overswing Ratio	3.8	3.6	3.9	

Peak Vector Sum 0.0150 in/s on April 24, 2012 at 00:34:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

Histogram Finish Time 23:59:00 April 25, 2012

Number of Intervals Range

00:00:10 April 25, 2012 1438 at 1 minute

Geo:10.00 in/s 1024sps

Sample Rate

Job Number:

File Name

Serial Number BF14209 V 7.04-8.0 MultiSeis Plus

Battery Level 6.9 Volts Calibration

September 1, 2011 by Vibra-Tech Inc.

P209E962.OA1

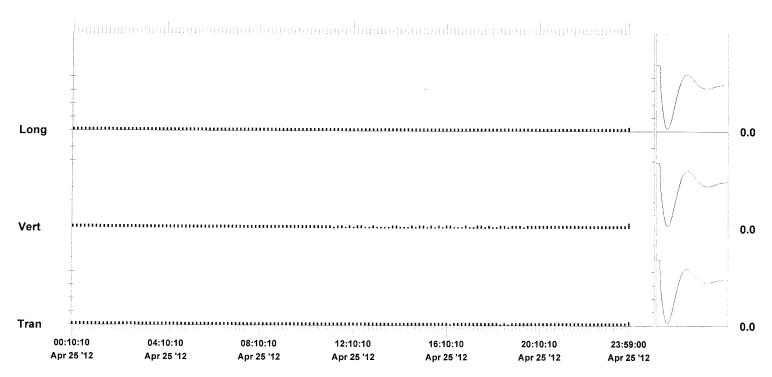
Notes

Location: Location #5

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0200	0.0150	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 25 '12	Apr 25 '12	Apr 25 '12	
Time	23:54:10	23:54:10	23:54:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.4	7.5	Hz
Overswing Ratio	3.8	3.6	3.9	

Peak Vector Sum 0.0235 in/s on April 25, 2012 at 23:54:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Histogram Start Time

00:00:10 April 26, 2012 Histogram Finish Time 23:59:00 April 26, 2012

Number of Intervals

1438 at 1 minute Geo:10.00 in/s

Range Sample Rate

1024sps

Job Number:

Battery Level 6.9 Volts Calibration

File Name

Serial Number BF14209 V 7.04-8.0 MultiSeis Plus

September 1, 2011 by Vibra-Tech Inc. P209E97X.CA1

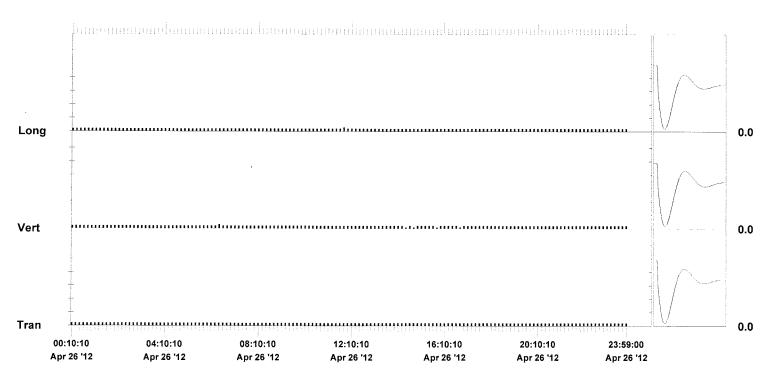
Notes

Location: Location #5

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Frea N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.0150	0.0150	in/s
ZC Freq	>100	21	37	Hz
Date	Apr 26 '12	Apr 26 '12	Apr 26 '12	
Time	00:01:10	06:22:10	11:42:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.4	7.6	Hz
Overswing Ratio	3.8	3.6	3.9	

Peak Vector Sum 0.0173 in/s on April 26, 2012 at 13:30:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

00:00:10 April 27, 2012 Histogram Finish Time 23:59:00 April 27, 2012

Number of Intervals Range Sample Rate

1438 at 1 minute Geo:10.00 in/s

1024sps

Serial Number BF14209 V 7.04-8.0 MultiSeis Plus Battery Level Calibration

File Name

7.0 Volts September 1, 2011 by Vibra-Tech Inc.

P209E99S.0A1

Notes

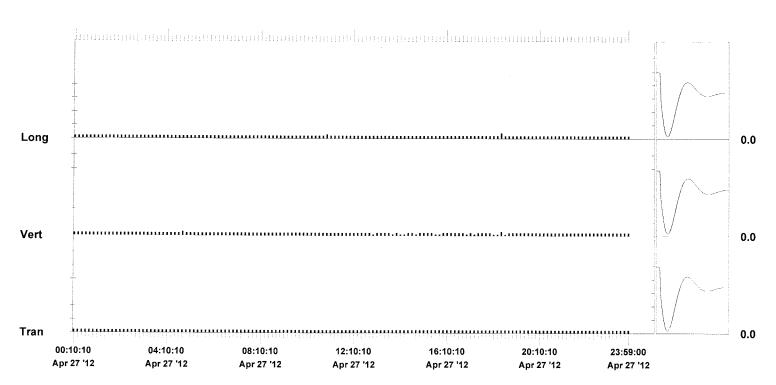
Job Number:

Location: Location #5

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.0150	0.0200	in/s
ZC Freq	>100	20	43	Hz
Date	Apr 27 '12	Apr 27 '12	Apr 27 '12	
Time	00:01:10	04:44:10	18:28:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.4	7.5	Hz
Overswing Ratio	3.8	3.6	3.9	

Peak Vector Sum 0.0229 in/s on April 27, 2012 at 18:28:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

00:00:10 April 28, 2012 Histogram Finish Time 23:59:00 April 28, 2012 **Number of Intervals**

Range Sample Rate Job Number: 1438 at 1 minute Geo:10.00 in/s

1024sps

Serial Number BF14209 V 7.04-8.0 MultiSeis Plus

File Name

Battery Level 6.9 Volts

Calibration

September 1, 2011 by Vibra-Tech Inc.

P209E9BM.OA1

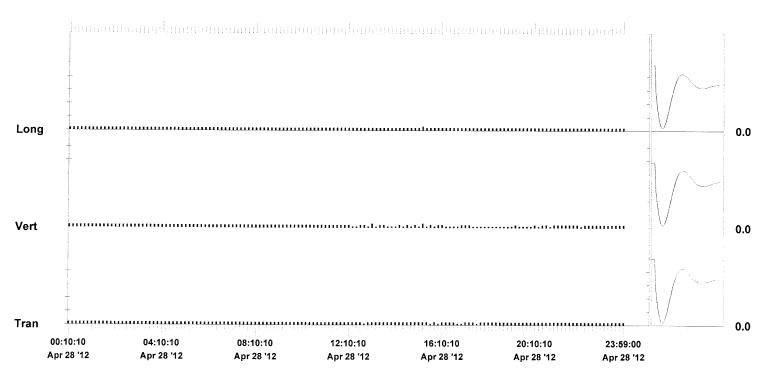
Notes

Location: Location #5

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.0150	0.0150	in/s
ZC Freq	>100	73	>100	Hz
Date	Apr 28 '12	Apr 28 '12	Apr 28 '12	
Time	00:01:10	13:06:10	15:11:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.4	7.6	Hz
Overswing Ratio	3.8	3.6	3.9	

Peak Vector Sum 0.0206 in/s on April 28, 2012 at 15:11:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Vibra - Tech The Vibration Monitoring Experts

Event Report

Histogram Start Time Histogram Finish Time 23:59:00 April 29, 2012

Number of Intervals

Range Sample Rate Job Number: 00:00:10 April 29, 2012 1438 at 1 minute Geo:10.00 in/s

1024sps

Battery Level Calibration File Name

Serial Number BF14209 V 7.04-8.0 MultiSeis Plus

6.9 Volts

September 1, 2011 by Vibra-Tech Inc. P209E9DH.CA1

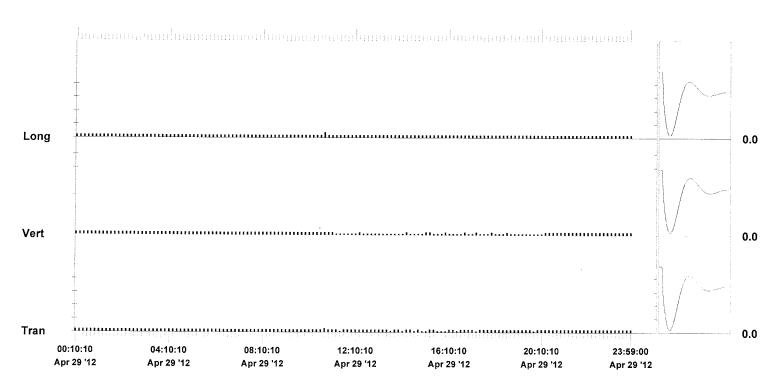
Notes

Location: Location #5

URS - Williamsburg Works Client: User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.01000	0.0200	in/s
ZC Freq	34	>100	8.4	Hz
Date	Apr 29 '12	Apr 29 '12	Apr 29 '12	
Time	10:45:10	00:02:10	10:45:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.4	7.6	Hz
Overswing Ratio	3.8	3.6	3.9	

Peak Vector Sum 0.0224 in/s on April 29, 2012 at 10:45:10

N/A: Not Applicable

Time Scale: 10 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Dynamic Geo Cal.

Printed: May 1, 2012 (V 7.03 - 7.01)

Format Copyrighted 1996-2003 Instantel Inc.

${f V}$ ibra - ${f T}$ ech

Event Report

Histogram Start Time

00:00:10 April 30, 2012 Histogram Finish Time 14:34:23 April 30, 2012

Number of Intervals Range

874 at 1 minute Geo: 10.00 in/s

1024sps

Sample Rate Job Number:

Serial Number BF14209 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts

Calibration September 1, 2011 by Vibra-Tech Inc. File Name

P209E9FC.0A1

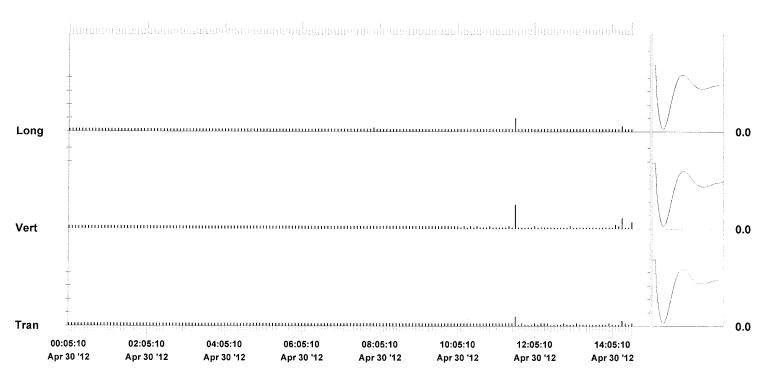
Notes

Location #5 Location:

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0350	0.0900	0.0500	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 30 '12	Apr 30 '12	Apr 30 '12	
Time	11:35:10	11:35:10	11:35:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.4	7.5	Hz
Overswing Ratio	3.8	3.5	3.9	

Peak Vector Sum 0.0939 in/s on April 30, 2012 at 11:35:10

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

Histogram Finish Time 19:30:00 April 22, 2012 **Number of Intervals**

Range Sample Rate Job Number: 14:31:22 April 22, 2012 299 at 1 minute

Geo:10.00 in/s 1024sps

Calibration File Name

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus Battery Level 6.9 Volts

July 12, 2011 by Vibra-Tech Inc.

L975E91N.0A1

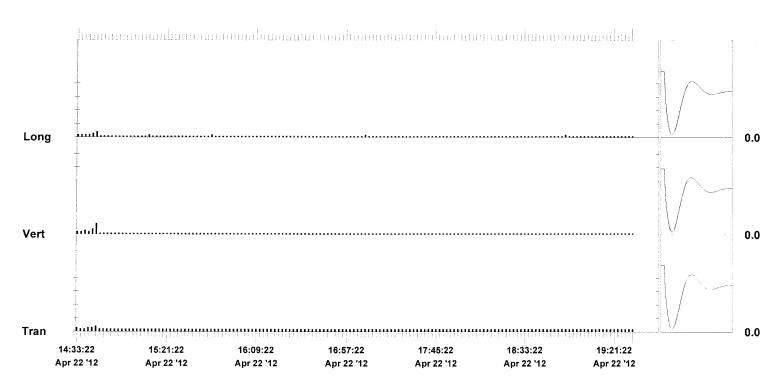
Notes

Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0200	0.0400	0.0200	in/s
ZC Freq	85	64	>100	Hz
Date	Apr 22 '12	Apr 22 '12	Apr 22 '12	
Time	14:42:22	14:42:22	14:42:22	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.4	7.5	7.2	Hz
Overswing Ratio	3.7	3.7	4.1	

Peak Vector Sum 0.0406 in/s on April 22, 2012 at 14:42:22

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

19:35:19 April 22, 2012 Histogram Finish Time 20:00:00 April 22, 2012 **Number of Intervals**

Range Sample Rate 25 at 1 minute

1024sps

Job Number: 1

Geo:10.00 in/s

Calibration File Name

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

Battery Level 6.9 Volts

July 12, 2011 by Vibra-Tech Inc.

L975E921.2V1

Notes

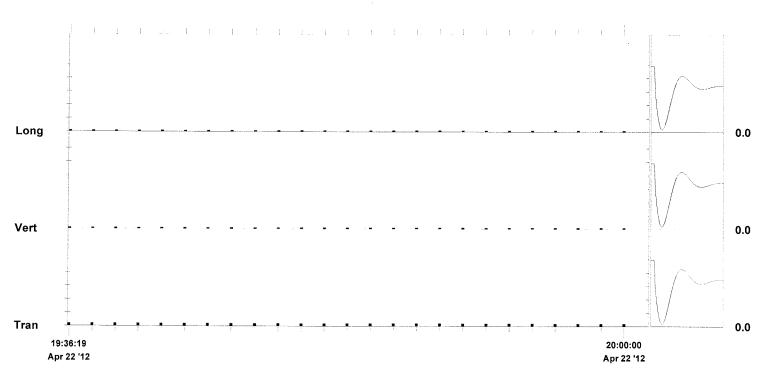
Location: Location #6

URS - Williamsburg Works Client:

User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Frea** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.00500	0.00500	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 22 '12	Apr 22 '12	Apr 22 '12	
Time	19:36:19	19:36:19	19:36:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.6	7.3	Hz
Overswing Ratio	3.7	3.7	4.1	

Peak Vector Sum 0.0122 in/s on April 22, 2012 at 19:36:19

N/A: Not Applicable

Time Scale: 1 minute /div Amplitude Scale: Geo: 0.0500 in/s/div

Dynamic Geo Cal.

Printed: May 1, 2012 (V 7.03 - 7.01)

Format Copyrighted 1996-2003 Instantel Inc.

Event Report

Battery Level 6.9 Volts

Calibration

File Name

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

L975E922.GV1

July 12, 2011 by Vibra-Tech Inc.

Histogram Start Time

20:05:19 April 22, 2012 Histogram Finish Time 23:59:00 April 22, 2012 Number of Intervals

Range Sample Rate 233 at 1 minute Geo: 10.00 in/s

1024sps

Job Number:

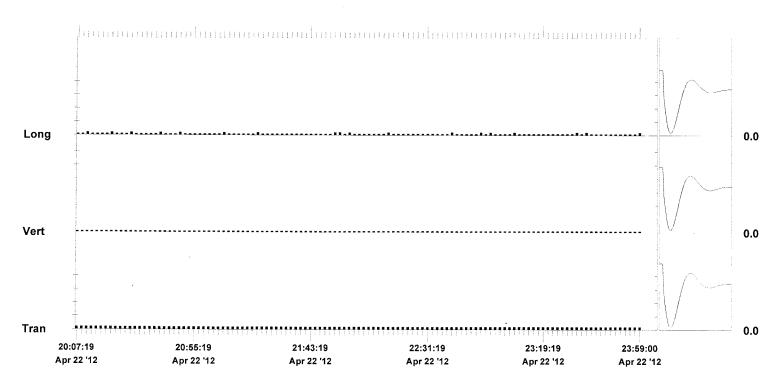
Notes

Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.00500	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 22 '12	Apr 22 '12	Apr 22 '12	
Time	20:06:19	20:06:19	20:10:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.6	7.3	Hz
Overswing Ratio	3.8	3.8	4.2	

Peak Vector Sum 0.0122 in/s on April 22, 2012 at 20:06:19

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Battery Level 6.9 Volts

Calibration

Histogram Start Time

Histogram Finish Time 05:30:00 April 23, 2012

Number of Intervals Range Sample Rate

00:00:10 April 23, 2012 330 at 1 minute

Geo:10.00 in/s 1024sps

File Name

L975E92D.CA1

July 12, 2011 by Vibra-Tech Inc.

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

Notes

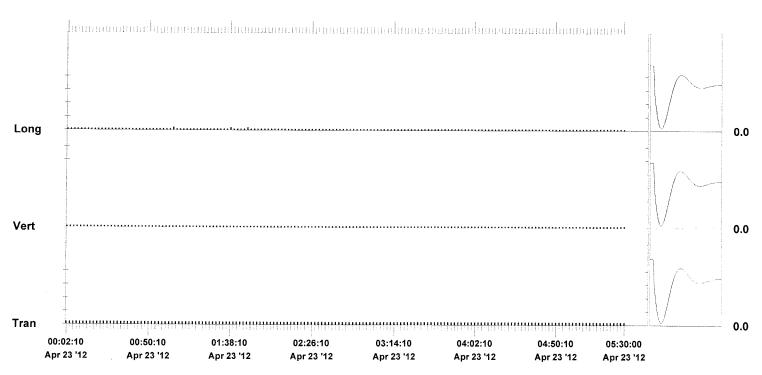
Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes

Job Number:


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

ert Long	
0500 0.0100	
23 12 Apr 23 12	12
assed Passe	ed
	.3 Hz .2
	0500 0.0100 >100 >10 23 '12 Apr 23 '7 01:10 01:03:7 assed Passe 7.5 7

Peak Vector Sum 0.0122 in/s on April 23, 2012 at 00:01:10

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Dynamic Geo Cal.

Printed: May 1, 2012 (V 7.03 - 7.01)

Format Copyrighted 1996-2003 Instantel Inc.

Event Report

Histogram Start Time

Histogram Finish Time 19:30:00 April 23, 2012 **Number of Intervals**

835 at 1 minute Range Geo: 10.00 in/s

Sample Rate Job Number:

05:35:19 April 23, 2012

1024sps

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

Battery Level 6.9 Volts

Calibration File Name

July 12, 2011 by Vibra-Tech Inc.

L975E92S.UV1

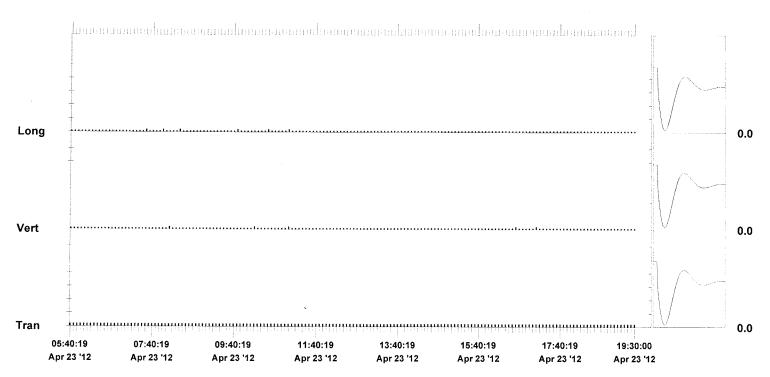
Notes

Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.01000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 23 '12	Apr 23 '12	Apr 23 '12	
Time	05:36:19	08:05:19	07:30:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.6	7.2	Hz
Overswing Ratio	3.7	3.7	4.2	

Peak Vector Sum 0.0122 in/s on April 23, 2012 at 05:36:19

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Dynamic Geo Cal.

Printed: May 1, 2012 (V 7.03 - 7.01)

Event Report

Histogram Start Time **Number of Intervals**

19:35:19 April 23, 2012 Histogram Finish Time 20:00:00 April 23, 2012

25 at 1 minute Geo:10.00 in/s

1024sps

Sample Rate Job Number:

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts

Calibration July 12, 2011 by Vibra-Tech Inc. File Name

L975E93V.QV1

Notes

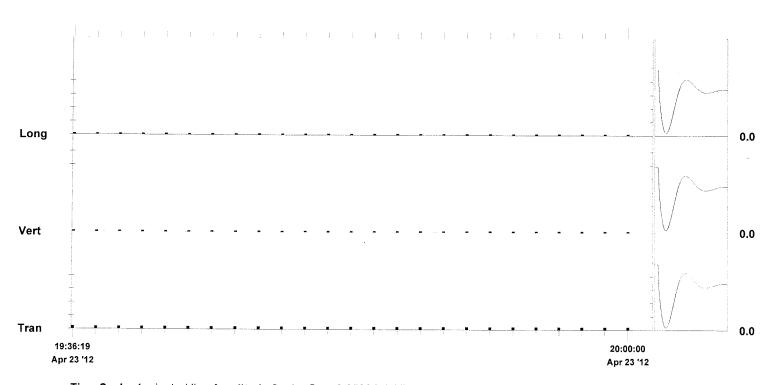
Range

Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.00500	0.00500	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 23 '12	Apr 23 '12	Apr 23 '12	
Time	19:36:19	19:36:19	19:36:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.6	7.3	Hz
Overswing Ratio	3.7	3.7	4.2	

Peak Vector Sum 0.0122 in/s on April 23, 2012 at 19:36:19

N/A: Not Applicable

Time Scale: 1 minute /div Amplitude Scale: Geo: 0.0500 in/s/div

Dynamic Geo Cal.

Printed: May 1, 2012 (V 7.03 - 7.01)

Format Copyrighted 1996-2003 Instantel Inc.

Event Report

Histogram Start Time

Histogram Finish Time 23:59:00 April 23, 2012 **Number of Intervals**

Range Sample Rate Job Number: 233 at 1 minute Geo: 10.00 in/s

1024sps

20:05:19 April 23, 2012

Calibration File Name

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

Battery Level 6.9 Volts

July 12, 2011 by Vibra-Tech Inc.

L975E93X.4V1

Notes

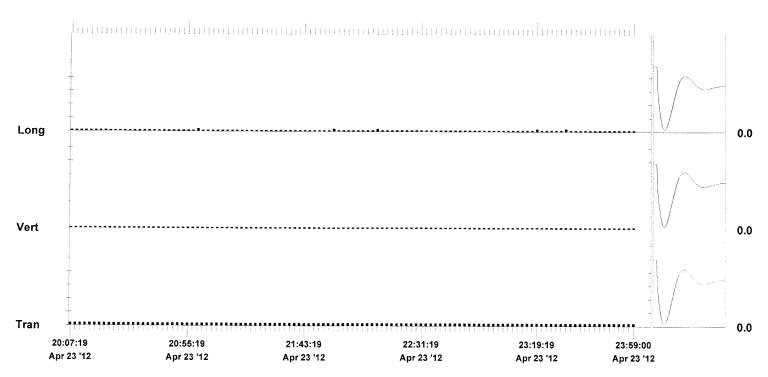
Location: Location #6

Client: User Name:

URS - Williamsburg Works Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.00500	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 23 '12	Apr 23 '12	Apr 23 '12	
Time	20:06:19	20:06:19	20:59:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.6	7.3	Hz
Overswing Ratio	3.7	3.7	4.2	

Peak Vector Sum 0.0122 in/s on April 23, 2012 at 20:06:19

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

00:00:10 April 24, 2012 Histogram Finish Time 05:30:00 April 24, 2012 330 at 1 minute

Number of Intervals Range Geo: 10.00 in/s Sample Rate 1024sps

Job Number:

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus Battery Level 6.9 Volts

Calibration

File Name

July 12, 2011 by Vibra-Tech Inc.

L975E948.0A1

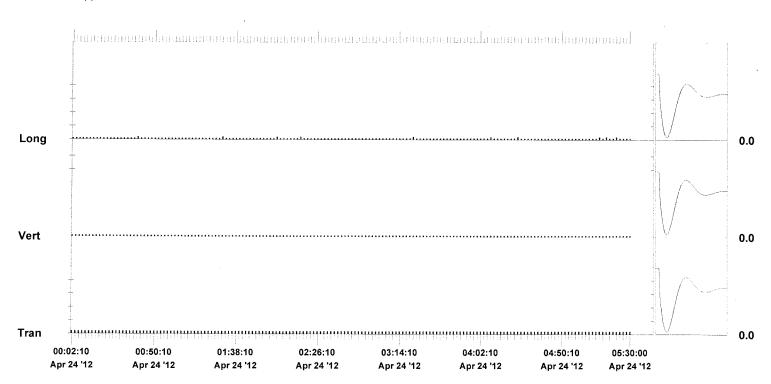
Notes

Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.00500	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 24 '12	Apr 24 '12	Apr 24 '12	
Time	00:01:10	00:01:10	00:40:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.4	7.5	7.2	Hz
Overswing Ratio	3.7	3.7	4.2	

Peak Vector Sum 0.0122 in/s on April 24, 2012 at 00:01:10

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Battery Level 6.8 Volts

Calibration

File Name

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

L975E94N.IW1

July 12, 2011 by Vibra-Tech Inc.

Histogram Start Time

05:35:20 April 24, 2012 Histogram Finish Time 19:30:00 April 24, 2012 Number of Intervals

Range Sample Rate 835 at 1 minute

1024sps

Job Number:

Geo:10.00 in/s

1

Notes

Location: Location #6

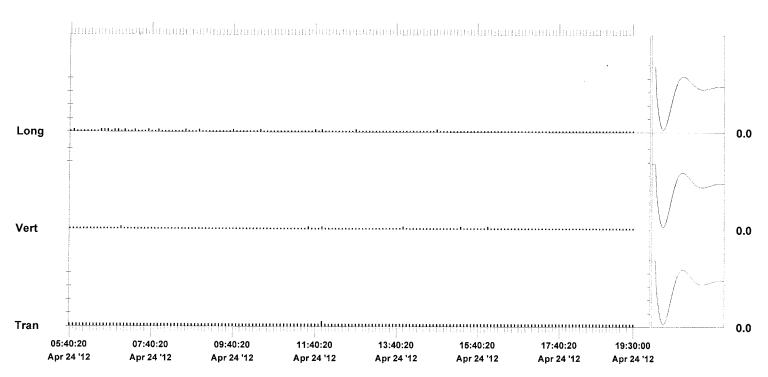
Client:

URS - Williamsburg Works

User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0200	0.01000	0.01000	in/s
ZC Freq	64	85	>100	Hz
Date	Apr 24 '12	Apr 24 '12	Apr 24 '12	
Time	11:50:20	06:51:20	05:45:20	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.4	7.5	7.2	Hz
Overswing Ratio	3.7	3.7	4.2	

Peak Vector Sum 0.0206 in/s on April 24, 2012 at 11:50:20

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Dynamic Geo Cal.

Printed: May 1, 2012 (V 7.03 - 7.01)

Format Copyrighted 1996-2003 Instantel Inc.

Event Report

Histogram Start Time

Histogram Finish Time 20:00:00 April 24, 2012 **Number of Intervals**

Range Sample Rate Job Number:

19:35:19 April 24, 2012 25 at 1 minute Geo: 10.00 in/s

1024sps

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

File Name

Battery Level 6.8 Volts Calibration

July 12, 2011 by Vibra-Tech Inc. L975E95Q.EV1

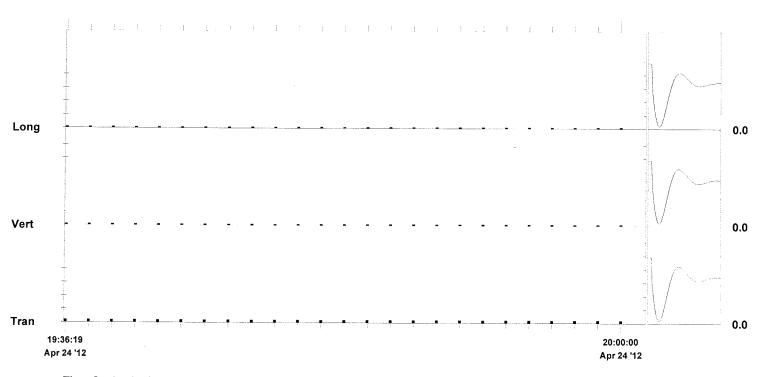
Notes

Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.00500	0.00500	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 24 '12	Apr 24 '12	Apr 24 '12	
Time	19:36:19	19:36:19	19:36:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.5	7.3	Hz
Overswing Ratio	3.7	3.7	4.2	

Peak Vector Sum 0.0122 in/s on April 24, 2012 at 19:40:19

N/A: Not Applicable

Time Scale: 1 minute /div Amplitude Scale: Geo: 0.0500 in/s/div

Dynamic Geo Cal.

Printed: May 1, 2012 (V 7.03 - 7.01)

Format Copyrighted 1996-2003 Instantel Inc.

Event Report

Histogram Start Time Histogram Finish Time 23:59:00 April 24, 2012 Number of Intervals Range

20:05:19 April 24, 2012 233 at 1 minute Geo:10.00 in/s

Battery Level 6.9 Volts Calibration File Name

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

July 12, 2011 by Vibra-Tech Inc.

1024sps

L975E95R.SV1

Notes

Sample Rate

Job Number:

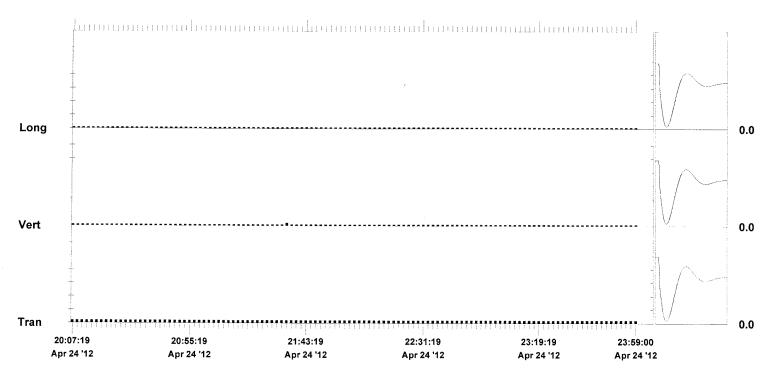
Location: Location #6

URS - Williamsburg Works Client: User Name:

Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.01000	0.00500	in/s
ZC Freq	>100	>100	N/A	Hz
Date	Apr 24 '12	Apr 24 '12	Apr 24 '12	
Time	20:06:19	21:34:19	20:06:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.6	7.3	Hz
Overswing Ratio	3.7	3.7	4.2	

Peak Vector Sum 0.0122 in/s on April 24, 2012 at 20:12:19

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

00:00:10 April 25, 2012 Histogram Finish Time 05:30:00 April 25, 2012 Number of Intervals

Range Sample Rate 330 at 1 minute Geo:10.00 in/s

Battery Level Calibration File Name

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

6.9 Volts

July 12, 2011 by Vibra-Tech Inc. L975E962.OA1

Job Number:

1024sps 1

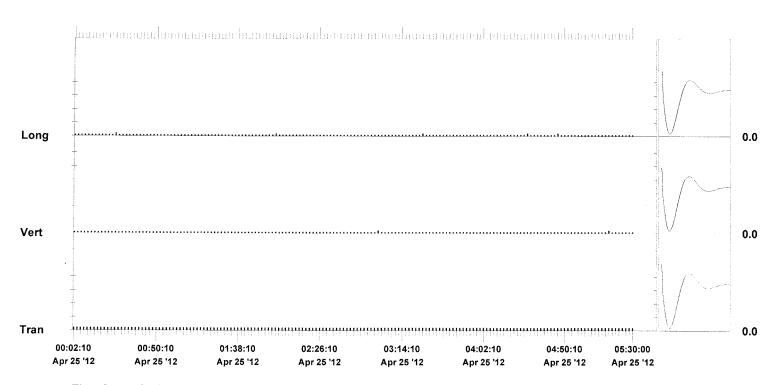
Notes

Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.01000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 25 '12	Apr 25 '12	Apr 25 '12	
Time	00:01:10	03:00:10	00:26:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.6	7.3	Hz
Overswing Ratio	3.7	3.7	4.2	

Peak Vector Sum 0.0122 in/s on April 25, 2012 at 00:01:10

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

Histogram Finish Time 19:30:00 April 25, 2012 Number of Intervals

Range Sample Rate Job Number: 05:35:19 April 25, 2012 835 at 1 minute

Geo: 10.00 in/s

1024sps

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts

Calibration July 12, 2011 by Vibra-Tech Inc. File Name

L975E96I.6V1

Notes

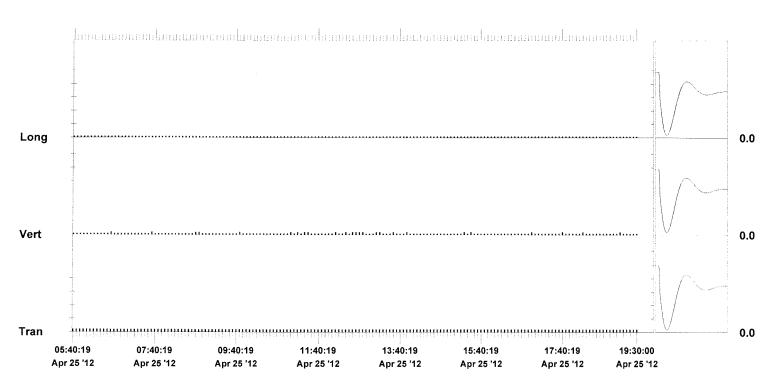
Location:

Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV ZC Freq	0.01000 >100	0.01000 >100	0.00500 >100	in/s Hz
Date Time	Apr 25 '12 05:36:19	Apr 25 '12 06:32:19		
Dynamic Geo Cal. Frequency Overswing Ratio	Passed 7.5 3.7	Passed 7.5 3.7	Passed 7.3 4.1	Hz

Peak Vector Sum 0.0122 in/s on April 25, 2012 at 05:36:19

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

Number of Intervals Range

Sample Rate Job Number:

19:35:19 April 25, 2012 Histogram Finish Time 20:00:00 April 25, 2012 25 at 1 minute

Geo:10.00 in/s

1024sps

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts Calibration

File Name

July 12, 2011 by Vibra-Tech Inc.

L975E97L.2V1

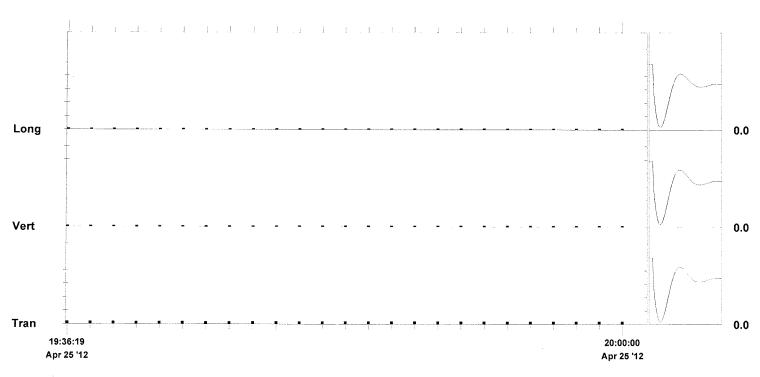
Notes

Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.00500	0.00500	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 25 '12	Apr 25 '12	Apr 25 '12	
Time	19:36:19	19:36:19	19:36:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.5	7.3	Hz
Overswing Ratio	3.7	3.7	4.1	

Peak Vector Sum 0.0122 in/s on April 25, 2012 at 19:39:19

N/A: Not Applicable

Time Scale: 1 minute /div Amplitude Scale: Geo: 0.0500 in/s/div

${f V}$ ibra - ${f T}$ ech

Event Report

Histogram Start Time

20:05:19 April 25, 2012 Histogram Finish Time 23:59:00 April 25, 2012 Number of Intervals 233 at 1 minute Range

Sample Rate Job Number:

Geo:10.00 in/s

1024sps

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts Calibration

File Name

July 12, 2011 by Vibra-Tech Inc.

L975E97M.GV1

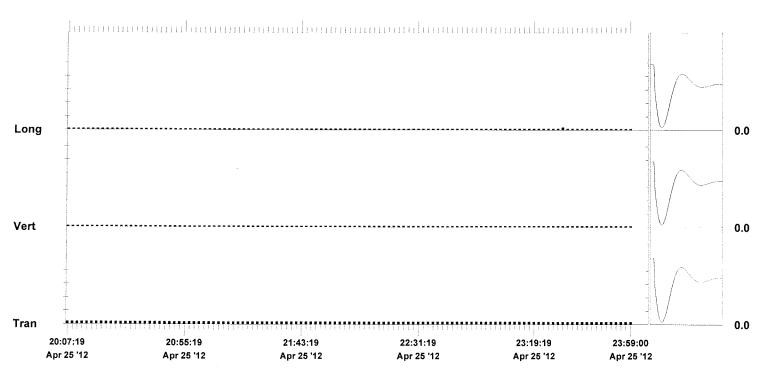
Notes

Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.00500	0.01000	in/s
ZC Freq	>100	N/A	>100	Hz
Date	Apr 25 '12	Apr 25 '12	Apr 25 '12	
Time	20:06:19	20:06:19	23:30:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.4	7.5	7.2	Hz
Overswing Ratio	3.7	3.7	4.1	

Peak Vector Sum 0.0122 in/s on April 25, 2012 at 20:08:19

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

Number of Intervals

Range Sample Rate

Job Number:

00:00:10 April 26, 2012 Histogram Finish Time 05:30:00 April 26, 2012 330 at 1 minute

Geo:10.00 in/s 1024sps

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

Battery Level 6.9 Volts

Calibration July 12, 2011 by Vibra-Tech Inc. File Name

L975E97X.CA1

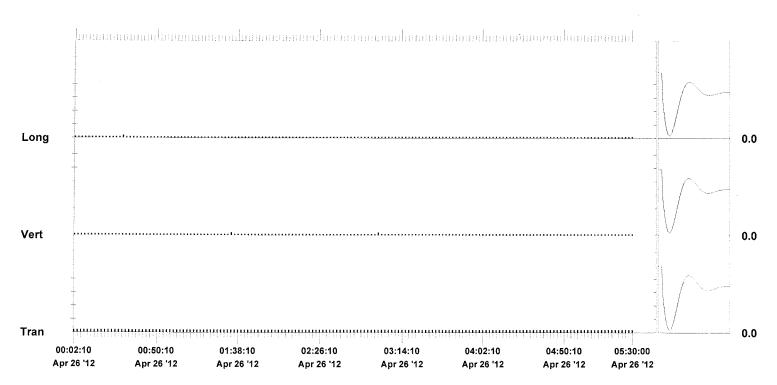
Notes

Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.01000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 26 '12	Apr 26 '12	Apr 26 '12	
Time	00:01:10	01:33:10	00:29:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.4	7.5	7.2	Hz
Overswing Ratio	3.7	3.7	4.1	

Peak Vector Sum 0.0122 in/s on April 26, 2012 at 00:02:10

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Histogram Start Time

Number of Intervals

Range Sample Rate

05:35:18 April 26, 2012 Histogram Finish Time 19:30:00 April 26, 2012 835 at 1 minute

Geo:10.00 in/s

1024sps

Job Number:

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

Battery Level 6.9 Volts Calibration

File Name

July 12, 2011 by Vibra-Tech Inc.

L975E98C.UU1

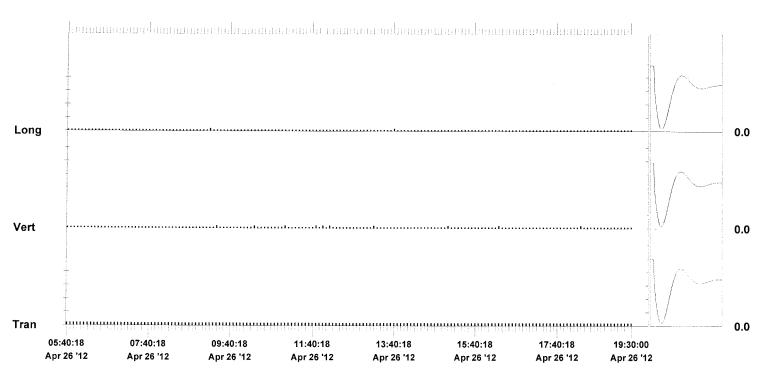
Notes

Location: Location #6

URS - Williamsburg Works Client: User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.01000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 26 '12	Apr 26 '12	Apr 26 '12	
Time	05:36:18	09:18:18	09:06:18	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.6	7.3	Hz
Overswing Ratio	3.7	3.7	4.1	

Peak Vector Sum 0.0141 in/s on April 26, 2012 at 11:42:18

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Battery Level 6.9 Volts

Calibration

File Name

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

L975E99F.QV1

July 12, 2011 by Vibra-Tech Inc.

Histogram Start Time Number of Intervals

19:35:19 April 26, 2012 Histogram Finish Time 20:00:00 April 26, 2012 25 at 1 minute

Geo:10.00 in/s

1024sps

Sample Rate Job Number:

Notes

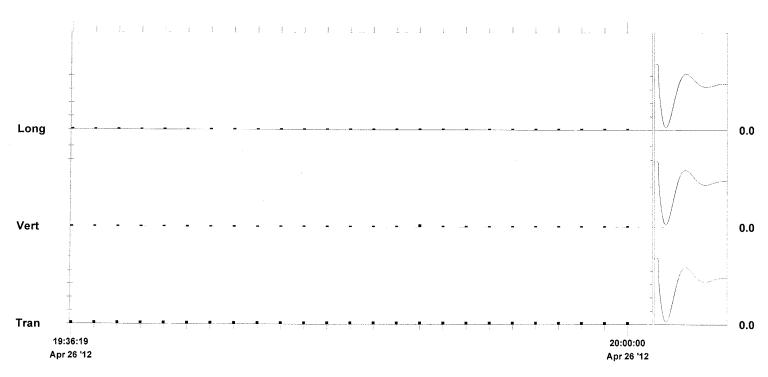
Range

Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.01000	0.00500	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 26 '12	Apr 26 '12	Apr 26 '12	
Time	19:36:19	19:51:19	19:36:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.5	7.3	Hz
Overswing Ratio	3.7	3.7	4.1	

Peak Vector Sum 0.0122 in/s on April 26, 2012 at 19:37:19

N/A: Not Applicable

Time Scale: 1 minute /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Histogram Start Time

Number of Intervals Range

20:05:18 April 26, 2012 Histogram Finish Time 23:59:00 April 26, 2012 233 at 1 minute Geo:10.00 in/s

Calibration File Name

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus Battery Level 6.9 Volts

July 12, 2011 by Vibra-Tech Inc. L975E99H.4U1

Sample Rate Job Number: 1024sps

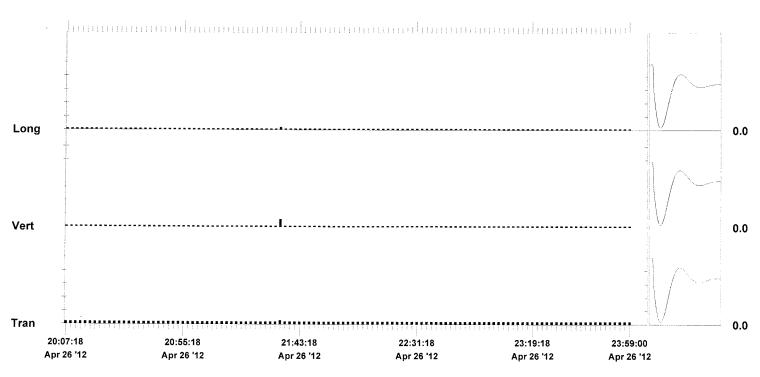
Notes

Location: Location #6

Client: **URS - Williamsburg Works** User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.0300	0.01000	in/s
ZC Freq	47	85	64	Hz
Date	Apr 26 '12	Apr 26 '12	Apr 26 '12	
Time	21:34:18	21:34:18	21:34:18	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.5	7.3	Hz
Overswing Ratio	3.7	3.7	4.1	

Peak Vector Sum 0.0316 in/s on April 26, 2012 at 21:34:18

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Histogram Start Time

00:00:10 April 27, 2012 Histogram Finish Time 05:30:00 April 27, 2012 **Number of Intervals**

Range Sample Rate Job Number: 330 at 1 minute Geo:10.00 in/s

1024sps

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus 6.9 Volts

Battery Level Calibration

File Name

L975E99S.0A1

July 12, 2011 by Vibra-Tech Inc.

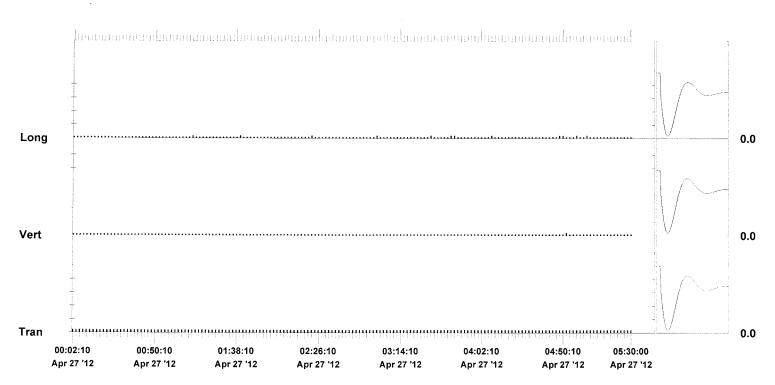
Notes

Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

Tran	Vert	Long	
0.01000	0.01000	0.01000	in/s
>100	>100	>100	Hz
Apr 27 '12	Apr 27 '12	Apr 27 '12	
00:01:10	04:51:10	01:12:10	
Passed	Passed	Passed	
7.4	7.5	7.2	Hz
3.7	3.7	4.1	
	0.01000 >100 Apr 27 '12 00:01:10 Passed 7.4	0.01000 0.01000 >100 >100 Apr 27 '12 Apr 27 '12 00:01:10 04:51:10 Passed Passed 7.4 7.5	0.01000 0.01000 0.01000 >100 >100 >100 Apr 27 '12 Apr 27 '12 Apr 27 '12 00:01:10 04:51:10 01:12:10 Passed Passed Passed 7.4 7.5 7.2

Peak Vector Sum 0.0122 in/s on April 27, 2012 at 00:01:10

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Histogram Start Time

Histogram Finish Time 19:30:00 April 27, 2012 **Number of Intervals**

Range Sample Rate Job Number: 835 at 1 minute

1024sps

05:35:20 April 27, 2012

Geo:10.00 in/s

Battery Level Calibration File Name

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

6.9 Volts

July 12, 2011 by Vibra-Tech Inc. L975E9A7.IW1

Notes

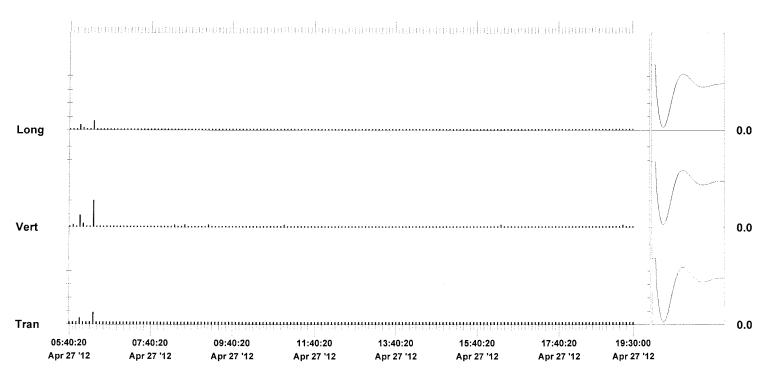
Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes

Post Event Notes


Microphone Disabled

PSPL	IN/A	
ZC Freq	N/A	
Channel Test	N/A	
		Tra

Tran	Vert	Long	
0.0450	0.1000	0.0350	in/s
85	>100	85	Hz
Apr 27 '12	Apr 27 '12	Apr 27 '12	
06:13:20	06:13:20	06:13:20	
Passed	Passed	Passed	
7.5	7.6	7.2	Hz
3.7	3.7	4.1	
	0.0450 85 Apr 27 '12 06:13:20 Passed 7.5	0.0450 0.1000 85 >100 Apr 27 '12 Apr 27 '12 06:13:20 06:13:20 Passed Passed 7.5 7.6	0.0450 0.1000 0.0350 85 >100 85 Apr 27 '12 Apr 27 '12 Apr 27 '12 06:13:20 06:13:20 06:13:20 Passed Passed Passed 7.5 7.6 7.2

Peak Vector Sum 0.101 in/s on April 27, 2012 at 06:13:20

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Battery Level

Calibration

File Name

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

L975E9BA.EU1

July 12, 2011 by Vibra-Tech Inc.

6.9 Volts

Histogram Start Time

19:35:18 April 27, 2012 Histogram Finish Time 20:00:00 April 27, 2012 **Number of Intervals** 25 at 1 minute

Range Geo:10.00 in/s Sample Rate 1024sps

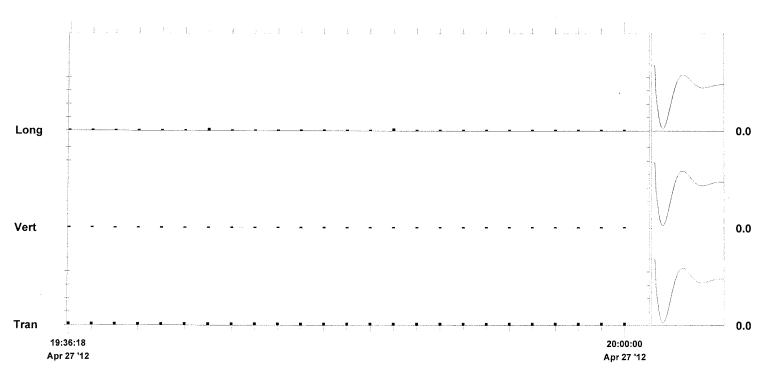
Job Number: 1

Notes Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled PSPL N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.00500	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 27 '12	Apr 27 '12	Apr 27 '12	
Time	19:36:18	19:36:18	19:42:18	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.5	7.3	Hz
Overswing Ratio	3.7	3.7	4.2	

Peak Vector Sum 0.0122 in/s on April 27, 2012 at 19:36:18

N/A: Not Applicable

Time Scale: 1 minute /div Amplitude Scale: Geo: 0.0500 in/s/div

Dynamic Geo Cal.

Printed: May 1, 2012 (V 7.03 - 7.01)

${f V}$ ibra - ${f T}$ ech

Event Report

Histogram Start Time

Histogram Finish Time 23:59:00 April 27, 2012 **Number of Intervals**

Range Sample Rate Job Number: 20:05:19 April 27, 2012 233 at 1 minute

Geo:10.00 in/s 1024sps

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

Battery Level 6.9 Volts Calibration

July 12, 2011 by Vibra-Tech Inc. File Name

L975E9BB.SV1

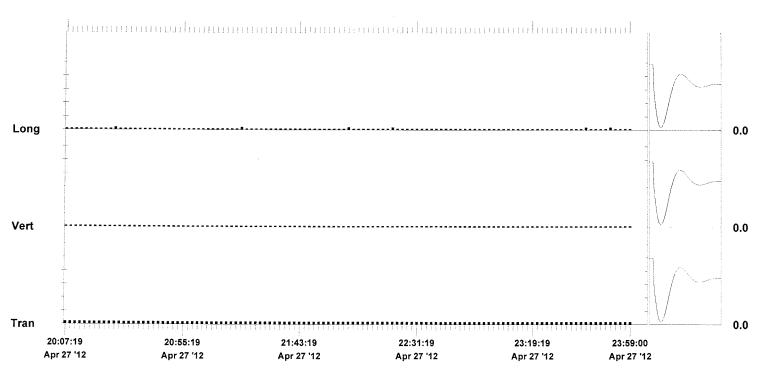
Notes

Location: Location #6

Client: **URS - Williamsburg Works** User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

Tran	Vert	Long	
0.01000	0.00500	0.01000	in/s
>100	>100	>100	Hz
Apr 27 '12	Apr 27 '12	Apr 27 '12	
20:06:19	20:06:19	20:26:19	
Passed	Passed	Passed	
7.4	7.5	7.2	Hz
3.7	3.7	4.2	
	0.01000 >100 Apr 27 '12 20:06:19 Passed 7.4	0.01000 0.00500 >100 >100 Apr 27 '12 Apr 27 '12 20:06:19 20:06:19 Passed Passed 7.4 7.5	0.01000 0.00500 0.01000 >100 >100 >100 >100 Apr 27 '12 Apr 27 '12 Apr 27 '12 20:06:19 20:06:19 20:26:19 Passed Passed Passed 7.4 7.5 7.2

Peak Vector Sum 0.0122 in/s on April 27, 2012 at 20:06:19

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

${f V}$ ibra - ${f T}$ ech

Event Report

Histogram Start Time

Histogram Finish Time 05:30:00 April 28, 2012 Number of Intervals

Range Sample Rate Job Number: 00:00:10 April 28, 2012 330 at 1 minute Geo:10.00 in/s

1024sps

Battery Level

Calibration

File Name

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

7.0 Volts

July 12, 2011 by Vibra-Tech Inc. L975E9BM.OA1

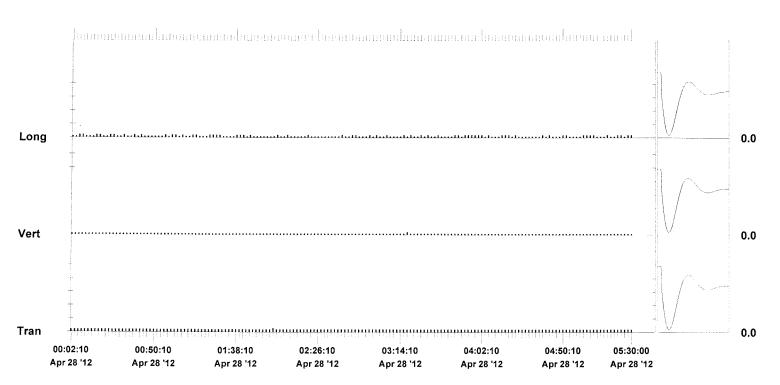
Notes

Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.01000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 28 '12	Apr 28 '12	Apr 28 '12	
Time	02:00:10	03:17:10	00:06:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.4	7.5	7.2	Hz
Overswing Ratio	3.7	3.7	4.2	
Dynamic Geo Cal. Frequency	Passed 7.4	Passed 7.5	Passed 7.2	Hz

Peak Vector Sum 0.0150 in/s on April 28, 2012 at 02:00:10

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Event Report

Battery Level 6.8 Volts

Calibration

File Name

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

L975E9C2.6W1

July 12, 2011 by Vibra-Tech Inc.

Histogram Start Time

05:35:20 April 28, 2012 Histogram Finish Time 19:30:00 April 28, 2012 Number of Intervals

Range Sample Rate 835 at 1 minute Geo:10.00 in/s

1024sps

Job Number: 1

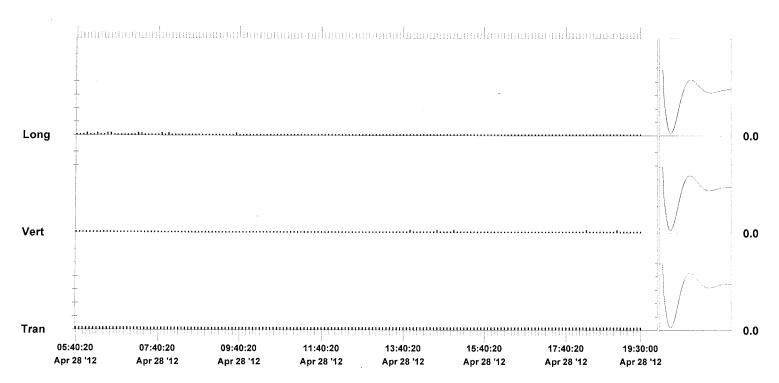
Notes

Location: Location #6

URS - Williamsburg Works Client: User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.01000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 28 '12	Apr 28 '12	Apr 28 '12	
Time	05:36:20	13:47:20	05:52:20	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.6	7.3	Hz
Overswing Ratio	3.7	3.7	4.2	

Peak Vector Sum 0.0122 in/s on April 28, 2012 at 05:36:20

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Dynamic Geo Cal.

Printed: May 1, 2012 (V 7.03 - 7.01)

Event Report

Histogram Start Time Number of Intervals Range Sample Rate

19:35:18 April 28, 2012 Histogram Finish Time 20:00:00 April 28, 2012 25 at 1 minute Geo:10.00 in/s 1024sps

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus Battery Level 6.8 Volts Calibration July 12, 2011 by Vibra-Tech Inc.

File Name L975E9D5.2U1

Notes

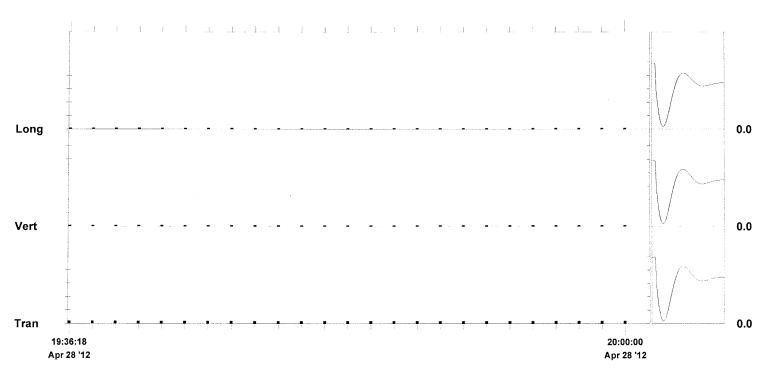
Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes

Job Number:


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.00500	0.00500	in/s
ZC Freq Date		>100 Apr 28 '12		Hz
Time Dynamic Geo Cal.	19:36:18 Passed	19:36:18 Passed	19:36:18 Passed	
Frequency Overswing Ratio	7.5 3.7	7.5 3.7	7.3 4.2	Hz
Overswing Matto	5.7	0.1	7.2	

Peak Vector Sum 0.0122 in/s on April 28, 2012 at 19:37:18

N/A: Not Applicable

Time Scale: 1 minute /div Amplitude Scale: Geo: 0.0500 in/s/div

Vibra -Tech The Vibration Monitoring Experts

Event Report

Histogram Start Time Number of Intervals

20:05:19 April 28, 2012 Histogram Finish Time 23:59:00 April 28, 2012

Geo:10.00 in/s

Sample Rate 1

Job Number:

233 at 1 minute

1024sps

Battery Level Calibration

File Name

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

6.9 Volts

July 12, 2011 by Vibra-Tech Inc.

L975E9D6.GV1

Notes

Range

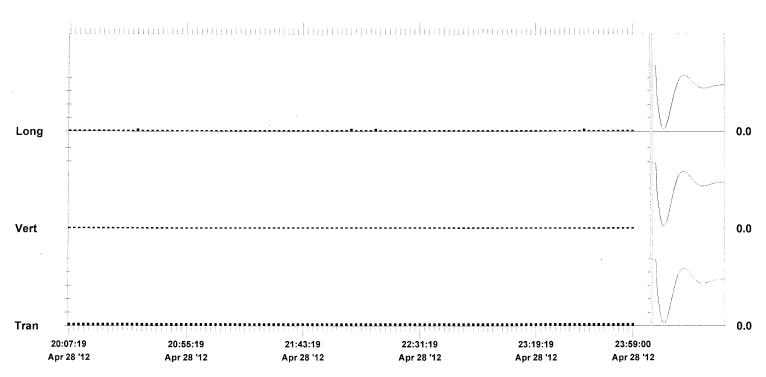
Location: Location #6

URS - Williamsburg Works Client: User Name:

Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC** Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.00500	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 28 '12	Apr 28 '12	Apr 28 '12	
Time	20:06:19	20:06:19	20:34:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.5	7.2	Hz
Overswing Ratio	3.7	3.7	4.1	

Peak Vector Sum 0.0122 in/s on April 28, 2012 at 20:07:19

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Battery Level

Calibration

File Name

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

L975E9DH.CA1

July 12, 2011 by Vibra-Tech Inc.

6.9 Volts

Histogram Start Time

Number of Intervals Range

00:00:10 April 29, 2012 Histogram Finish Time 05:30:00 April 29, 2012 330 at 1 minute

Geo:10.00 in/s 1024sps

1

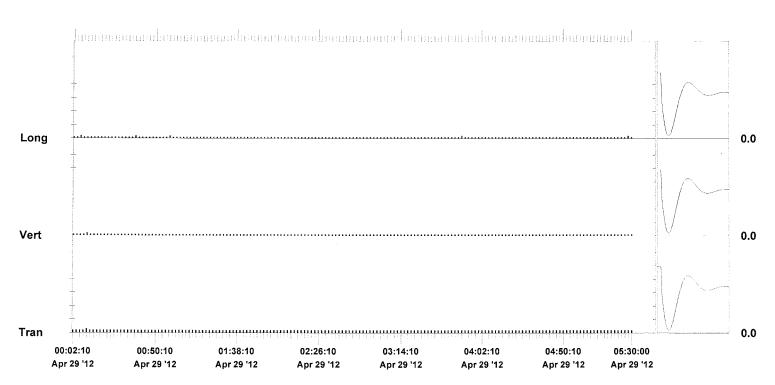
Sample Rate Job Number:

Notes Location: Location #6

URS - Williamsburg Works Client: User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.0150	0.01000	0.01000	in/s
ZC Freq	85	>100	>100	Hz
Date	Apr 29 '12	Apr 29 '12	Apr 29 '12	
Time	00:10:10	00:10:10	00:05:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.4	7.5	7.3	Hz
Overswing Ratio	3.7	3.7	4.1	

Peak Vector Sum 0.0180 in/s on April 29, 2012 at 00:10:10

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Histogram Start Time

Number of Intervals Range

05:35:19 April 29, 2012 Histogram Finish Time 19:30:00 April 29, 2012 835 at 1 minute

> Geo:10.00 in/s 1024sps

Sample Rate Job Number:

1

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

Battery Level 6.8 Volts

Calibration July 12, 2011 by Vibra-Tech Inc. File Name

L975E9DW.UV1

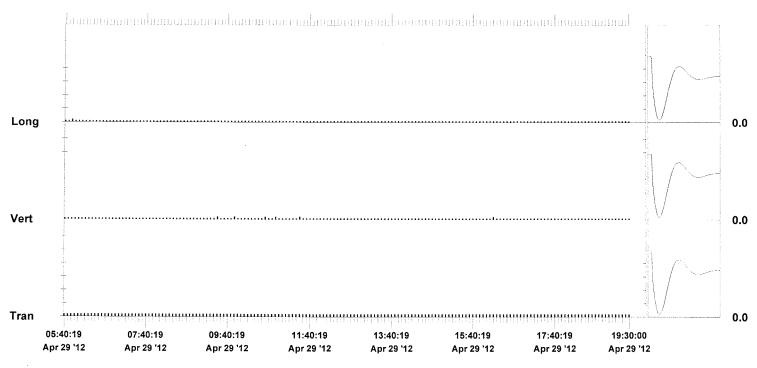
Notes

Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled PSPL. N/A **ZC Freq** N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.01000	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 29 '12	Apr 29 '12	Apr 29 '12	
Time	05:36:19	09:25:19	05:49:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.4	7.5	7.2	Hz
Overswing Ratio	3.7	3.7	4.1	

Peak Vector Sum 0.0122 in/s on April 29, 2012 at 05:36:19

N/A: Not Applicable

Time Scale: 5 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

${f V}$ ibra - ${f T}$ ech

Event Report

Histogram Start Time Number of Intervals Range

19:35:18 April 29, 2012 Histogram Finish Time 20:00:00 April 29, 2012 25 at 1 minute

Battery Level Calibration Geo:10.00 in/s File Name

1024sps

July 12, 2011 by Vibra-Tech Inc. L975E9EZ.QU1

6.8 Volts

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

Sample Rate Job Number:

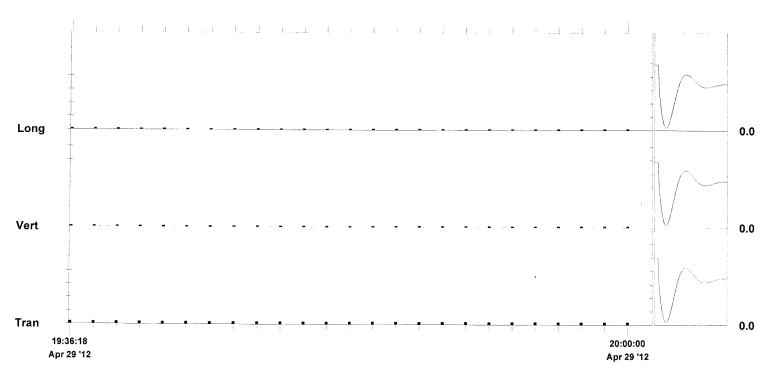
Notes

Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A N/A **ZC Freq** Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.00500	0.00500	in/s
ZC Freq	>100	N/A	>100	Hz
Date	Apr 29 '12	Apr 29 '12	Apr 29 '12	
Time	19:36:18	19:36:18	19:36:18	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.4	7.5	7.3	Hz
Overswing Ratio	3.7	3.7	4.1	

Peak Vector Sum 0.0122 in/s on April 29, 2012 at 19:37:18

N/A: Not Applicable

Time Scale: 1 minute /div Amplitude Scale: Geo: 0.0500 in/s/div

Histogram Start Time

Number of Intervals

Range Sample Rate Job Number:

20:05:19 April 29, 2012 Histogram Finish Time 23:59:00 April 29, 2012

1024sps

233 at 1 minute Geo:10.00 in/s

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

Battery Level 6.9 Volts

Calibration File Name

July 12, 2011 by Vibra-Tech Inc.

L975E9F1.4V1

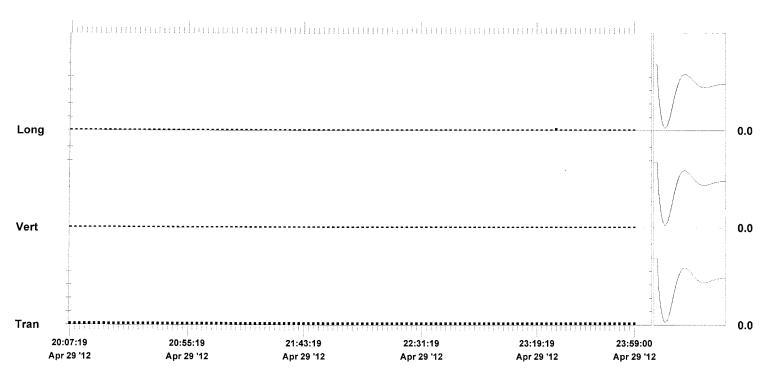
Notes

Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes


Post Event Notes

Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.00500	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 29 '12	Apr 29 '12	Apr 29 '12	
Time	20:06:19	20:06:19	23:26:19	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.5	7.2	Hz
Overswing Ratio	3.7	3.7	4.1	

Peak Vector Sum 0.0122 in/s on April 29, 2012 at 20:15:19

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Histogram Start Time

Number of Intervals Range

00:00:10 April 30, 2012 Histogram Finish Time 05:30:00 April 30, 2012 330 at 1 minute

Geo: 10.00 in/s 1024sps

Sample Rate Job Number: 1

File Name

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

Battery Level 6.9 Volts Calibration

July 12, 2011 by Vibra-Tech Inc. L975E9FC.0A1

Notes

Location:

Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

General:

Extended Notes

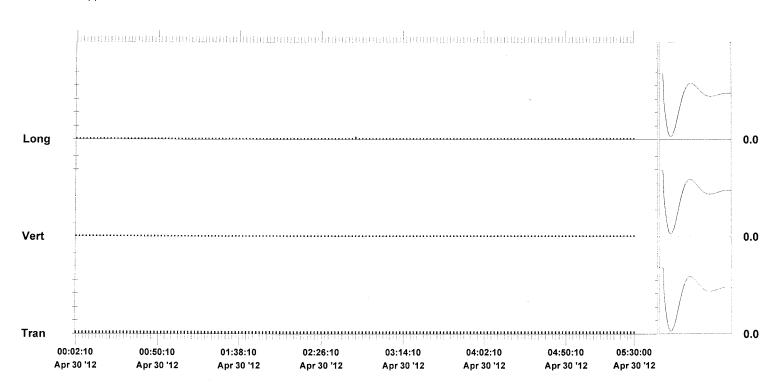
Post Event Notes

Microphone

Disabled

PSPL

N/A


ZC Freq

N/A Channel Test N/A

	Tran	Vert	Long	
PPV	0.01000	0.00500	0.01000	in/s
ZC Freq	>100	>100	>100	Hz
Date	Apr 30 '12	Apr 30 '12	Apr 30 '12	
Time	00:01:10	00:01:10	02:45:10	
Dynamic Geo Cal.	Passed	Passed	Passed	
Frequency	7.5	7.5	7.2	Hz
Overswing Ratio	3.7	3.7	4.2	

Peak Vector Sum 0.0122 in/s on April 30, 2012 at 00:03:10

N/A: Not Applicable

Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div

Battery Level

Calibration

File Name

Serial Number BF10975 V 7.04-8.0 MultiSeis Plus

L975E9FR.IV1

July 12, 2011 by Vibra-Tech Inc.

6.8 Volts

Histogram Start Time

Histogram Finish Time 11:40:41 April 30, 2012

Number of Intervals Range Sample Rate

05:35:19 April 30, 2012 365 at 1 minute

Geo: 10.00 in/s 1024sps

Job Number:

1

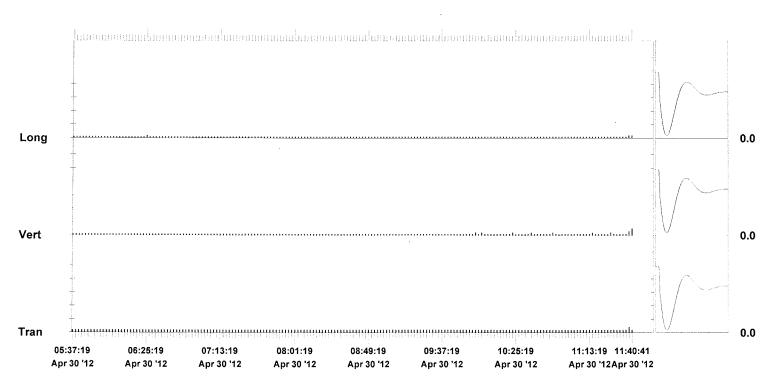
Notes

Location: Location #6

Client: URS - Williamsburg Works User Name: Vibra-Tech Engineers, Inc.

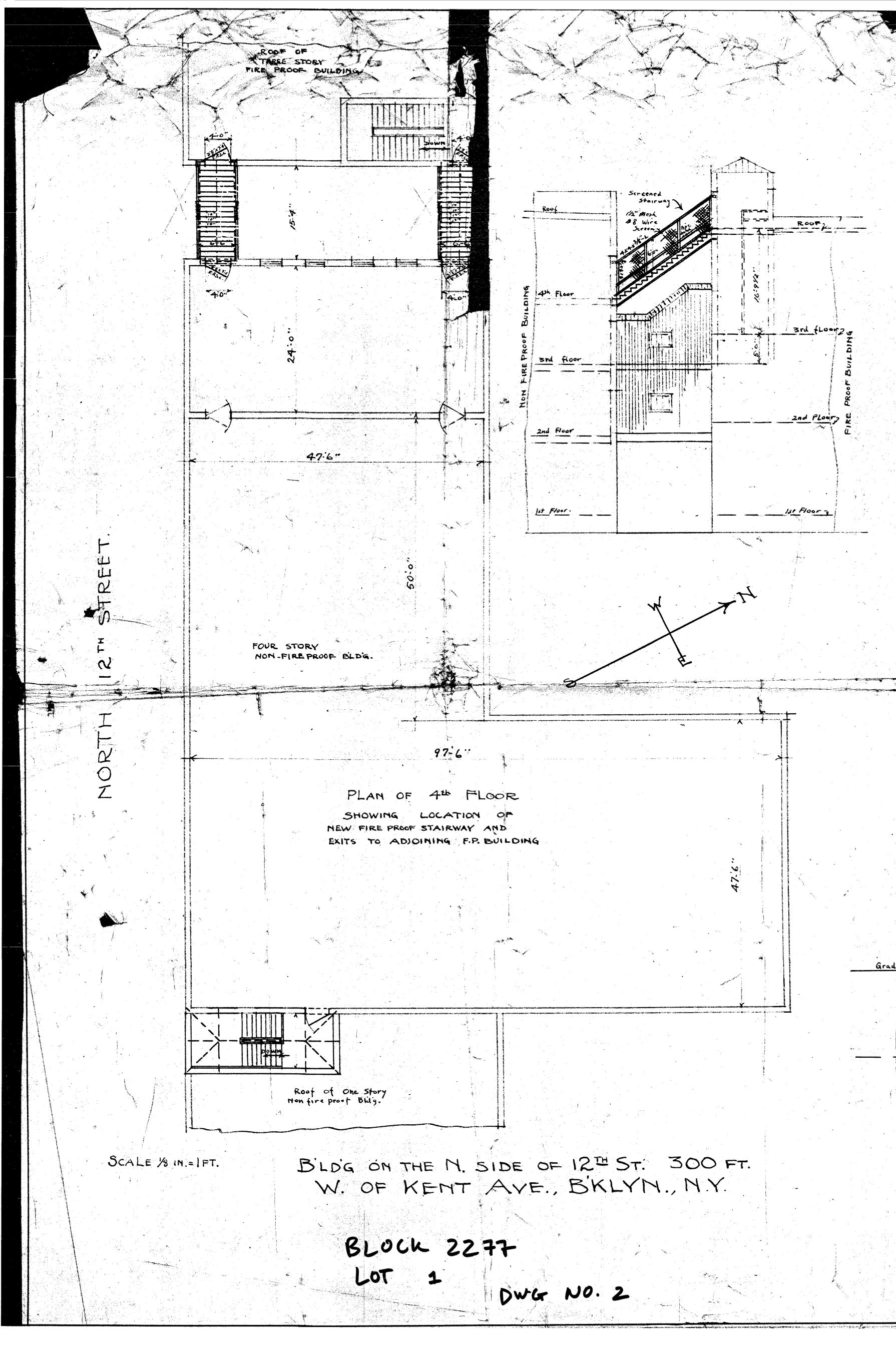
General:

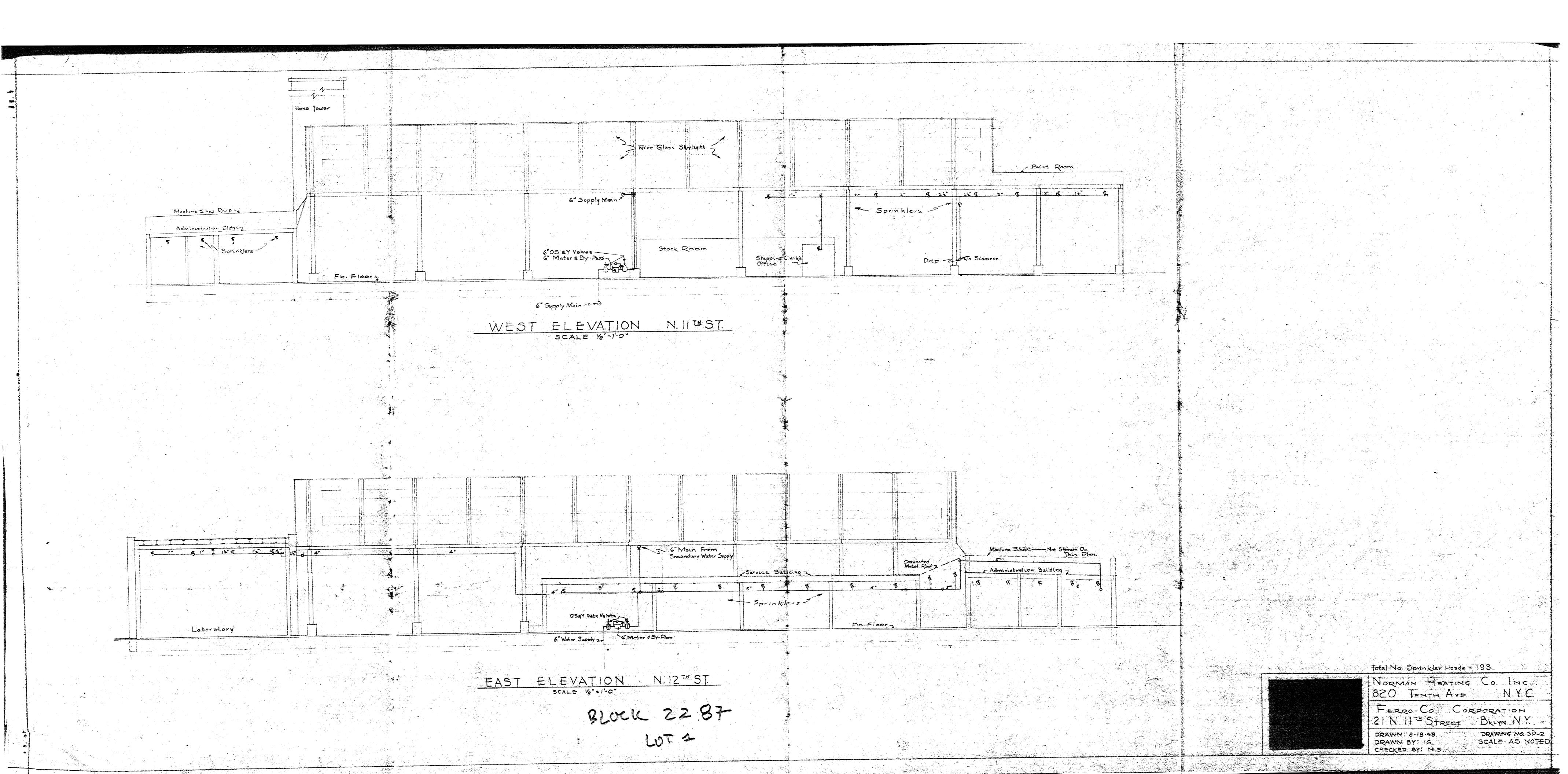
Extended Notes

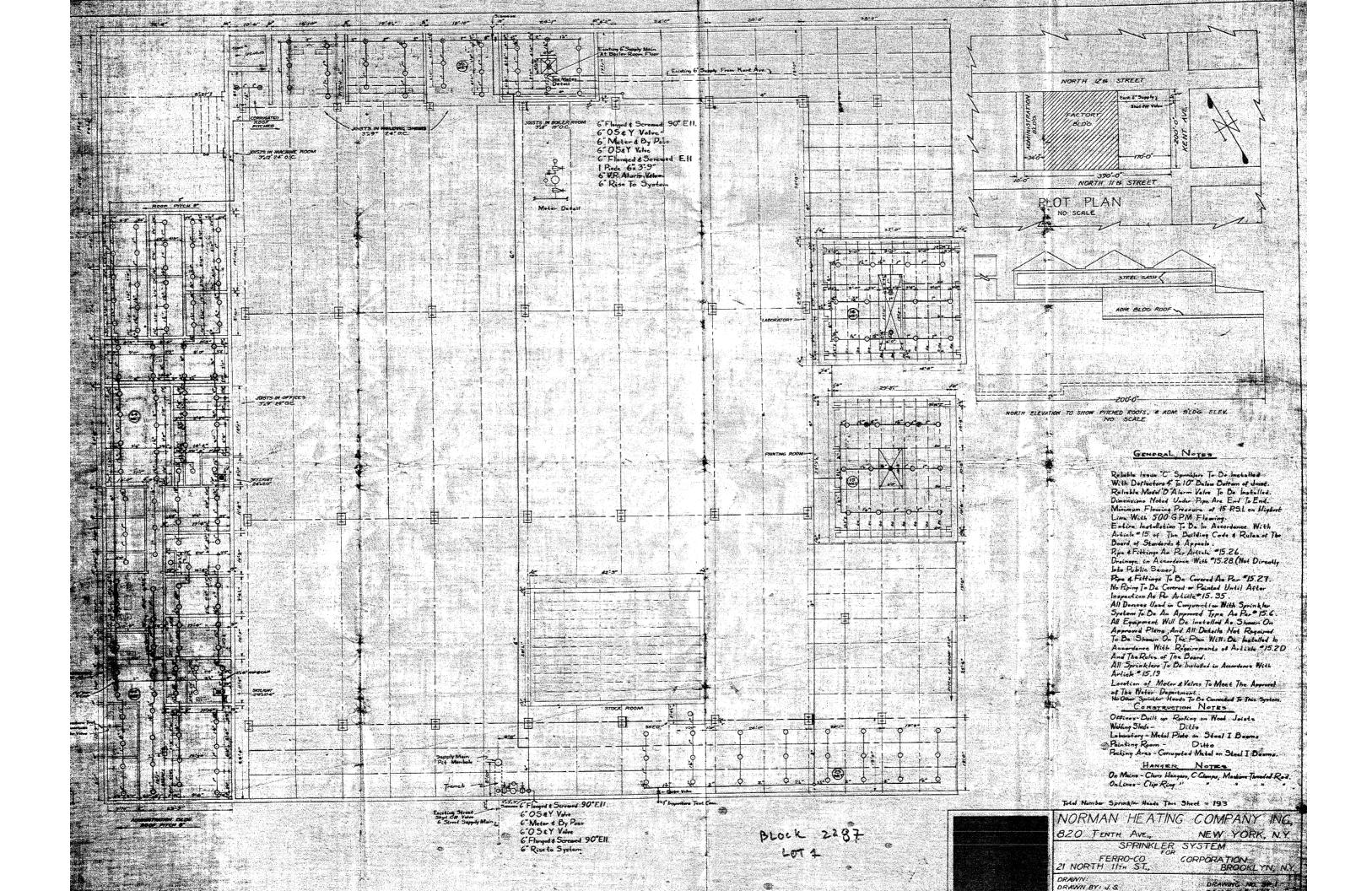

Post Event Notes

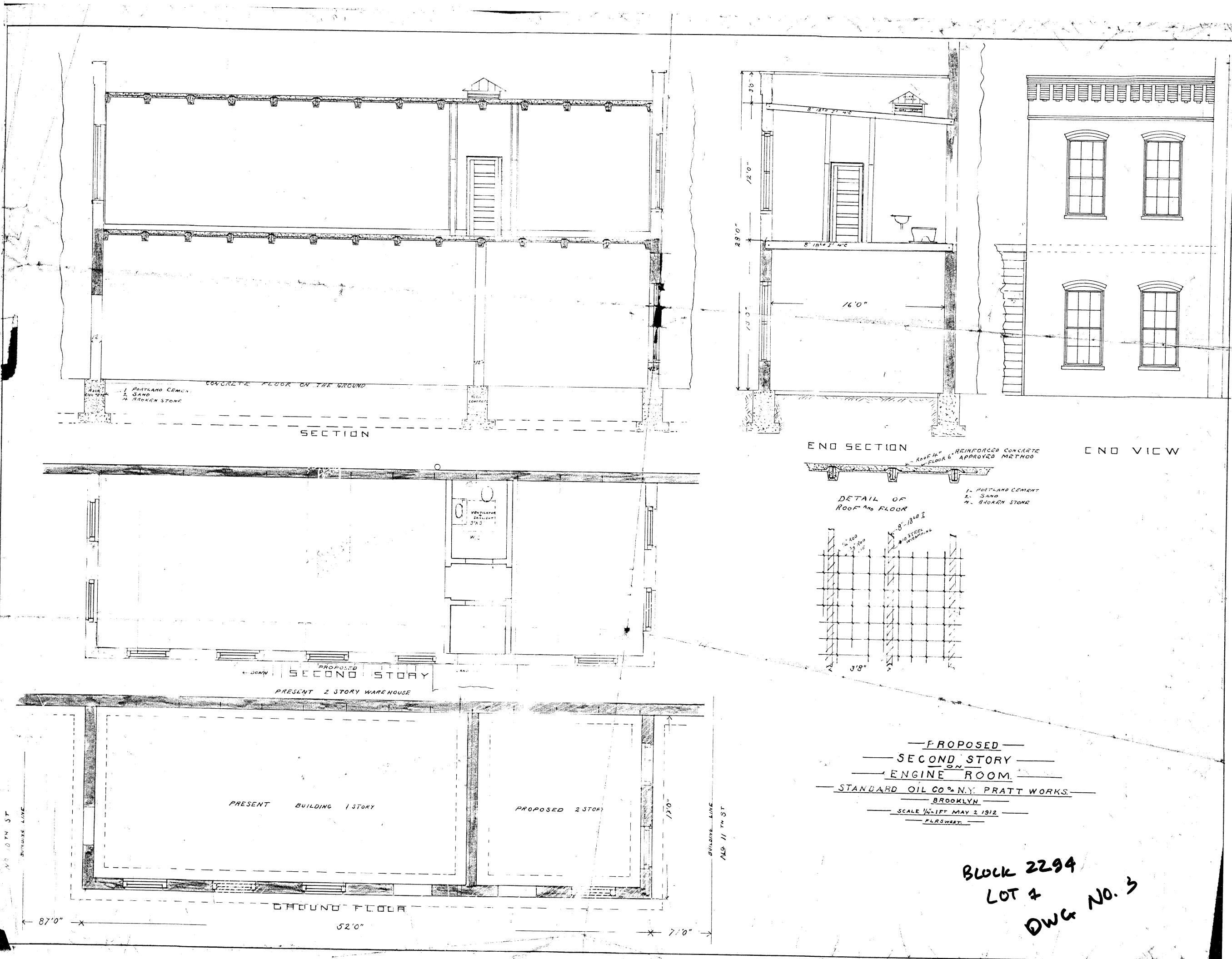
Microphone Disabled **PSPL** N/A ZC Freq N/A Channel Test N/A

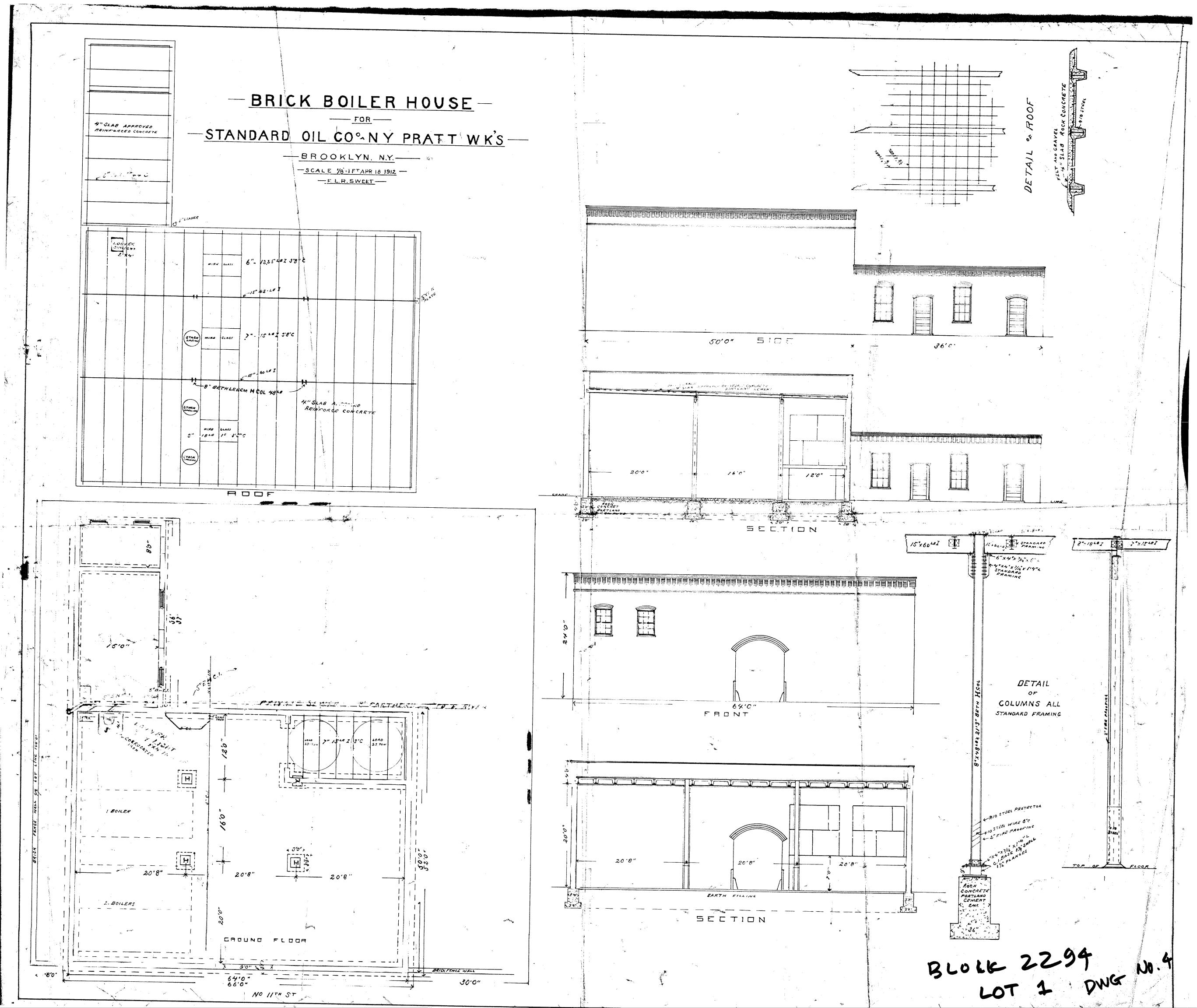
Tran	Vert	Long	
0.0200	0.0250	0.01000	in/s
>100	>100	>100	Hz
Apr 30 '12	Apr 30 '12	Apr 30 '12	
11:39:19	11:40:19	06:24:19	
Passed	Passed	Passed	
7.5	7.6	7.3	Hz
3.7	3.7	4.2	
	0.0200 >100 Apr 30 '12 11:39:19 Passed 7.5	0.0200 0.0250 >100 >100 Apr 30 '12 Apr 30 '12 11:39:19 11:40:19 Passed Passed 7.5 7.6	0.0200 0.0250 0.01000 >100 >100 >100 Apr 30 '12 Apr 30 '12 Apr 30 '12 11:39:19 11:40:19 06:24:19 Passed Passed Passed 7.5 7.6 7.3

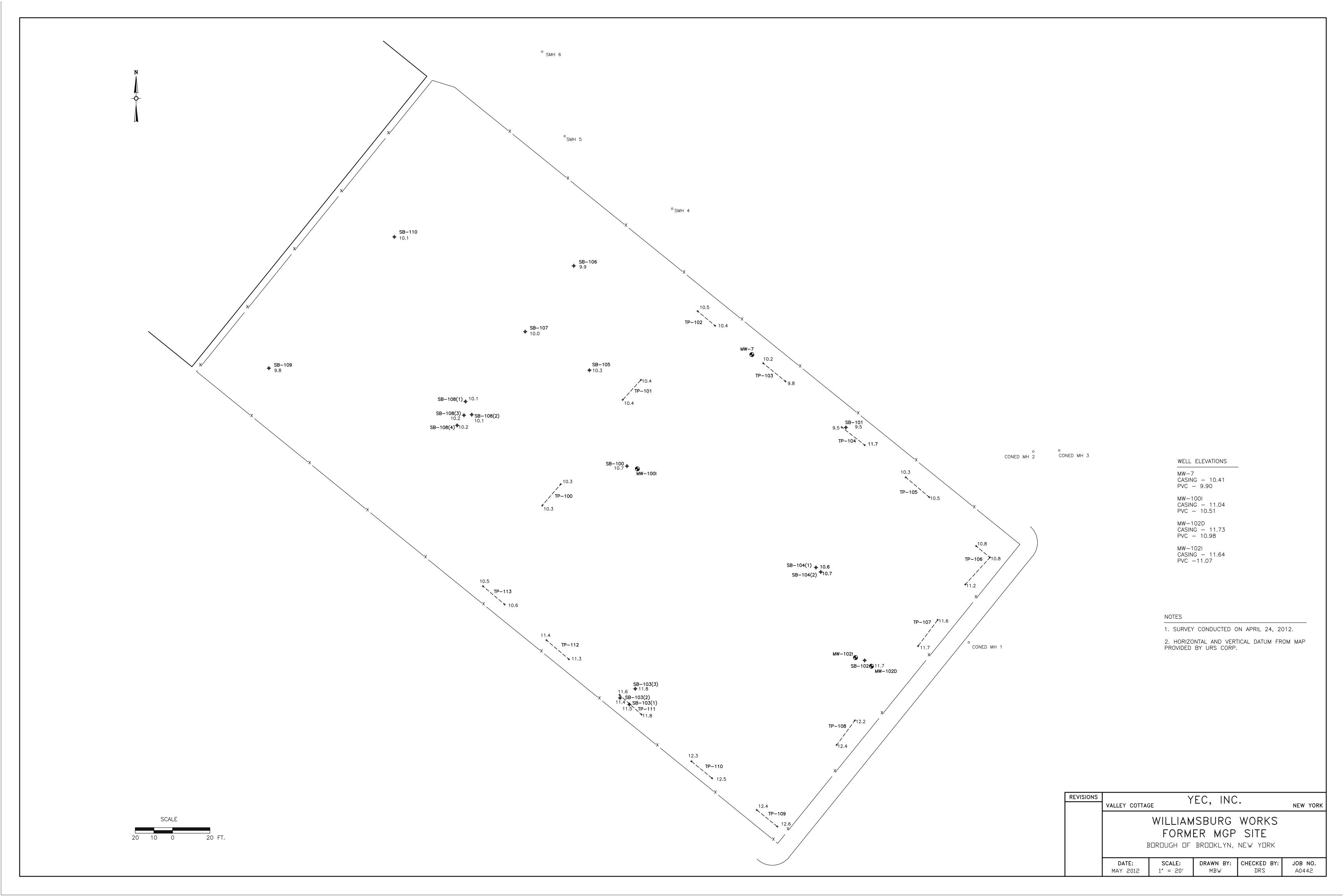

Peak Vector Sum 0.0274 in/s on April 30, 2012 at 11:40:19


N/A: Not Applicable




Time Scale: 2 minutes /div Amplitude Scale: Geo: 0.0500 in/s/div


APPENDIX M BUILDING FOUNDATION PLANS



APPENDIX N SURVEY DATA

1	688766.0554	642067.1555	10.9200	MAG NAIL
2	688936.1858	641870.5584	10.1000	SPIKE
3	688840.1218	642096.0417	9.8300	SPIKE
4	688981.9274	641920.1694	8.2000	SPIKE
101	688775.3462	642098.7789	10.3100	COR CLF
102	688767.2404	642100.2693	10.2100	LAMPPOST
103	688615.1573	641969.0241	12.5700	COR CLF
104	688606.7647	641957.8977	12.0900	FC PC
105	688603.4163	641966.3230	12.1100	FC POC
106	688607.6451	641974.9722	11.9700	FC PT
107	688769.0282	642105.5205	9.7800	FC PC
108	688776.8692	642108.0912	9.8600	FC POC
109	688784.8017	642104.3146	9.6400	FC PT
110	688714.6543	642010.6524	11.6400	MW-102I
111		642019.1811	11.7300	MW-102D
112	688710.0550			TP-108
	688667.8448	642000.5962	12.3700	
113	688681.0556	642010.3755	12.2100	TP-108
114	688713.1900	642015.5750	11.7300	SB-102
115	688720.8499	642044.2000	11.6900	TP-107
116	688734.9307	642054.7657	11.5700	TP-107
117	688762.9750	641989.4966	10.5500	SB-104(1)
118	688760.5699	641992.0355	10.6700	SB-104(2)
119	688753.8328	642069.4711	11.2100	TP-106
120	688768.3198	642082.7318	10.8100	TP-106
121	688774.4508	642075.3046	10.7900	TP-106
122	688800.6410	642050.1961	10.5100	TP-105
123	688811.3116	642037.5860	10.2700	TP-105
124	688828.4956	642015.6531	11.6900	TP-104
125	688838.1407	642003.3010	9.4500	TP-104
126	688837.9514	642005.5190	9.4700	SB-101
127	688862.6831	641973.1368	9.8300	TP-103
128	688872.4403	641961.2108	10.1500	TP-103
129	688876.9953	641955.1050	10.4100	MW-7
130	688892.4496	641935.4815	10.4300	TP-102
131	688900.2817	641926.1187	10.5300	TP-102
132	688924.5794	641859.7369	9.9100	SB-106
133	688889.2963	641833.7093	10.0300	SB-107
134	688868.6194	641868.1283	10.2500	SB-105
135	688852.7620	641885.9519	10.4100	TP-101
136	688863.4706	641895.7427	10.3500	TP-101
137	688752.9464	641811.0908	10.4500	TP-113
138	688743.1291	641822.7283	10.5500	TP-113
139	688724.0098	641845.1214	11.4000	TP-112
140	688713.8062	641857.1373	11.3400	TP-112
141	688694.7294	641884.2722	11.6300	TP-111
142	688684.1457	641896.0506	11.7900	TP-111
143	688689.5425	641889.4906	11.5300	SB-103(1)
144	688693.0481	641884.5276	11.3900	SB-103(2)
145	688697.9628	641892.6929	11.7500	SB-103(2)
146	688659.1641	641922.7036	12.3300	TP-110
147	688650.0065	641933.8790	12.4700	TP-110
148	688633.0690	641957.7911	12.4700	TP-110
149	688624.1522	641968.8292	12.5700	TP-109

150	688722.8388	642071.3534	10.2600	CONED MH 1
151	688825.0556	642105.8920	9.9200	CONED MH 2
152	688825.6730	642119.7482	10.2100	CONED MH 3
153	688955.1231	641912.4136	8.3700	SMH 4
154	688993.9868	641854.8403	7.5900	SMH 5
155	689039.2844	641842.7615	7.6000	SMH 6
156	689026.1511	641781.0322	0.0000	BUILDING
				CORNER
157	689023.9345	641783.9951	0.0000	COR CLF
158	689020.2815	641795.9215	0.0000	<pt clf<="" td=""></pt>
159	688570.2271	641931.6627	13.4900	BUILDING
				CORNER
160	688870.5317	641655.1725	0.0000	BUILDING
				CORNER
161	688867.9507	641657.6453	0.0000	COR CLF
162	688815.7878	641893.7957	11.0400	MW-100I
163	688817.2756	641888.2556	10.6900	SB-100
164	688807.5946	641852.7392	10.2500	TP-100
165	688851.8733	641801.7602	10.0700	SB-108(1)
166	688844.8186	641805.0925	10.1300	SB-108(2)
167	688844.5199	641800.9166	10.1700	SB-108(3)
168	688839.0799	641797.2341	10.1900	SB-108(4
169	688869.7424	641696.3812	9.8100	SB-109
170	688940.0666	641763.6288	10.0900	SB-110
171	688614.9654	641966.0348	0.0000	
172	688776.2821	642096.6390	0.0000	
173	689045.0164	641757.7063	0.0000	
174	688889.3970	641631.8465	0.0000	

